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In semiclassical gravity the back-reaction of the classical gravitational field interacting with quantum matter
fields is described by the semiclassical Einstein equations. A criterion for the validity of semiclassical gravity
based on the stability of the solutions of the semiclassical Einstein equations with respect to quantum metric
perturbations is discussed. The two-point quantum correlation functions for the metric perturbations can be
described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. These correlation
functions agree, to leading order in the large N limit, with the quantum correlation functions of the theory
of gravity interacting with N matter fields. The Einstein-Langevin equations exhibit runaway solutions and
methods to deal with these solutions are discussed. The validity criterion is used to show that flat spacetime as
a solution of semiclassical gravity is stable and, consequently, a description based on semiclassical gravity is a
valid approximation in that case.

I. INTRODUCTION

Semiclassical gravity describes the interaction of the grav-
itational field as a classical field with quantum matter fields.
For a free quantum field this theory is robust in the sense that
it is consistent and fairly well understood [1, 2]. The gravita-
tional field is described by the semiclassical Einstein equation
which has as a source the expectation value in some quantum
state of the matter stress tensor operator. The semiclassical
theory is in some sense unique as a theory where the gravita-
tional field is classical. In fact, a classical gravitational field
interacts with other fields through their stress tensors, and the
only reasonable c-number stress tensor that one may construct
[3–5] with the stress tensor operator of a quantum field is its
expectation value in some quantum state. However, the scope
and limits of the theory are not so well understood because we
still lack a fully well understood quantum theory of gravity. It
is assumed that the semiclassical theory should break down at
Planck scales, which is when simple order of magnitude es-
timates suggest that the quantum effects of gravity cannot be
ignored: the gravitational energy of a quantum fluctuation of
energy in a Planck size region, determined by the Heisenberg
uncertainty principle, is of the same order of magnitude as the
energy of the fluctuation itself.

From the semiclassical Einstein equations it seems also
clear that the semiclassical theory should break down when
the quantum fluctuations of the stress tensor are large. Ford
[6] was among the first to have emphasized the importance of
these quantum fluctuations. It is less clear, however, how to
quantify the size of these fluctuations. Thus, Kuo and Ford [7]
used the variance of the fluctuations of the stress tensor oper-
ator compared to the mean value as a measure of the validity
of semiclassical gravity. As pointed out by Hu and Phillips
[8, 9] such a criterion should be refined by considering the
back reaction of those fluctuations on the metric. Ford and
collaborators also noticed that the metric fluctuations associ-
ated to the matter fluctuations can be meaningfully classified
as “active” [10–12] and “passive” [6, 7, 13–15].

A different approach to the validity of semiclassical grav-
ity was taken by Horowitz [16, 17] who studied the stabil-
ity of a semiclassical solution with respect to linear metric

perturbations. In the case of a free quantum matter field in
its Minkowski vacuum state, flat spacetime is a solution of
semiclassical gravity. The equations describing those metric
perturbations involve higher order derivatives, and Horowitz
found unstable “runaway” solutions that grow exponentially
with characteristic timescales comparable to the Planck time;
see also the analysis by Jordan [18]. Later, Simon [19, 20], ar-
gued that those unstable solutions lie beyond the expected do-
main of validity of the theory and emphasized that only those
solutions which resulted from truncating perturbative expan-
sions in terms of the square of the Planck length are physi-
cally acceptable [19, 20]. Further discussion was provided by
Flanagan and Wald [21], who advocated the use of an “order
reduction” prescription first introduced by Parker and Simon
[22]. More recently Anderson, Molina-Parı́s and Mottola have
taken up the issue of the validity of semiclassical gravity [23]
again. Their starting point is the fact that the semiclassical
Einstein equation will fail to provide a valid description of
the dynamics of the mean spacetime geometry whenever the
higher order radiative corrections to the effective action, in-
volving loops of gravitons or internal graviton propagators,
become important. Next, they argue qualitatively that such
higher order radiative corrections cannot be neglected if the
metric fluctuations grow without bound. Finally, they propose
a criterion to characterize the growth of the metric fluctua-
tions, and hence the validity of semiclassical gravity, based
on the stability of the solutions of the linearized semiclassical
equation. Following these approaches the Minkowski metric
is shown to be a stable solution of semiclassical gravity with
respect to small metric perturbations.

As emphasized in Ref. [23] the above criteria may be un-
derstood as criteria within semiclassical gravity itself. It is
certainly true that stability is a necessary condition for the va-
lidity of a semiclassical solution, but one may also look for
criteria within extensions of semiclassical gravity. In the ab-
sence of a quantum theory of gravity such criteria may be
found in more modest extensions. Thus, Ford [6] considered
graviton production in linearized quantum gravity and com-
pared the results with the production of gravitational waves
in semiclassical gravity. Ashtekar [24] and Beetle [25] found
large quantum gravity effects in three-dimensional quantum
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gravity models. In a recent paper [26] (see also Ref. [27]) we
advocate for a criteria within the stochastic gravity approach.
Stochastic semiclassical gravity extends semiclassical gravity
by incorporating the quantum stress tensor fluctuations of the
matter fields; see Refs. [28, 29] for reviews.

It turns out that this validity criteria is equivalent to the va-
lidity criteria that one might advocate within the large N ex-
pansion, that is the theory describing the interaction of the
gravitational field with N identical matter fields. In the lead-
ing order, namely the limit in which N goes to infinity and
the gravitational constant is appropriately rescaled, the theory
reproduces semiclassical gravity. Thus, a natural extension of
semiclassical gravity is provided by the next to leading order.
It turns out that the symmetrized two-point quantum correla-
tions of the metric perturbations in the large N expansion are
equivalent to the two-point stochastic metric fluctuations pre-
dicted by stochastic gravity. Our validity criterion can then
be summarized as follows: a solution of semiclassical grav-
ity is valid when it is stable with respect to quantum metric
perturbations. This criterion implies to consider the quantum
correlation functions of the metric perturbations.

It is important to emphasize that the above validity criterion
incorporates in a unified and self-consistent way the two main
ingredients of the criteria exposed above. Namely, the criteria
based on the quantum stress tensor fluctuations of the matter
fields, and the criteria based on the stability of semiclassical
solutions against classical metric perturbations. In the follow-
ing discussion we will argue that the former is incorporated
through the so called induced fluctuations and the later though
the so called intrinsic fluctuations. These correspond to Ford’s
“passive” and “active” fluctuations, respectively. We will see
that symmetrized quantum two-point metric fluctuations can
always be decomposed as a sum of induced and intrinsic fluc-
tuations.

The paper is organized as follows. In section II we briefly
review the main ingredients of semiclassical gravity. In sec-
tion III we introduce stochastic gravity as a theory that goes
beyond semiclassical theory by incorporating the fluctuations
of the quantum stress tensor operator. In section IV our va-
lidity criterion is applied to the study of flat spacetime as a
solution of semiclassical gravity. The problem of the runaway
solutions and methods to deal them is discussed. Throughout
the paper in order to emphasize the qualitative aspects we use
a simplified notation without tensorial indices and for a few
points we also use qualitative arguments and order of magni-
tude estimates. We refer the reader to the papers [26–29] were
the technical details, as well as many subtleties that cannot
be summarized here, are provided. Our metric and curvature
conventions are those of Ref. [30], and we use ~= c = 1.

II. SEMICLASSICAL GRAVITY

At present semiclassical gravity cannot be rigorously de-
rived, but, it can be formally justified in several ways. One of
them is the leading order in the large N expansion [31], where
N is the number of independent free quantum fields which
interact with gravity only. In this limit, after path integration

one arrives at a theory in which formally the gravitational field
can be treated as a c-number and the quantum fields are fully
quantized.

Semiclassical gravity can be summarized as follows. Let g
be the metric tensor and φ̂ a scalar field operator. The semi-
classical Einstein equation as the dynamical equation that de-
scribes the back-reaction of quantum matter on the metric g
can be written as

Gg = κ〈T̂ R〉g, (1)

where T̂ = T [φ̂2] is the matter stress tensor in a simplified no-
tation, which is quadratic in the field operator φ̂, and κ = 8πG,
where G is Newton’s constant. This operator, being the prod-
uct of distribution valued operators, is ill defined and needs to
be regularized and renormalized, the R in T̂ R means that the
operator has been renormalized. The angle brackets on the
right hand side mean that the expectation value of the stress
tensor operator is computed in some quantum state, say |ψ〉,
compatible with the geometry described by the metric g. On
the left hand side Gg stands for the Einstein tensor of the met-
ric g together with the cosmological constant term and other
terms quadratic in the curvature which are generally needed
to renormalize the matter stress tensor operator. The quantum
field operator φ̂ propagates in the background defined by the
metric g, it thus satisfies a Klein-Gordon equation,

(¤g−m2)φ̂ = 0, (2)

where ¤g stands for the D’Alambert operator in the back-
ground of g and m is the mass of the scalar field. A solution
of semiclassical gravity consists of the set (g, φ̂, |ψ〉) where g
is a solution of Eq. (1), φ̂ is a solution of Eq. (2) and |ψ〉 is
the quantum state in which the expectation value of the stress
tensor in Eq. (1) is computed.

As we recalled in the introduction this theory is in some
sense unique as a theory that describes the interaction of a
classical gravitational field with quantum matter. As an effec-
tive theory it should break down at Planck scales. Also, from
the right hand side of the semiclassical Einstein equation it
seems clear that the theory should also break down when the
fluctuations of the quantum stress tensor are large. This has
been emphasized by Ford and collaborators, and may be illus-
trated by the example of Ref. [6] as follows.

Let us assume a quantum state formed by an isolated sys-
tem which consists of a superposition with equal amplitude of
one configuration with mass M1 and another with mass M2.
Semiclassical theory as described in Eq. (1) predicts that the
gravitational field of this system is produced by the average
mass (M1 + M2)/2, that is a test particle will move on the
background spacetime produced by such a source. However
one would expect that if we send a succession of test particles
to probe the gravitational field of the above system half of the
time they would react to the field of a mass M1 and the other
half to the field of a mass M2. If the two masses differ sub-
stantially the two predictions are clearly different, note that
the fluctuations in mass of the quantum state is of the order
of (M1−M2)2. Although the previous example is suggestive
a word of caution should be said in order not to take it too
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literary. In fact, if the previous masses are macroscopic the
quantum system decoheres very quickly [32] and instead of a
pure quantum state it is described by a density matrix which
diagonalizes in a certain pointer basis. Thus for observables
associated to this pointer basis the matrix density description
is equivalent to that provided by a statistical ensemble. In any
case, however, from the point of view of the test particles the
predictions differ from that of the semiclassical theory.

III. STOCHASTIC GRAVITY

The purpose of stochastic (semiclassical) gravity is to be
able to deal with the situation of the previous example when
the predictions of the semiclassical theory may be inaccurate.
Consequently, our first point is to characterize the quantum
fluctuations of the stress tensor.

The physical observable that measures these fluctuations is
〈T̂ 2〉− 〈T̂ 〉2. To make this more precise let us introduce the
tensor operator t̂ ≡ T̂ −〈T̂ 〉Î, where Î is the identity operator,
then we introduce the noise kernel as the four-index bi-tensor
defined as the expectation value of the anticommutator of the
operator t̂:

N(x,y) =
1
2
〈{t̂(x), t̂(y)}〉g. (3)

Thus, the noise kernel is the symmetrized connected part of
the two-point quantum correlation function of the stress tensor
operator with respect to the state of the matter fields. The
subindex g here means that this expectation value in taken in a
background metric g. An important property of the symmetric
bi-tensor N(x,y) is that it is finite because the tensor operator
t̂ is finite since the ultraviolet divergences of T̂ are cancelled
by the substraction of 〈T̂ 〉. Since the operator T̂ is selfadjoint
N(x,y), which is the expectation value of an anticommutator,
is real and positive semi-definite [28]. Thus, when considering
the inverse kernel N−1(x,y), one must work in the subspace
obtained from the eigenvectors which have strictly positive
eigenvalues when the noise kernel is diagonalized. The last
property allows for the introduction of a classical Gaussian
stochastic tensor ξ defined by

〈ξ(x)〉s = 0, 〈ξ(x)ξ(y)〉s = N(x,y). (4)

This stochastic tensor is symmetric and divergenceless, ∇ ·ξ =
0, as a consequence of the fact that the stress tensor operator
is divergenceless. The subindex s means that the expectation
value is just a classical stochastic average. Note that we as-
sume that ξ is Gaussian just for simplicity in order to include
the main effect of the quantum fluctuations.

The idea now is simple we want to modify the semiclassical
Einstein equation (1) by introducing a linear correction to the
metric tensor g, such as g+h, which accounts consistently for
the fluctuations of the stress tensor. The simplest equation is,

Gg+h = κ(〈T̂ R〉g+h +ξ), (5)

where g is assumed to be a solution of equation (1). This sto-
chastic equation must be thought of as a linear equation for

the metric perturbation h which will behave, consequently, as
a stochastic field tensor. Note that the tensor ξ is not a dynam-
ical source, since it has been defined in the background metric
g which is a solution of the semiclassical equation. Note also
that this source is divergenceless with respect to the metric,
and it is thus consistent to write it on the right hand side of
the Einstein equation. This equation is gauge invariant with
respect to diffeomorphisms defined by any field on the back-
ground spacetime [33]. If we take the statistical average of
equation (5) it becomes just the semiclassical equation for the
perturbed metric g + h where now the expectation value of T̂
is taken in the perturbed spacetime.

The stochastic equation (5) is known as the Einstein-
Langevin equation. To linear order in h we have [33],

〈T̂ R〉g+h(x) =−2
Z

H(x,x′) ·h(x′), (6)

where the kernel H(x,x′) has three terms, one of them is pro-
portional to the imaginary part of the expectation value of the
time ordered two-point stress tensor, Im〈T (T̂ (x)T̂ (x′))〉, the
second term is proportional to the expectation value of the
stress tensor commutator, 〈[T̂ (x), T̂ (x′)]〉, and the third is pro-
portional to the functional derivative of 〈T̂ 〉 with respect to
the metric (excluding the implicit dependence on the metric
of the field φ̂). Of course, this kernel is also the main ingre-
dient of the linearized semiclassical Einstein equation around
a given background metric g. The other key ingredient in the
Einstein-Langevin equation is the noise kernel N(x,y) which
defines the stochastic inhomogeneous source of the equation.
This kernel should be thought of as a distribution function, the
limit of coincidence points has meaning only in the sense of
distributions. Explicit expressions of this kernel in terms of
the two point Wightman functions are given in Ref. [33] on
a general background. Detailed expressions for this kernel in
the Minkowski background are given in Ref. [34], and expres-
sion based on point-splitting methods have also been given in
Refs. [9, 35] in other backgrounds.

The Einstein-Langevin equation has been previously de-
rived making use of a formal analogy with open quantum
systems and employing the influence functional formalism
[36, 37]. The basis for this approach is a functional formal-
ism known as closed time path, first introduced by Schwinger
[38–40], which is an effective action method suitable to de-
rive dynamical equations for expectation values of quantum
operators; rather than transition elements as in the standard
effective action method. The closed time path formalism was
later applied to the problem of back-reaction of quantum fields
on the spacetime metric [41–43], in order to derive semiclas-
sical Einstein equations. The formalism was then applied
along the lines of the influence functional formalism to de-
rive Einstein-Langevin equations in several contexts [33, 44–
49]. In Ref. [50] the Einstein-Langevin equation was derived
by an axiomatic approach by arguing that it is the only con-
sistent generalization of the semiclassical Einstein equation
which takes into account the back-reaction of the matter stress
tensor fluctuations to lowest order. We have summarized the
axiomatic approach in this section.

The solution of the Einstein-Langevin equation (5), taking
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into account Eq. (6), may be expressed as,

h(x) = h0(x)+κ
Z

GR(x,x′) ·ξ(x′), (7)

where h0 is a solution of the homogeneous part of equation (5)
which contains all the information on the initial conditions,
and GR(x,x′) is the retarded propagator with vanishing initial
conditions associated with the equation (5). The two-point
correlation function for the metric perturbation which is the
physically most relevant observable can then be written as:

〈h(x)h(y)〉s = 〈h0(x)h0(y)〉s +

κ2
Z

GR(x,x′) ·N(x′,y′) ·GR(y,y′), (8)

where the first average, 〈h0(x)h0(y)〉s, is taken with respect to
the initial conditions.

It turns out that going to leading order in 1/N, in the
large N expansion, one can show that the stochastic correla-
tion functions for the metric perturbations obtained from the
Einstein-Langevin equation coincide with the symmetrized
two-point quantum correlation functions of the metric pertur-
bations. The details of the derivation will be given in Ref. [51]
and are summarized in Ref. [26] for the particular case of a
Minkowski background, to which we will restrict in section
IV. In this case κ in Eq. (7) has to be replaced by the rescaled
gravitational coupling constant κ̄ = Nκ and the noise kernel
for a single field N(x,y) must be replaced by (1/N)N(x,y).
Thus, we have that the symmetrized two-point quantum cor-
relation function for the metric perturbation is

1
2
〈{ĥ(x), ĥ(y)}〉= 〈h(x)h(y)〉s. (9)

where the Lorentz gauge condition ∇ ·(h−(1/2)ηTrh) = 0 (η
is the Minkowski metric) as well as some initial condition to
fix completely the remaining gauge freedom of the initial state
should be implicitly understood.

It should be emphasized that there are two different con-
tributions to the symmetrized quantum correlation function,
which are clearly distinguished in Eq. (8). The first contribu-
tion is related to the quantum fluctuations of the initial state of
the metric perturbations and corresponds to the so called in-
trinsic fluctuations; here the stochastic average must be taken
with respect to the Wigner distribution function that describes
the initial quantum state. The second contribution is propor-
tional to the noise kernel, it accounts for the fluctuations of
the stress tensor of the matter fields and corresponds to the
so called induced fluctuations. These two contributions to the
two-point correlation functions is also seen in the description
of some quantum Brownian motion models which are typi-
cally used as paradigms of open quantum systems [52–54].
Both, the intrinsic and induced fluctuations, play a role in our
stability criterion for the solutions of semiclassical gravity.

The full two-point quantum correlation function for the
metric 〈ĥ(x)ĥ(y)〉 can, in fact, be obtained from the Einstein-
Langevin equation. Since this correlation can be given in
terms of the antisymmetrized and the symmetrized quantum

correlation function we only need the commutator that to lead-
ing order in 1/N is independent of the initial state of the metric
perturbation and is given by

1
2
〈[ĥ(x), ĥ(y)]〉= iκ[GR(y,x)−GR(x,y)]. (10)

Note that the information on the retarded propagator is already
in the linearized semiclassical Einstein equation. That is, Eq.
(5) without the stochastic source.

A. A toy model

To justify Eq. (9) which plays an essential role in our cri-
teria for the validity of semiclassical gravity it is useful to in-
troduce a simple toy model for gravity which minimizes the
technical complications. The model is also useful to clarify
the role of the noise kernel and illustrate the relationship be-
tween the semiclassical, stochastic and quantum descriptions.
Let us assume that the gravitational equations are described
by a massless scalar field h whose source is another massless
scalar field φ which satisfies the Klein-Gordon equation in flat
spacetime ¤φ = 0. The field stress tensor is quadratic in the
field, and independent of h. The classical gravitational field
equations will be given by

¤h = κT, (11)

where T is now the (scalar) trace of the stress tensor. Note
that this is not a self-consistent theory since φ does not react
to the gravitational field h. This model obviously differs from
the standard linearized theory of gravity discussed previously,
where T is also linear in h, but it captures some of its key
features.

In the Heisenberg representation the quantum scalar field ĥ
satisfies

¤ĥ = κT̂ . (12)

Since T̂ is quadratic in the field operator φ̂ some regularization
procedure has to be assumed in order for Eq. (12) to make
sense. Since we work in flat spacetime we may simply use a
normal ordering prescription to regularize the operator T̂ . The
solutions of this equation, i.e. the field operator at the point
x, which we call ĥx in this subsection to avoid confusion with
the more standard notation, ĥ(x), used in the rest of the paper,
may be written in terms of the retarded propagator Gxx′ of the
D’Alambertian as,

ĥx = ĥ0
x +κ

Z
Gxx′ T̂x′ , (13)

where ĥ0
x is the free field which carries information on the ini-

tial conditions and the state of the field. From this solution we
may compute, for instance, the symmetric two-point quantum
correlation function (the anticommutator)

〈{ĥx, ĥy}〉= 〈{ĥ0
x , ĥ

0
y}〉+κ2

Z
Gxx′Gyy′〈{T̂x′ , T̂y′}〉, (14)
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where the expectation value is taken with respect to the quan-
tum state in which both fields φ and h are quantized. We have
assumed 〈ĥ0〉= 0 for the free field.

We can now consider the semiclassical theory for this prob-
lem. If we assume that h is classical and the matter field is
quantum the semiclassical limit may just be described by sub-
stituting into the classical equation (11) the stress trace by the
expectation value of the scalar stress operator 〈T̂ 〉, in some
quantum state of the field φ̂. We may simply renormalize the
expectation value of T̂ using normal ordering, then for the
vacuum state of the field φ̂, we would simply have 〈T̂ 〉0 = 0.
The semiclassical theory thus reduces to

¤h = κ〈T̂ 〉. (15)

The two point function hxhy that one may derive from this
equation depends on the two point function 〈T̂x〉〈T̂y〉 and
clearly cannot reproduce the quantum result of Eq. (14)
which depends on the expectation value of two-point opera-
tor 〈{T̂x, T̂y}〉. That is, the semiclassical theory entirely misses
the fluctuations of the scalar stress operator T̂ .

To extend this semiclassical theory in order to account for
such fluctuations, we introduce the noise kernel as we did in
the previous section. Thus, we define

Nxy =
1
2
〈{t̂x, t̂y}〉 (16)

where t̂ ≡ T̂ −〈T̂ 〉, and we have used again the sub-index no-
tation to avoid confusion with the noise kernel of the previous
section. The bi-scalar Nxy is real and positive-semidefinite, as
a consequence of t̂ being self-adjoint [28]. Consequently we
can introduce a Gaussian stochastic field as:

〈ξ〉s = 0, 〈ξxξy〉s = Nxy. (17)

where the subscript s means a statistical average.
The extension of the semiclassical equation may be simply

performed by adding to the right-hand side of the semiclassi-
cal equation (15) the stochastic source ξ, which accounts for
the fluctuations of T̂ as follows,

¤h = κ
(〈T̂ 〉+ξ

)
. (18)

This equation is in the form of a Langevin equation: the field
h is classical but stochastic and the observables we may obtain
from it are correlation functions for h. In fact, the solution of
this equation may be written in terms of the retarded propaga-
tor as,

hx = h0
x +κ

Z
Gxx′

(〈T̂x′〉+ξx′
)
, (19)

from where the two point correlation function for the classical
field h, after using the definition of ξ and that 〈h0〉s = 0, is
given by

〈hxhy〉s = 〈h0
xh0

y〉s +
κ2

2

Z
Gxx′Gyy′〈{T̂x′ , T̂y′}〉. (20)

Note that in writing 〈. . .〉s here we are assuming a double sto-
chastic average, one is related to the stochastic process ξ and

the other is related to the free field h0 which is assumed also
to be stochastic with an initial distribution function to be spec-
ified.

Comparing Eqs. (14) and (20) we see that the respective
second term on the right-hand side are identical (except for a
factor of 2 due to the symmetrization) provided the expecta-
tion values are computed in the same quantum state for the
field φ̂. The fact that the field h is also quantized in (14) does
not change the previous statement; recall that T does not de-
pend on h. The nature of the first term on the right-hand sides
of equations (14) and (20) is different: in the first case it is
the two-point quantum expectation value of the free quantum
field ĥ0 whereas in the second case it is the stochastic average
of the two point classical homogeneous field h0, which de-
pends on the initial conditions. Now we can still make these
terms equal to each other (with the factor of 2) if we assume
for the homogeneous field h0 a Gaussian distribution of initial
conditions such that

〈h0
xh0

y〉s =
1
2
〈{ĥ0

x , ĥ
0
y}〉. (21)

This Gaussian stochastic field h0 can always be defined due
to the semi-positivity of the anti-commutator. Thus, under
this assumption on the initial conditions for the field h the
two point correlation function of Eq. (20) equals the quantum
expectation value of Eq. (14) exactly. Thus, we have

1
2
〈{ĥx, ĥy}〉= 〈hxhy〉s, (22)

which may be compared to Eq. (9). Comparing with the lin-
earized theory of gravity described in the previous section we
see that 〈T 〉 depends also on h, both explicitly and also implic-
itly through the coupling of φ with h. The retarded propagator
here Gxx′ is then replaced by the propagator GR(x,x′) of the
previous section and the functions h0, which are here the free
metric perturbations are replaced by the homogeneous solu-
tions of the previous section.

IV. STABILITY OF FLAT SPACETIME

Let us now apply our validity criterion to flat spacetime.
One particularly simple and interesting solution of semiclas-
sical gravity is the Minkowski metric. In fact, when the quan-
tum fields are in the Minkowski vacuum state one may take the
renormalized expectation value of the stress tensor 〈T R〉 = 0
(this is equivalent to assuming that the cosmological constant
is zero) and the Minkowski metric η is a solution of the semi-
classical Einstein equation (1). Thus, we can look for the sta-
bility of flat spacetime against quantum matter fields. Accord-
ing to the criteria we have established we have to look for the
behavior of the two-point quantum correlations for the met-
ric perturbations h over the Minkowski background which are
given by Eqs. (8) and (9). As we have emphasized several
times these fluctuations separate in two parts: the first term
on the right hand side of Eq. (8) corresponds to the intrinsic
fluctuations, and the second term corresponds to the induced
fluctuations.
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A. Intrinsic fluctuations

Let us first consider the intrinsic fluctuations,

〈h0(x)h0(y)〉s, (23)

where h0 are the homogeneous solutions of the Einstein-
Langevin equation (5), or equivalently the linearly perturbed
semiclassical equation, and the statistical average is taken
with respect to the Wigner distribution that describes the ini-
tial quantum state of the metric perturbations. Since these so-
lutions are described by the linearized semiclassical equation
around flat spacetime we can make use of the results derived
in Refs. [16, 21, 23]. The solutions for the case of a massless
scalar field were first discussed in Ref. [16] and an exhaustive
description can be found in Appendix A of Ref. [21]. Decom-
posing the metric perturbation into scalar, vectorial and ten-
sorial parts and computing the linearized Einstein tensor, one
gets a vanishing result for the vectorial part of the metric per-
turbation; the scalar and tensorial components of the metric
perturbation give rise, respectively, to the scalar and tensorial
components of the linearized Einstein tensor. The vectorial
part is found to vanish whereas the scalar and tensorial con-
tributions for a massless and conformally coupled scalar field
(see Ref. [21] for the massless case with arbitrary coupling
and Refs. [23, 34] for the general massive case) satisfy the
following equations:

(
1+12κβ̄p2) G̃(S)(p) = 0, (24)

lim
ε→0+

(
1+

κp2

960π2 ln
p2

µ2

)
G̃(T)(p) = 0, (25)

where in the last equation the prescription that the time com-
ponent of p has a small imaginary part, p0 + iε, is taken. Here
G̃(p) stands for the Fourier transform of the linearized Ein-
stein tensor, the upper indices S and T stand for scalar and
tensorial respectively, β̄ is a dimensionless renormalized pa-
rameter that multiplies some of the quadratic terms in the cur-
vature in the effective action for the gravitational field, and
µ is a renormalization mass scale. See Ref. [26] for a more
complete description.

For the scalar component when β̄ = 0 the only solution is
G̃(S)(p) = 0. When β̄ > 0 the solutions for the scalar com-
ponent exhibit an oscillatory behavior in spacetime coordi-
nates which corresponds to a massive scalar field with m2 =
(12κ|β̄|)−1; for β̄ < 0 the solutions correspond to a tachyonic
field with m2 = −(12κ|β̄|)−1: in spacetime coordinates they
exhibit an exponential behavior in time, growing or decreas-
ing, for wavelengths larger than 4π(3κ|β̄|)1/2, and an oscilla-
tory behavior for wavelengths smaller than 4π(3κ|β̄|)1/2. On
the other hand, the solution G̃(S)(p) = 0 is completely trivial
since any scalar metric perturbation h̃(p) giving rise to a van-
ishing linearized Einstein tensor can be eliminated by a gauge
transformation as explained in Ref. [26].

For the tensorial component, when µ ≤ µcrit =
l−1
p (120π)1/2eγ, where lp is the Planck length (l2

p ≡ κ/8π)
the first factor in Eq. (25) vanishes for four complex values

of p0 of the form ±ω and ±ω∗, where ω is some complex
value. We will consider here the case in which µ < µcrit; a
detailed description of the situation for µ≥ µcrit can be found
in Appendix A of Ref. [21]. The two zeros on the upper half
of the complex plane correspond to solutions in spacetime
coordinates exponentially growing in time, whereas the
two on the lower half correspond to solutions exponentially
decreasing in time. Strictly speaking, these solutions only
exist in spacetime coordinates, since their Fourier transform is
not well defined. They are commonly referred to as runaway
solutions and for µ ∼ l−1

p they grow exponentially in time
scales comparable to the Planck time.

In order to deal with those unstable solutions, one possibil-
ity is to employ the order reduction prescription [22], which
we will briefly summarize in the last subsection. With such a
prescription we are left only with the solutions which satisfy
G̃(p) = 0. The solutions for h̃(p) simply correspond to free
linear gravitational waves propagating in Minkowski space-
time expressed in the transverse and traceless (TT) gauge.
When substituting back into Eq. (23) and averaging over the
initial conditions we simply get the symmetrized quantum
correlation function for free gravitons in the TT gauge for the
state given by the Wigner distribution. As far as the intrinsic
fluctuations are concerned, it seems that the order reduction
prescription is too drastic, at least in the case of Minkowski
spacetime, since no effects due to the interaction with the
quantum matter fields are left.

A second possibility, proposed by Hawking et al. [55, 56],
is to impose boundary conditions which discard the runaway
solutions that grow unbounded in time and correspond to a
special prescription for the integration contour when Fourier
transforming back to spacetime coordinates. Following that
procedure we get, for example, that for a massless confor-
mally coupled scalar field with β̄ > 0 the intrinsic contribu-
tion to the symmetrized quantum correlation function coin-
cides with that of free gravitons plus an extra contribution
for the scalar part of the metric perturbations which renders
Minkowski spacetime stable but plays a crucial role in provid-
ing a graceful exit for inflationary models driven by the vac-
uum polarization of a large number of conformal fields. Such
a massive scalar field would not be in conflict with present
observations because, for the range of parameters considered,
the mass would be far too large to have observational conse-
quences [55].

B. Induced fluctuations

The induced fluctuations are described by the second term
in Eq. (8). They are induced for the noise kernel that describes
the stress tensor fluctuations of the matter fields,

κ̄2

N

Z
GR(x,x′) ·N(x′,y′) ·GR(y,y′), (26)

where we write the expression in the large N limit. The con-
tribution corresponding to the induced quantum fluctuations
is equivalent to the stochastic correlation function obtained
by considering just the inhomogeneous part of the solution to
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the Einstein-Langevin equation: the second term on the right-
hand side of Eq. (8). Taking all that into account, it is clear
that we can make use of the results for the metric correlations
obtained in Ref. [34] by solving the Einstein-Langevin equa-
tion. In fact, one should simply take N = 1 to transform our
expressions to those of Ref. [34] and, similarly, multiply the
noise kernel in the expressions of that reference by N so that
they can be used here, which follows from the fact that we
have N independent matter fields.

The same kind of exponential instabilities in the runaway
solutions of the homogeneous part of the Einstein-Langevin
equation also arise when computing the retarded propagator
GR. In order to deal with those instabilities, similar to the
case of the intrinsic fluctuations, one possibility is to make use
of the order reduction prescription. The Einstein-Langevin
equation becomes then G̃(p) = κ̄ξ̃(p). The second possibil-
ity, following the proposal of Hawking et al., is to impose
boundary conditions which discard the exponentially grow-
ing solutions and translate into a special choice of the inte-
gration contour when Fourier transforming back to spacetime
coordinates the expression for the propagator. In fact, it turns
out that the propagator which results from adopting that pre-
scription coincides with the propagator that was employed in
Ref. [34]. Note, however, that this propagator is no longer a
strictly retarded propagator since it exhibits causality viola-
tions at Planck scales. A more detailed discussion on all these
points can be found in Appendix E of Ref. [26].

Following Ref. [34], the Einstein-Langevin equation can
be entirely written in terms of the linearized Einstein tensor.
The equation involves second derivatives of that tensor, and in
terms of its Fourier components G̃(p) takes the form

(1+F(p)) · G̃(p) = κ̄ξ̃(p), (27)

where F is a four-index tensor which depends on p2 ln p2

when the field is massless and conformally coupled. This re-
flects the fact that we have second derivatives of the Einstein
tensor and the nonlocality of the Einstein-Langevin equation
(or also of the perturbed semiclassical equation). From equa-
tion (27) one may obtain the correlation functions for G̃(p),
〈G̃(p)G̃(q)〉s, which are invariant under gauge transforma-
tions of the metric perturbations. Writing the linearized Ein-
stein tensor in terms of the metric perturbation, which takes
a particularly simple form in the Lorentz gauge, one may de-
rive the correlation functions for h̃(p): 〈h̃(p)h̃(q)〉s. Finally,
the correlation functions in spacetime coordinates can be eas-
ily obtained by Fourier transforming these correlations. For
massless and conformally coupled matter fields explicit re-
sults are given in Ref. [34], they have the general expression:

〈h(x)h(y)〉s =
κ̄2

720πN

Z eip·(x−y)Pθ(−p2)
|1+(κ̄/960π2)p2 ln(p2/µ2)|2

(28)
where P is a four-index projection tensor. This correlation
function for the metric perturbations is in agreement with the
real part of the propagator obtained by Tomboulis in Ref. [57]
using a large N expansion.

To estimate this integral let us consider spacelike separated
points x− y = (0,r) and introduce the Planck length lp. It is

not difficult to see [29], that for space separations |r| À lp we
have

〈h(x)h(y)〉s ∼
l4
p

|r|4 , (29)

and for |r| ∼ Nlp we have

〈h(x)h(y)〉s ∼ e−|r|/lp
lp

|r| . (30)

Since these fluctuations are induced by the matter stress fluc-
tuations we infer that the effect of the matter fields is to sup-
press metric fluctuations at small scales. On the other hand,
at large scales the induced metric fluctuations are small com-
pared to the free graviton propagator which goes like l2

p/|r|2.
We thus conclude that, once the instabilities giving rise to

the unphysical runaway solutions have been discarded, the
fluctuations of the metric perturbations around the Minkowski
spacetime induced by the interaction with quantum scalar
fields are indeed stable. Instabilities would lead to a divergent
result when Fourier transforming back to spacetime coordi-
nates. Note that when the order reduction prescription is used
the p2 ln p2 terms are absent in the corresponding Eq. (28).
Thus, in contrast to the intrinsic fluctuations, there is still a
nontrivial contribution to the induced fluctuations due to the
quantum matter fields in this case.

C. Order reduction prescription and large N

Runaway solutions are a typical feature of equations de-
scribing back-reaction effects, such is in classical electrody-
namics, and are due to higher than two time derivatives in the
dynamical equations. In a very schematic way the semiclassi-
cal Einstein equations have the form

Gh + l2
pG̈h = 0, (31)

where Gh stands for the linearized Einstein tensor over the
Minkowski background, say, and we have simplified the equa-
tion as much as possible. The second term of the equation is
due to the vacuum polarization of matter fields and contains
four time derivatives of the metric perturbation. Some spe-
cific examples of such an equation are, in momentum space,
Eqs. (24) and (25). The order reduction procedure is based
on treating perturbatively the terms involving higher order
derivatives, differentiating the equation under consideration
and substituting back the higher derivative terms in the orig-
inal equation keeping only terms up to the required order in
the perturbative parameter. In the case of the semiclassical
Einstein equation, the perturbative parameter is l2

p. If we dif-
ferentiate twice Eq. (31) with respect to time it is clear that
the second order derivatives of the Einstein tensor are of or-
der l2

p. Substituting back into the original equation, we get
the following equation up to order l4

p: Gh = 0 + O(l4
p). Now,

there are certainly no runaway solutions but also no effect due
to the vacuum polarization of matter fields. Note that the re-
sult is not so trivial when there is an inhomogeneous term on
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the right hand side of Eq. (31), this is what happens with the
induced fluctuations predicted by the Einstein-Langevin equa-
tion.

Semiclassical gravity is expected to provide reliable results
as long as the characteristic length scales under consideration,
say L, satisfy that LÀ lp [21]. This can be qualitatively argued
by estimating the magnitude of the different contributions to
the effective action for the gravitational field, considering the
relevant Feynman diagrams and using dimensional arguments.
Let us write the effective gravitational action, again in a very
schematic way, as

Seff =
Z √−g

(
1
l2
p

R+αR2 + l2
pR3 + . . .

)
, (32)

where R is the Ricci scalar. The first term is the usual classical
Einstein-Hilbert term, the second stands for terms quadratic in
the curvature (square of Ricci and Weyl tensors) this terms
appear as radiative corrections due to vacuum polarization
of matter fields, here α is an dimensionless parameter pre-
sumably of order 1, the R3 terms are higher order correc-
tions which appear for instance when one considers inter-
nal graviton propagators inside matter loops. Let us assume
that R ∼ L−2 then the different terms in the action are of the
order of R2 ∼ L−4 and l2

pR3 ∼ l2
pL−6. Consequently when

L À l2
p, the term due to matter loops is a small correction to

the Einstein-Hilbert term (1/l2
p)RÀ R2, and this term can be

treated as a perturbation. The justification of the order re-
duction prescription is actually based on this fact. Therefore,
significant effects from the vacuum polarization of the matter
fields are only expected when their small corrections accumu-
late in time, as would be the case, for instance, for an evap-
orating macroscopic black hole all the way before reaching
Planckian scales.

However if we have a large number N of matter fields the
estimates for the different terms change in a remarkable way.
This is interesting because the large N expansion seems the
best justification for semiclassical gravity. In fact, now the
vacuum polarization terms involving loops of matter are of or-
der NR2 ∼NL−4. For this reason the contribution of the gravi-
ton loops, which is of order R2, can be neglected in front of the
matter loops; this justifies the semiclassical limit. Similarly
higher order corrections are of order Nl2

pR3 ∼ Nl2
pL−6. Now

there is a regime, when L∼√Nlp, where the Einstein-Hilbert
term is comparable to the vacuum polarization of matter fields,
(1/l2

p)R∼NR2, and yet the higher correction terms can be ne-
glected because we still have LÀ lp, provided N À 1. This is
the kind of situation considered in trace anomaly driven in-
flationary models [55], such as that originally proposed by
Starobinsky [58], where the exponential inflation is driven by
a large number of massless conformal fields. The order reduc-
tion prescription would completely discard the effect from the
vacuum polarization of the matter fields even though it is com-
parable to the Einstein-Hilbert term. In contrast, the procedure
proposed by Hawking et al. keeps the contribution from the

matter fields. Note that here the actual physical Planck length
lp is considered, not the rescaled one, l̄2

p = κ̄/8π, which is
related to lp by l2

p = κ/8π = l̄2
p/N.

V. CONCLUSIONS

An analysis of the stability of any solution of semiclassi-
cal gravity with respect to small quantum corrections should
consider not only the evolution of the expectation value of the
metric perturbations around that solution, but also their fluctu-
ations, encoded in the quantum correlation functions. Making
use of the equivalence (to leading order in 1/N, where N is
the number of matter fields) between the stochastic correlation
functions obtained in stochastic semiclassical gravity and the
quantum correlation functions for metric perturbations around
a solution of semiclassical gravity, the symmetrized two-point
quantum correlation function for the metric perturbations can
be decomposed into two different parts: the intrinsic fluctua-
tions due to the fluctuations of the initial state of the metric
perturbations itself, and the fluctuations induced by their in-
teraction with the matter fields. If one considers the linearized
perturbations of the semiclassical Einstein equation, only in-
formation on the intrinsic fluctuations can be retrieved. On
the other hand, the information on the induced fluctuations
naturally follows from the solutions of the Einstein-Langevin
equation.

As a specific example, we have analyzed the symmetrized
two-point quantum correlation function for the metric pertur-
bations around the Minkowski spacetime interacting with N
scalar fields initially in the Minkowski vacuum state. Once the
ultraviolet instabilities which are ubiquitous in semiclassical
gravity and are commonly regarded as unphysical, have been
properly dealt with by using the order reduction prescription
or the procedure proposed by Hawking et al. [55, 56], both
the intrinsic and the induced contributions to the quantum cor-
relation function for the metric perturbations are found to be
stable [26]. Thus, we conclude that Minkowski spacetime is a
valid solution of semiclassical gravity.
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