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Big Extra Dimensions Make Λ too Small
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I argue that the true quantum gravity scale cannot be much larger than the Planck length, because if it were
then the quantum gravity-induced fluctuations in Λ would be insufficient to produce the observed cosmic “dark
energy”. If one accepts this argument, it rules out scenarios of the “large extra dimensions” type. I also point out
that the relation between the lower and higher dimensional gravitational constants in a Kaluza-Klein theory is
precisely what is needed in order that a black hole’s entropy admit a consistent higher dimensional interpretation
in terms of an underlying spatio-temporal discreteness.

Probably few people anticipate that laboratory experiments
which can be done in the foreseeable future will help to guide
the construction of a theory of quantum gravity. Even as-
tronomers, who can access a much greater range of conditions
than we can reproduce here on earth, have hardly provided rel-
evant observations so far, and only in one or two cases has any
of their data been compared with the predictions of any quan-
tum gravity theory. The reason for expecting this experimental
impotence to persist, of course, is that quantum gravitational
effects are normally taken to be associated with a length scale
of around 10−32cm, whereas our laboratory instruments are
only able to probe distances which are bigger than that, by
fifteen or more orders of magnitude.

But how sure are we that the quantum gravity scale is gen-
uinely set by the gravitational coupling constant κ = 8πG (to-
gether with ~ and c, taken as unity)? Although this is by far the
most natural assumption, no one knows with certainty that it is
correct. On the contrary, a variety of authors have proposed in
recent years that the “true Planck length” is much bigger than
we think it is, possibly big enough to be accessible to the next
generation of particle colliders. In these alternative scenarios,
the G that we derive from planetary orbits and the like is not
supposed to be fundamental, because our spacetime is sup-
posed to be only a submanifold (“brane”) embedded in some
higher dimensional spacetime, and it is the Planck length as-
sociated with this higher dimension’s gravity that would be
truly fundamental.

Were one of these modified Kaluza-Klein scenarios cor-
rect, quantum gravity might be about to enter an experimental
paradise like the one in which particle physics thrived a few
decades ago. However, there is an irony in the situation, as I
will try to show in this paper [1].

An enlargement of the Planck length sufficient to bring all
these benefits would end up depriving us of the one predic-
tive success that quantum gravity has had so far, namely that
concerning the cosmological constant Λ. More specifically,
what I will argue is that: if the fluctuations [3] predicted by
causal set theory give a true account of the non-zero Λ (“dark
energy”), and if the fundamental discreteness hypothesized by
causal sets corresponds to the scale set by some more funda-
mental, higher dimensional gravitational constant, then mak-
ing the latter much bigger than G would predict fluctuations

in Λ far too small to be compatible with its observed value.
That is, the “large extra dimension” scenarios would be ruled
out on this basis.

Underlying this conclusion is the intuition that the funda-
mental length posited by causal set theory, or any other dis-
crete theory, must have an order of magnitude given by the
(true) gravitational coupling constant κ. Or to put it the other
way around, one is supposing that the dimensional constant
κ is more or less directly reflecting not, for example, some
length-parameter of the standard model of particle physics,
but rather a more fundamental length or “cutoff” in nature at
which the continuum picture breaks down. In much the same
manner — kinetic theory tells us — the molecular length-
and time-scales set the order of magnitude of such continuum
“coupling constants” as the diffusion constant and the speed
of sound. Indeed, one can take the point of view that without
some discrete structure underlying spacetime, there would be
no good reason for the concept of length to exist at all.

This kind of intuition or “dimensional analysis” is bolstered
by one’s experience with renormalization in quantum field
theory and in statistical mechanics, more specifically by ex-
perience built up in connection with the so-called “renormal-
ization group”.

But perhaps its strongest support in the gravitational context
comes from our understanding of black hole thermodynamics,
which almost forces on us the idea [4] that the entropy will
ultimately be understood in terms of some underlying discrete
structures “occupying” roughly one unit of horizon area each,
where, in order to match the formula S = 2πA/κ, the unit of
area must be that corresponding to a length of l ∼√κ.

The above parameters κ and l refer specifically to four
dimensions, but they generalize immediately to dimension
D = 4 + d. There, the (rationalized) gravitational coupling
constant κ has dimensions of [length]D−2 (in order that the
term in the gravitational Action 1

2κ
R

RdV be dimensionless)
and so we may assume that

κ∼ lD−2 ∼ ld+2 , (1)

where l is the fundamental length of the higher dimensional
theory.

Having identified the fundamental length-scale, we must
now relate it to the cosmological constant. Here we merely
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reproduce the heuristic conclusion from causal set theory that,
at any given cosmological epoch, and in Planckian units,

Λ∼ N−1/2 , (2)

where N is the number [5] of elements since the “big bang”
[3, 6]. This long-standing prediction correctly yielded the ob-
served order of magnitude of the so-called “dark energy” and
it also explains why Λ should coincide in order of magnitude
with the density of ambient matter. For purposes of the present
analysis, I will assume that (2) is valid in general, even though
a full comparison of this idea with the cosmological data has
not yet been completed. In this relationship, the number N
is to be identified, according to one of the basic principles of
causal set theory, with the spacetime volume in fundamen-
tal units (up to an unknown multiplicative constant of order
unity), that is:

N ∼V/ln , (3)

where n is the spacetime dimensionality and

V =
Z

dV =
Z

dnx|g| 1
2 . (4)

From these equations, it is clear that changing the fundamental
length l will change the predicted value of Λ. We will see that
in the scenarios under consideration, this change will lead to
a current value that is much too small.

The models in question are, more specifically, those in
which the quantum gravity energy scale is brought down to
something on the order of a TeV , or in any case much lower
than the normal Planck scale. Given the bemusing variety of
such models, it seems difficult to make any blanket statement
covering all of them. I will thus limit myself to three which
seem to be the sources of most of the others, namely [7–9].
In fact, I will limit myself primarily to the the first of these,
because the analysis is more straightforward for it. I believe
that the conclusions would be the same for the other two mod-
els, but I am not certain, because the physical interpretations
of these models are less clear to me, especially in the case of
[8].

In the following, we will be comparing predictions from the
usual four dimensional theory with predictions from a hypo-
thetical, higher dimensional model. To distinguish between
analogous quantities in the two cases, I will use a tilde. Thus,
for example κ =

√
8πG will be the usual gravitational con-

stant, while κ̃ will be the analogous higher dimensional para-
meter, i.e. the one which is more fundamental if the theory is
true. Similarly l and l̃ will be the corresponding fundamental
length-scales.

Recall that in the original Kaluza-Klein models, spacetime
was taken to be, at least locally [10], a product manifold of the
form M̃ = M×K, where K is some compact “internal space”,
in the first instance a circle. The effective spacetime M after
coarse-graining to distance scales much longer than the com-
pactification diameter must thus be identified with the quotient
of the higher dimensional spacetime with respect to K. (From
time to time, people would write papers in which they identi-
fied our spacetime with a submanifold rather than a quotient,
but that was only because they didn’t understand the theory!)

In these models, one sees clearly how the four and five (or
higher) dimensional gravitational constants are related. Sup-
pose for example that the internal space K is a circle or some
other Ricci-flat manifold like a torus. Then the gravitational
Action written in terms of the higher dimensional metric on
M̃ will be

Sgrav =
1

2κ̃

Z
R̃dṼ

while in terms of the dimensionally reduced metric on M it
will be

Sgrav =
1

2κ

Z
RdV

Since in this case we have R = R̃, equating the last two ex-
pressions yields dV/κ = dṼ/κ̃ or equivalently

κ̃ = vκ

because dṼ = vdV , where ‘v’ represents the volume of the in-
ternal manifold K. (Really we should be writing approximate
rather than exact inequalities here, because the renormaliza-
tion of κ and κ̃ has been ignored. Indeed all quantum effects
have been ignored in assuming that the product metric is gov-
erned by the classical Einstein equations.) Converting this re-
lationship between κ and κ̃ into a relationship between l and l̃
produces, in light of (1),

(
l̃/l

)2 ∼ v/ l̃d . (5)

In principle, the true discreteness scale l̃ could thus be very
different from what we call the Planck length, if the com-
pactification diameter were very large in fundamental units.
However, in the traditional setting, in which M is a quotient of
M̃, this would produce gauge coupling constants which were
much too small.

In the more recent scenarios, though, M is identified with a
4-dimensional membrane within M̃ (a so-called 3-brane), and
the gauge fields are supposed to be confined to this membrane,
protecting them from being diluted. It is thus that the possi-
bility arises of “TeV quantum gravity”.

In order to see most simply how this possibility runs into
trouble with the cosmological constant, notice that to equate
Λ to 1/

√
N in natural units, is equivalently to assert that (in

such units)

SΛ := ΛV = ΛN ∼
√

N (6)

This puts the content of (2) in truly dimensionless form, since
both SΛ and N are pure numbers. Now if we change our idea
of the fundamental length, we will have to change N as well;
and (6) teaches us that the effective cosmological constant Λ
will then change in the same ratio, or rather its square root
[12].

What is this ratio according to the scenario of reference [7]?
With the help of equations (3) and (5), we can answer this
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question easily:

Ñ
N

∼ Ṽ/l̃4+d

V/l4 =
Ṽ
V

l4

l̃4+d
=

v
l̃d

(
l
l̃

)4

∼
(

l̃
l

)2 (
l
l̃

)4

=
(

l
l̃

)2

whence
√

Ñ/N ∼ l/l̃ (7)

With l̃ corresponding to anything like a TeV , this yields a Λ
many orders of magnitude too small to do justice to the super-
nova data [13].

In concluding, I’d like to return briefly to the basic assump-
tion (1) in relation to the idea that (the magnitude of) a black
hole’s entropy reflects an underlying discreteness of space-
time. Earlier, I adduced this idea to support the identification
of the discreteness scale with the scale set by the gravitational
coupling constant. But if this presumed relationship is con-
sistent in four dimensions, it is not obvious a priori that it
will also be consistent with respect to the higher dimensional
spacetime. If it were not, then one might have to call into
question, not only the “large extra dimensions” scenarios, but
the Kaluza-Klein paradigm in general. Fortunately, it turns
out that Kaluza-Klein theories have no quarrel with spacetime
discreteness in this sense.

Consider a black hole (or cosmological) horizon described
with respect to the effective, 4-dimensional spacetime M. If
its area is A, then its entropy will be roughly A/l2, l being

the fundamental length deduced from the 4-dimensional the-
ory. With respect to the higher dimensional metric, however,
the same horizon, being extended over the internal manifold
K, has a 2 + d-dimensional “area” of Ã = Av. Its entropy
should therefore be about Ã/l̃2+d = Av/l̃2+d , if l̃ truly sets the
higher dimensional discreteness scale. Do these two formulas
agree? Clearly, they do if and only if (l̃/l)2∼v/l̃d ; but this
precisely the content of equation (5). Conversely, equation
(5) can be understood as the compatibility condition between
the lower and higher dimensional ways of “counting horizon
molecules”. I think that this concordance strengthens the ev-
idence for (1), and to that extent strengthens the evidence for
the conclusions we have drawn from it. [If nothing else, it
furnishes a useful mnemonic for remembering equation (5)!]

In the previous paragraph, the viewpoint adopted was that
of traditional Kaluza-Klein models, for which the lower di-
mensional horizon is a quotient of the higher dimensional one.
This cannot be quite correct in scenarios such as those of [8]
and [9], however. It would be interesting to examine the above
question of “horizon counting” in those cases too.
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