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A survey is given on the applications of hydrodynamic model of nucleus-nucleus collisons, focusing especially
on i) the resolution of hydrodynamic equations for arbitrary configurations, by using the smoothed-particle
hydrodynamic approach; ii) effects of the event-by-event fluctuation of the initial conditions on the observables;
iii) decoupling criteria; iv) analytical solutions; and others.

1 Introduction

Hydrodynamic Model has been proposed by Landau [1] in
1953 as an improvement over the Fermi statistical model [2]
for the multiple particle production phenomena in high-
energy nuclear collisions. At that time, these phenomena
were observed in cosmic rays. Although the Fermi model
offered an ingenious insight into the mechanism of the high-
energy nuclear collision processes and gave a prediction for
the energy dependence of the multiplicity, which was veri-
fied by the data, it was known that it had troubles in repro-
ducing particle spectra and relative abundance of K over π.
This was because, in this model, particles were assumed to
be emitted directly from the hot and dense, thermally equi-
librated matter formed in high-energy nuclear collisions,
which was supposed to be at rest, so that the model predicted
isotropic momentum distribution which did not agree with
the observed spectra. Furthermore, because of high tem-
perature (T >> mK) reached in the process, multiplicity
ratio depended only on the isotopic-spin statistical weights,
namely K/π = 4/3. This conclusion of the model was also
not in agreement with data.

These problems were solved naturally by letting the
hot and dense matter expand before particle emission takes
place, reducing thus heavy-particle multiplicities, because
of the Boltzmann factor, and giving at the same time alon-
gated momentum spectra, due to a violent longitudinal ex-
pansion caused by a large pressure gradient in the beam di-
rection. A nice feature of this model is that, since the en-
tropy is conserved in the ideal case Landau studied, the en-
ergy dependence of the total particle multiplicity predicted
by the Fermi model, and verified experimentally, is pre-
served.

When accelerator data on multiparticle production be-
gan to appear, first in pp collisions at CERN ISR, and later
in p̄p collisions at Sp̄pS collider, Carruthers [3] revived
this Heretical Model in 1974, showing that several aspects
of those phenomena may be well understood within Hy-
drodynamic Model. When laboratory study of high-energy
heavy-nucleus collisions started, Hydrodynamic Model be-
came one of the essential tools for these investigations.

According to Hydrodynamic Model, the description of
high-energy nuclear collisions goes as follows. At the be-
ginning, two Lorentz contracted (in the c.m. frame) nuclei
collide and it is assumed that, after a complex process in-
volving microscopic collisions of nuclear constituents, a hot
and dense matter is formed, which would be in local thermal
equilibrium. The description of this initial thermalization
process is out of the scope of hydrodynamics. In hydrody-
namics, we simply assume that the local thermal equilibrium
is attained and these states of matter are specified by some
appropriate initial conditions (IC) in terms of distributions
of fluid velocity and thermodynamical quantities for a given
time-like parameter. Then, it follows a hydrodynamical ex-
pansion, described by the conservation equations of energy-
momentum, baryon number and other conserved numbers,
such as strangeness, isotopic spin, etc.

∂νTµν = 0 , (1)
∂µ(nBuµ) = 0 , (2)
∂µ(nSuµ) = 0 , (3)

· · · ,

where
Tµν = (ε + p)uµuν − pgµν (4)

is the energy-momentum tensor, nB , nS , ε, p are, respec-
tively, the baryon number density, the strangeness density,
the energy density and the pressure, all of them given in the
proper frame of reference of the fluid element, and uµ is
the four-velocity of the fluid. Moreover, we have to specify
some equations of state (EoS), which depend on the nature
of the hot matter produced.

As the expansion proceedes, the fluid becomes cooler
and cooler and more rarefied, occurring finally the decou-
pling of the constituent particles, that is, they don’t interact
any more until their detection. However, long-lived reso-
nances and other unstable particles may decay after this in-
stant of time. The observable quantities such as dN/dy,
dσ/dmT , < v2 >, · · · are then computed by using these
decoupled or free particles.
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The main object of studies by using Hydrodynamic
Model is to investigate, through comparison of its predic-
tions with data, properties of the matter formed during high-
energy nuclear collisions, specified by the initial conditions,
equations of state and freeze-out or decoupling conditions.
We emphasize that these properties are not known a priori.
It should also be stressed that even the basic assumption of
“local equilibrium” is not granted for a priori. We expect
that experimental and theoretical studies of some appropri-
ate observables may respond these questions. Therefore, it
is fundamental to find what are these “most appropriate ob-
servables”.

In this survey, we shall discuss some aspects of this
model, by focusing mostly on those ones, like develop-
ment of hydrodynamic code capable to treat problems with
highly asymmetrical configurations, effects of the initial-
condition fluctuaions and improvement of the description of
decoupling process. These are features which have been in-
vestigated and developped within the São Paulo - Rio de
Janeiro Collaboration in the last ∼ 15 years. For a review
of other aspects of recent developments, see for instance
Ref. [4, 5, 6].

In the following, in the next Section, we discuss the ini-
tial conditions, by emphasizing the importance of the event-
by-event fluctuations as shown by some event generators.
In Section 3, we describe several equations of state, usually
employed in these studies. Section 4 is devoted to the reso-
lution of hydrodynamic equations. There, we begin describ-
ing some analytic solutions, turn to the variational formula-
tion and, finally, an application of this approach to develop a
numerical code, using algorithm of smoothed-particle hy-
drodynamics. Then, we consider the decoupling mecha-
nisms in Section 5, by stressing that, although the commonly
used Cooper-Frye presciption [7] is convenient and can give
many good results, more realistic treatment of decoupling is
needed in order to correctly extract information on the hot
matter formed in the collision process. In Section 6, we give
some results obtained with the methodology described here.
Finally, conclusions are drawn in Section 7.

2 Initial conditions
In usual hydrodynamic approach of high-energy nuclear col-
lisions, one customarily assumes some highly symmetric
and smooth IC, parametrized in a convenient way, which
would correspond to the mean distributions of hydrody-
namic variables averaged over several events [5, 6, 8]. How-
ever, our systems are not large, so large fluctuations varying
from event to event are expected, even under the same initial
conditions of colliding objects, such as the incident energy
and the impact parameter of the nuclei. What are the effects
of the event-by-event fluctuation of IC ? Are they sizable?
Do they depend on EoS? These are some questions which
arise regarding this subject.

As mentioned in the Introduction, IC are determined
by a complex process involving microscopic collisions of
nuclear constituents not accounted for by hydrodynamic

model, so when we want to introduce fluctuations in the IC
of a hydrodynamic system, we must go beyond the hydrody-
namic degrees of freedom. Just to see whether such event-
by-event fluctuations of IC give sizeable effects, so merit a
more detailed study, in [9], Paiva et al. used the Interacting
Gluon Model [10] (IGM) to generating fluctuating IC and,
using Khalatnikov 1-dimensional solution [11], showed that
the rapidity distribution obtained by averaging over results
starting from fluctuating IC is quite different from that ob-
tained starting from the averaged IC.

There are some other simulations, which try to in-
corporate, in hydrodynamic computations, fluctuating IC
given by more elaborate microscopic models: with a use
of some event generator, e.g. HIJING [12], VNI [13],
URASiMA [14], NeXuS [15], or some effective theory such
as string model [16], perturbative QCD + saturation of pro-
duced partons [17] or color glass condensate [18]. In princi-
ple, one could test each of these different microscopic mod-
els, by connecting them to some hydrodynamic code and
computing several observables to see which are the differ-
ences among them and which are more suitable for describ-
ing experimental data, provided the other ingredients of the
hydrodynamic model are well known, that is not the case.
Here, we shall instead discuss not the details of such mod-
els, but more or less model-independent consequences of
such fluctuations. Anyhow, we have to adopt some micro-
scopic model. In the following, we shall mainly discuss the
recent works of São Paulo-Rio de Janeiro Collaboration, us-
ing NeXuS event generator, coupled to hydrodynamic code
SPheRIO1.

NeXuS is a microscopic model based on the Regge-
Gribov theory and can give, in the event-by-event basis,
detailed space distributions of energy-momentum tensor,
baryon-number, strangeness and charge densities, at a given
initial time τ =

√
t2 − z2 ∼ 1 fm, for any given pair of in-

cident nuclei or hadrons. One important point when we use
a microscopic model to create a set of IC for hydrodynamics
is that the energy-momentum tensor produced by the micro-
scopic model does not necessarily correspond to that of lo-
cal equilibrium. For example, NeXuS generates, as its out-
put, the energy-momentum tensor Tµν(x) and the current
densities of conserved quantum numbers, jµ

B(x), jµ
S(x) and

jµ
Q(x), where B, S and Q refer to baryon number, strange-

ness and electric charge, respectively. However, the four-
velocities corresponding to these currents usually do not co-
incide, and more importantly, do not coincide with that of
the frame where Tµν becomes diagonal. Furthermore, the
space components of the diagonalized Tµν are not necessar-
ily identical (anisotropic stress). These facts mean that the
matter is not in local equilibrium. In order to transform the
energy-momentum tensor to that of the equilibrated one, we
adopt the following procedure. First, following Landau [19],
we identify the normalized time-like eigenvector of Tµν as
the four-velocity of the fluid and the eigenvalue as the en-
ergy density,

Tµ
νuν = εuµ. (5)

1Smoothed Particle hydrodynamic evolution of Relativistic heavy IOn collisions.
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Using this four-velocity, we calculate the proper baryon
number density as

nB = jµ
Buµ (6)

and analogously for the other densities. Once ε and n’s are
obtained, all the other thermodynamical quantities are cal-
culated using the equations of state. By this procedure we
force the system into a local thermal equilibrium, conserv-
ing the proper energy density of the system.

The IC thus generated are used as inputs for SPheRIO
code. We show in Figs. 1 and 2 an example of such a fluctu-
ating event, produced by NeXuS event generator, for central
Au + Au collision at 130A GeV, compared with an average
over 30 events. As can be seen, the energy-density distri-
bution for a single event (left), at the mid-rapidity plane,
presents several blobs of high-density matter, whereas in the
averaged IC (right) the distribution is smoothed out, even
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Figure 1. Examples of initial conditions for central Au+Au colli-
sions given by NeXus at mid-rapidity plane. The energy density is
plotted in units of GeV/fm3. Left: one random event. Right: av-
erage over 30 random events (corresponding to the smooth initial
conditions in the usual hydro approach).

Figure 2. A different representation of the same IC shown in Fig. 1,
at mid-rapidity plane. The vertical axis represents the energy den-
sity in units of GeV/fm3.

though the number of events is only 30. Similar bumpy
event structure was also shown in calculations with HI-
JING [12]. So, the main question here is whether the av-
erages over the observables computed starting from such
fluctuating IC, like the one at the left panel of Figs. 1 and
7 are similar or sizeably different from the correspondent
ones computed from averaged smooth IC like that at the
right panel there, or symbolically,

< f >≡ 1
N

N∑

j=1

(IC → f)j

?
' 1

N

N∑

j=1

(IC)j → f

≡ (< IC >→ f) , (7)

where < f > is the value of some relevant quantity f ,
obtained by averaging over N total number of events and
(IC→ f)j is the value of the same quantity in the j-th event,
with some event-dependent IC, whereas (< IC >→ f) rep-
resents the same quantity f given with the average IC. This
is a crucial point in data analyses, because the left-hand side
is closer to the data point experimentalists obtain, whereas
the right-hand side is the quantity usually computed by the-
orists for that data point, in order to extract properties of the
matter formed in nuclear collisions. If the bumpy structure
shown by event generators effectively exists in experimental
situations, then how do these hot spots manifest themselves
in the observables?

A general conclusion one can draw about this ques-
tion is that the total entropy of the system becomes always
smaller when one takes such fluctuations into account, in
comparison to the case without fluctuations, which means
with average over the event-by-event fluctuating IC taken
before the expansion. This can be seen by observing that,
in ideal hydrodynamics, both energy and entropy are con-
served. Then, considering for simplicity an ideal gas so that
Si = α(Ei)3/4, with α =const.> 0, for each random event,

< E > =
1
N

∑

i

Ei (8)

< S > =
1
N

∑

i

Si

=
α

N

∑

i

(Ei)3/4

=
α

N

∑

i

< E >3/4

[
1 +

∆Ei

< E >

]3/4

∼ α < E >3/4 − 3α

32N

∑

i

< E >3/4

[
∆Ei

< E >

]2

< α < E >3/4 . (9)

Here, < E > and < S > in the left-hand sides mean
the averaged energy and entropy over the fluctuating events,
whereas the right-hand side of < S > is the entropy cor-
responding to the averaged initial conditions, with the av-
eraged energy < E >. The linear terms of the expansion
in ∆Ei/ < E > are cancelled out when the summation is
performed. If one recalls that particle multiplicity is pro-
portional to the entropy for each particle species, one would
expect that also the multiplicity becomes, in general, smaller
when one takes such fluctuations into account.

Other possible manifestations of this inhomogeneity of
IC that we can expect intuitively are: enhancement of high-
pT components due to more violent expansion in the surface
region, smaller HBT radii, due to concentrations of matter
in small spots, azimuthal asymmetry even in central colli-
sions. However, computations are needed to obtain quantita-
tive conclusions, whether such discrepancies are meaningful
or not. We shall discuss this question in Sec. VI.
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3 Equations of state
As mentioned already, the basic assumption in hydrodynam-
ical models is the local thermal equilibrium. Once this con-
dition is satisfied, all the thermodynamical relations should
be valid in each space-time point 2. Thus, the energy, pres-
sure and temperature are given as functions of baryon num-
ber and entropy densities, specifying the properties of the
matter. In this Section, we discuss how to obtain simple
phenomelogical equations of state (EoS) for the hydrody-
namical description of relativistic nuclear collisions [22].

3.1 Hadronic gas
The strong interactions among hadrons are very complicated
and difficult to be incorporated into the EoS for practical
use. However, for very high energy, we may consider that
the hadronic gas may be approximated as an ideal gas, al-
though the degree of approximation can not be evaluated
theoretially. The recent thermal model for the description of
chemical abundances [23] show that such an approach can
reproduce quite well the observed multiplicity ratios of pro-
duced hadrons. Here we assume that all the particles can
be treated as constituents of a quantum ideal gas, except for
a correction due to the excluded volume. We also include
a main part of observed resonances in Particle Data Tables.
The inclusion of resonances can be considered as an effec-
tive way to consider the interactions among hadrons as ex-
plained later.

First, we recall that, in a grand canonical ensemble for
an ideal gas of quantum particles, the thermodynamical po-
tential per volume (the pressure) is given by

p(T, µ) =
θ g

(2π)3

∫
d3k ln(1 + θ eβ(µ−ε(k))) (10)

were θ = ±1 (+ for fermions, − for bosons), β = 1/T is
the inverse of the temperature T , µ the chemical potential,
g the degeneracy factor and ε(k) =

√
k2 + m2 with m the

mass of the particle. The number density n and the energy
density ε can be obtained by the usual thermodynamical re-
lations, n = (∂p/∂µ)V,T , ε = (∂p/∂β)λ , where λ = eβµ

is the fugacity. The entropy density of the gas can be calcu-
lated as s = β(p + ε− µn).

For example, in Landau’s model [1], the equation of
state was taken as that of the massless pion gas. For bosons
with m = µ = 0, Eq. (10) can be integrated analytically to
give

p(T ) =
g π2

90
T 4, (11)

and accordingly

s =
g π2

15
T 3, ε = 3p =

g π2

30
T 4. (12)

For the pion gas, due to the isospin factor, we can take g = 3.

For more realistic equations of state, we should include
all the resonance particles in the gas. Furthermore, we
should also take into account more than one type of con-
served quantum numbers, such as electric charge (equiva-
lently the 3rd component of isospin), baryon number and
strangeness. In this case, the chemical potential must be
written as µ = BµB + SµS + T (3)µ3 where B,S, T (3)

are baryon, strangeness and the thrid component of isospin
quantum numbers, respectively, and µB , µS and µ3 are the
corresponding chemical potentials. Thus, for a mixture of
particles with these conserved quantum numbers, Eq. (10)
should be generalized to

pHG(T, µB , µS , µ3) =
∑

i

pi(T, µi), (13)

where the sum refers to the particle species (including reso-
nances) and µi = BiµB +SiµS +T

(3)
i µ3 , with Bi, Si, T

(3)
i

the quantum numbers of the i-th particle species. We verify
that the baryon number density of the mixture is

nB =
(

∂p

∂µB

)

V,T

=
∑

i

(
∂pi (T, µi)

∂µB

)

=
∑

i

Bi n(i), (14)

where n(i) = (∂pi(T, µi)/∂µi) is the number density of the
i-th particle species.

Except for pions, most of hadrons and resonances can be
well approximated by the Boltzmann limit. In this case, we
have

pi(T, µi) ' gi
T 2m2

2π2
K2

(mi

T

)
eµi/T , (15)

and

ni = gi
Tm2

2π2
K2

(mi

T

)
eµi/T , (16)

where K2 is a modified Bessel function. From these rela-
tions, we can see immediately the usual ideal gas relation,

pi = niT . (17)

When the widths of the resonances are taken into ac-
count, Eq.(13) must be modified. For an interacting gas, the
power series expansion of the pressure in terms of fugacity,

p(T, µ) = pid(T, µ) + T

∞∑
n=2

bn(T )eβµn, (18)

is known as the cluster expansion (which is intimately re-
lated with the virial expansion) and bn are called “virial”
coefficients. Here, pid is the pressure of the corresponding
ideal gas and, roughly speaking, the index n in the sum rep-
resents the order of multiple particle interactions. For n = 2,
the contribution to the pressure comes from the 2-body in-
teractions. Beth and Uhlenbeck [24] showed that the second

2Recently it has been suggested that the thermodynamical relations can be satisfied without having the thermal equilibrium in the sense of Boltzmann
distribution [20, 21].
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virial coefficient can be expressed in terms of the scatter-
ing phase-shift of constituting particles. This approach was
generalized to the relativistic Boltzmann gas by Dashen, Ma
and Bernstein [25] and the result for b2 is

b2(T ) =
T

2π2

∫ ∞

W0

dW W 2K2(βW )

× 1
π

∑

`

(2` + 1)
∂

∂W
δ`(W ) , (19)

where δ`(W ) is the phase shift for the `-th partial wave.
Consider the case of a gas of particles with mass M and

suppose there exists a resonance in the two particle collision,

M + M → MR . (20)

When the resonance has a width Γ and spin J , only ` = J
dominates the sum and

δ`(W ) =
Γ
2

1
MR −W

, (21)

so that we have the Breit-Wigner formula,

∂

∂W
δ`(W ) =

Γ
2

1
(MR −W )2 + Γ2/4

. (22)

Therefore, the pressure of the system can be written as

p = pid + pR ,

where

pR = gR
T 2Γ
4π3

eβµR

∫ ∞

W0

dW
W 2K2(βW )

(MR −W )2 + Γ2/4
, (23)

with

gR = 2S + 1 ,

µR = 2µ .

For extremely narrow resonances, Γ → 0 ,

pR → gR
T 2M2

R

2π2
K2(βMR)eβµR , (24)

which is exactly the pressure of the ideal relativistic Boltz-
mann gas made of resonances with mass MR . Eq. (23) sug-
gests that, for more general case, the effect of resonance
width can be obtained by a convolution of the normalized
mass spectrum f(M) of the resonance, with the pressure
pid(M) of the ideal gas of mass M , as

pR =
∫

dMRf(MR)pid(M).

3.2 Effect of resonance width as a function of
temperature

Equation (23) shows that the effect of the resonance width
on the pressure of the gas is temperature dependent. To see

this effect, let us introduce the quantity,

F (T, MR,Γ) =
Γ

2πM2
RK2(MR/T )

×
∫ ∞

W0

dW
W 2K2(W/T )

(MR −W )2 + Γ2/4
, (25)

so that
pR = pΓ=0

R × F (T, MR,Γ). (26)

Another way to see the effect of the width, we may introduce
the effective mass of the resonance Meff defined
by

M2
effK2(βMeff ) ≡ M2

RK2(βMR)F (T, MR,Γ).

Using this effective mass, we can write the resonance pres-
sure as

pR = gR

T 2M2
eff

2π2
K2(βMeff )eβµR , (27)

that is, as if it were the pressure of ideal gas of particles with
mass Meff . In Figs. 3, 4, 5 and 6, we show the temperature
dependence of F and Meff for two tipical cases, one for
the resonance ρ (light and narrow width) and the resonance
f (heavy and large width) resonances. As we see, the ideal
gas approximation deviates substancially for low tempera-
tures, especially for large width resonances. The ideal gas
approximation is only valid for T À Γ.
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Figure 3. Correction factor F as function of temperature T for the
resonance ρ.
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Figure 4. Effective mass of the resonance ρ as function of temper-
ature T . The dark area corresponds to the resonance width.
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Figure 5. Correction factor F as function of temperature T for the
resonance f .
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Figure 6. Effective mass of the resonance f as function of temper-
ature T . The dark area corresponds to the resonance width.

3.3 Excluded-volume correction
From the analysis of thermal models[23], it became clear
that the ideal gas description requires a modification to ad-
just the size of the system. The volume to fit the particle
abundances is found to be too small. To avoid this problem,
the correction due to the excluded volume effect, like a Van
der Waals hard core correction is introduced [26]. Accord-
ing to this prescription, Eq. (13) is modified to the following
coupled equations

pHG(T, µB , µS , µ3) =
∑

i=1

pid
i (T, µ̃i) , (28)

µ̃i ≡ µi − vi pHG , (29)

where as before µi = BiµB +SiµS +T 3
i µ3 is the chemical

potential and vi is the excluded volume of the i-th hadron
species. The superscript id refers to the ideal gas case. The
above equations constitute an implicit equation for pHG so
that these two equations are solved iteratively to obtain pHG

for a given set of parameters, T, µB , µS and µ3. The number
density of the i-th hadron is given by

nexcl
i (T, µi) =

nid
i (T, µ̃i)

1 +
∑

j vj nid
j (T, µ̃j)

, (30)

where nid
i is the ideal gas expression of the particle density

for the i-th particle species.

3.4 Gas of Quarks and Gluons

The simplest way to introduce the phase of quarks and glu-
ons in the equations of state is the use of the MIT Bag mod-
els. The effect of gluon and quark condensate in the physi-
cal vacuum is expressed as the energy density of the vacuum
(or vacuum pressure). Thus the energy density and pressure
of an ideal quark-gluon gas calculated in the QCD vacuum
should be modified according to the rule,

ε → ε + B,

p → p−B,

where B is the vacuum pressure. Note that this vacuum
pressure has a property analogous to the cosmological con-
stant Λ of Einstein. Now, when we consider just the u and d
quarks and neglect their masses, we have

pqgp =
gq

6π2

[
1
4
µ4

q +
π2

2
µ2

qT
2 +

7π4T 4

60

]

+
gGπ2

90
T 4 −B , (31)

with

gq = 2× 2× 3 ,

gG = 2× 8 ,

the statisfical factors of quarks and gluons. For quarks, we
have µq = µB/3 . For µB = 0 , we have

p(ud)
qgp = 37× π2

90
T 4 −B (32)

or effectively gqgp = 37 . To include the strangeness and
also charge conservation, we proceed in the same way as for
the hadronic gas and we have

pqgp(T, µB , µS , µ3)=
gl

6π2

[
1
4
µ4

u +
π2

2
µ2

uT 2+
7π4T 4

60

]

+
gl

6π2

[
1
4
µ4

d +
π2

2
µ2

dT
2+

7π4T 4

60

]

+ pid
s (T, µs) + pid

s (T,−µs)

+
gGπ2

90
T 4 −B , (33)

where g` = 2× 3 and

µu =
1
3
µB +

1
2
µ3 ,

µd =
1
3
µB − 1

2
µ3 ,

µs =
1
3
µB − µS .
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3.5 Construction of equations of state for the
practical use

The expressions Eqs. (28,29) or Eq. (33) are, however, not
convenient for the use in hydrodynamical calculations. This
is because the variables in such calculations are the con-
served quantum numbers and the entropy density and not
the chemical potentials and the temperature. So, we need to
invert the relations,

nB = nB(T, µB , µS , µ3) , (34)
nS = nS(T, µB , µS , µ3) , (35)
n3 = n3(T, µB , µS , µ3) , (36)
s = s (T, µB , µS , µ3) , (37)

to get

µB = µB(nB , nS , n3, s) , (38)
µS = µS(nB , nS , n3, s) , (39)
µ3 = µ3(nB , nS , n3, s) , (40)
T = T (nB , nS , n3, s) . (41)

However, this is a formidable task even numerically. We are
thus forced to reduce the degrees of freedom for the practical
application to hydrodynamics. For this purpose, we set the
isospin and strangeness densities to null everywhere. That
is, we impose the conditions,

nS = 0 , (42)
n3 = 0 . (43)

These conditions together with Eqs. (35) and (36) determine
µS and µ3 as functions of T and µB . Therefore, nB and s
in Eqs. (34) and (37) become now functions of two variables
T and µB ,

nB = nB(T, µB) , (44)
s = s(T, µB) , (45)

which can be inverted numerically and give

T = T (nB , s) , (46)
µB = µB(nB , s) . (47)

The above inversion process allows us to write any
thermodynamic quantity as function of nB and s, both in
hadronic gas and quark-gluon plasma. Then, for a given pair
of density parameters nB and s, we should determine which
phase the physical system assumes. When two phases are in
equlibrium, we must have [27]

pHG(T, µB) = pQGP (T, µB) (48)

so that it determines the phase boundary line in the (µB , T )
plane and separates this plane into two domains. The do-
main where pHG > pQGP is the hadron gas phase and the
other pHG < pQGP is the QGP phase. These two domains
are in contact on the phase boundary line Eq. (48).

However, the above two domains in the (µB , T ) plane
are mapped into two separate domains in the (nB , s) plane

and there appeas a new third domain between them. That
is, the phase boundary line in the (µB , T ) plane spreads into
a domain in the (nB , s) plane. This domain is the mixed
phase. In oder to determine thermodynamical quantities in
this mixed phase as functions of (nB , s), we should intro-
duce another criterion in addition to the phase boundary con-
dition of Gibbs. As mentioned above, any point (µB , T ) on
the phase boundary line corresponds to two points in the
(nB , s) plane: one for the hadron phase, (nH

B , sH), and the
other, (nQ

B , sQ), for the QGP phase. In the mixed phase,
any density of extensive quantity should be a linear func-
tion of the qgp/hadron concentration ratio. Thus for a given
value of the baryon number density nB in the mixed phase,
(nH

B , sH) and (nQ
B , sQ) should satisfy

s =
sQ − sH

nQ
B − nH

B

(nB − nH
B ) + sH . (49)

From this equation, we determine the two points on the
phase boundaries, (nH

B , sH) and (nQ
B , sQ). All the other ex-

tensive quantities, say ε, can then be obtained as

ε =
εQ − εH

nQ
B − nH

B

(nB − nH
B ) + εH . (50)

Finally we can construct the equations of state in the
whole region of (nB , s). The parameters of the final equa-
tions of state are then,

• Number of resonances included in the hadronic gas:
Here, we take all the mesons with mass smaller than
1.5 GeV, and baryons smaller than 2 GeV. Resonance
widths are not included.

• Quark masses: We may safely take mu = md = 0,
but for the strange quark, we take ms = 120 MeV.

• Size of excluded volume: In the example shown in the
figures below, ν0 = (4πr3

0/3) with r0 = 0.7 fm for
baryons and r0 = 0 for mesons.

• Bag constant: We take B = 380 MeV/fm3.

Figure 7 shows the line of constant temperature in
(nB , s) plane. Fig. 8 shows the lines of constant entropy
per baryon in (µB , T ) plane.

Note that the present equations of state have, by con-
struction, the first order phase transition between hadronic
gas and quark gluon plasma. Recent lattice calculations [28]
indicate that there exists a critical point so that the phase
transition in the region starting from that point to zero µB

axis is not the first order but may be either a higher order
transition, or a smooth cross over [29]. Effects of such pos-
sibilities should be investigated within the hydrodynamical
models.
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4 Resolution of hydrodynamic equa-
tions

In general, exact analytic resolution of relativistic hydrody-
namics is a difficult task due to the highly non-linear na-
ture of these equations. So, usually one resorts to numer-
ical computations. However, since the analytical studies

are more transparent, it would be useful to find analytical
soluions, even though they correspond to highly ideal cases.
Khalatnikov’s one-dimensional analytical solution [11] to
Landau’s initial conditions [1], namely, ideal fluid at rest
in a Lorentz contracted thin spatial region, gave rise to a
new approach in high-energy physics. The boost-invariant
solution [30] found 20 years later, is frequently utilized as
the basis for estimations of initial energy densities in ultra-
relativistic nucleus-nucleus collisions [31]. Below, we shall
first describe families of analytical solutions we obtained in
collaboration with T. Csörgő [32, 33].

Considering that it is not trivial to analytically solve the
equations of hydrodynamics, it would be nice if we could
develop a method to obtain an approximate but analytical
solution of hydrodynamics. This has been done with vari-
ational formulation [34], although we had not develop it
further by applying it to practical problems of high-energy
nuclear collisions. However, we did apply the variational
method to develop a numerical code SPheRIO, based on the
so-called smoothed-particle hydrodynamics (SPH) [35, 36]
tecnique, to high-energy nuclear collisions [37], which is
flexible enough, capable to treat systems with configurations
without any symmetry and also exploding in time.

In the following, after presenting some analytical solu-
tions, we shall describe in the subsection 4.2 the variational
formulation of hydrodynamics, showing how it could used
to get approximate solutions. Then, in the subsection 4.3,
we shall apply this method to adapt the SPH hydrodynamics
for relativistic heavy-ion collisions.

4.1 Analytic solutions
After Landau’s initial proposal [1], the first analytic solu-
tion obtained is due to Khalatnikov [11], considering 1-
dimensional expansion of ideal gas. A more simpler boost-
invariant solution has been obtained later [30] and applied
to estimate the initial energy densities in ultra-relativistic
nucleus-nucleus collisions [31]. Both of these have been
frequently used in the study of nuclear collisions, showing
the usefulness of such simple analytical solutions.

However, the boost-invariant solution has some short-
comings: i) it is scale invariant, having a flat rapidity distri-
bution, corresponding to the extreme relativistic collisions,
which has never been seen; ii) it contains no transverse
flow. In [32], we tried to overcome these shortcomings. We
started by assuming a simple equations of state, correspond-
ing to a gas containing massive conserved quanta, namely,

ε = mn + κp , (51)
p = nT , (52)

having two free parameters, m and κ. Non-relativistic hy-
drodynamics of ideal gases corresponds to the limiting case
of m >> T , v2 << 1 and κ = 3/2 .

Then, we looked for similarity flows, i.e.,

v =

(
Ẋ(t)
X(t)

x,
Ẏ (t)
Y (t)

y,
Ż(t)
Z(t)

z

)
, (53)

f(xµ) = f0

(
V0

V

)a

F (s) , (54)
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where X(t), Y (t), Z(t) are the scales of length, in three or-
thogonal directions, and f(xµ) is any of the thermodynami-
cal quantities, such as n(xµ), T (xµ), p(xµ), . . . , and

s =
x2

X2
+

y2

Y 2
+

z2

Z2
(55)

is a scaling variable.
Using this parametrization for the one-dimensional ex-

pansion, it can be easily verified, by direct substitution into
eqs.(1,2) with eqs.(4,51,52,53 and 55), that a family of solu-
tions can be written as

v = z/t ≡ tanh η,

n = n0(t0/τ)V(s),

p = p0(t0/τ)1+1/κ,

T = T0(t0/τ)1/κ 1
V(s)

, (56)

with p0 = n0T0 and where V(s) is an arbitrary non-negative
function of s = z2/(Ż2

0 t2). The index 0 stands for the initial
values. Thus, this is a family of one-dimensional similarity
flows, but it is not scale invariant and n and T are not con-
stant for a constant τ .

Next, considering cylindrically symmetric flows, with
boost invariance along z direction (collision axis), we could
find the following family of solutions, for transverse flows:

v = r/t , for |r| ≤ t,

n = n0(τz0/τ))3V(s),

p = p0(τz0/τ)3+3/κ,

T = T0(τz0/τ))3/κ 1
V(s)

. (57)

Here, p0 = n0T0 and V(s) is an arbitrary non-negative func-
tion of s (= r2

t /(Ṙ2
0τ

2
z ) in this case), with rt =

√
x2 + y2

and Ṙ0 =
√

Ẋ2
0 + Ẏ 2

0 and τz =
√

t2 − z2 . So, this is a
generalization of the one-dimensional scale-invariant solu-
tion, including a class of transverse flows.

More recently [33], we extended these solutions still fur-
ther, considering less symmetrical flows, but still keeping
the same EoS (1,2) and similarity flow, with constant veloc-
ity, as it appears in eqs.(56,57).

4.2 Variational formulation
As shown above, even for very simple equations of state, an-
alytic solutions are limited to special cases. For realistic sit-
uations, even the equations of state themselves are available
only in the form of numerical tables. Therefore, the numer-
ical resources are essential for realistic studies of hydrody-
namical behavior of ultra-relativistic collisional processes.
However, it is well-known that any numerical method for
partial differencial equations requires highly sophisticated
techniques to avoid numerical instabilities, and usually it
needs a very large scale computation, especially when we
want to describe correctly explosive processes such as rela-
tivistic heavy-ion collisions. However, as emphasized in the

Introduction, in the hydrodynamic approach of high-energy
nuclear collisions, its main ingredients, i.e., the equations of
state, the initial conditions and the freezeout conditions are
not quite well known. In such a situation, we actually don’t
need a very precise solution of the hydrodynamic equations,
but a general flow pattern which characterizes the final con-
figuration of the system as a response to given equations of
state, initial conditions and the decoupling procedure. So,
we prefer a rather simple scheme of solving the hydrody-
namic equations, not unnecessarily too precise but robust
enough to deal with any kind of geometry. From this point
of view, we stressed in Ref. [34] the advantage of a varia-
tional approach to relativistic hydrodynamics.

Although not commonly found in general textbooks, the
variational formulation of hydrodynamics has been studied
by several authors [38, 39]. In Ref. [34], starting from the
action

I =
∫

d4x {−ε} , (58)

where ε is the proper energy density, the relativistic hydro-
dynamics was derived from the variational principle.

Here, we show its derivation, generalizing to include the
rotational flow. To do this, we introduce the two variables,
the proper baryon density, n, and entropy density, s, which
satisfy the conservation laws,

∂µ(nuµ) = 0 ,

∂µ(suµ) = 0 . (59)

where uµ is the four velocity of the fluid, satisfying the nor-
malization,

uµuµ = 1 . (60)

The functional form of the energy density,

ε = ε (n, s) ,

specifies the thermodynamical properties of the fluid. The
pressure, temperature and chemical potential are obtained
by the usual thermodynamic relations,

p = n
∂[ε(n, s)/n]

∂n
,

T =
∂ε(n, s)

∂s
and

µ =
∂ε(n, s)

∂n
.

The hydrodynamical equations of motion for the fluid is
given by the variational principle with respect to n, s and
uµ under the constraints, Eq. (59), and the normalization of
the four-velocity, Eq.(60). These constraints can be incor-
porated in the variational principle in terms of Lagrangian
multipliers to write

δ

∫
d4[ − ε(n, s) + λ∂µ(nuµ) + ζ∂µ(suµ)

− 1
2
w (uµuµ − 1)] = 0 , (61)
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where λ, ζ and w are Lagrangian multipliers and arbitrary
functions of x. Equivalently, the fluid dynamics is given by
the effective Lagrangian,

L(fluid)
eff (n, s, uµ, λ, ζ, w) = − ε(n, s)− nuµ∂µλ

− suµ∂µζ − w

2
(uµuµ − 1) ,

(62)

where now all of n, s, uµ, λ, ζ, w are independent varia-
tional variables.

The variations with respect to n, s and uµ lead immedi-
ately to

−µ− uµ∂µλ = 0 , (63)
−T − uµ∂µζ = 0 , (64)

−n∂µλ− s∂µζ − wuµ = 0 . (65)

Variations with respect to λ, ζ and w give simply the con-
straints, Eqs. (59) and (60). Multiplying the both sides of
Eq.(65) by uµ, and using Eqs. (60,63,64), we get

w = nµ + Ts

= ε + p , (66)

where p is the pressure. Eq.(66) shows that w is the enthalpy
density. Substituting back this w into Eq.(65) and multiply-
ing by uν , we have

wuµuν = −(nuν)(∂µλ)− (suν)(∂µζ) .

Taking the divergence and using the continuity equations
∂ν (nuν) = 0 and ∂ν(suν) = 0, we get

∂ν(wuµuν) = −(nuν)(∂ν∂µλ)− (suν)(∂ν∂µζ) . (67)

But

(nuν)(∂ν∂µλ) = n∂µ(uν∂νλ)− n(∂νλ)(∂µuν)
= −n∂µµ− n(∂νλ)(∂µuν)

and analogously

(suν)(∂ν∂µζ) = −s∂µT − s(∂νζ)(∂µuν) ,

so that Eq.(67) becomes

∂ν(wuµuν) = n∂µµ + s∂µT + (∂µuν)wuν

= ∂µp + uν(∂µuν)w
= ∂µp . (68)

Here, we have used Eq.(65) and the Gibbs-Duhem relation,

dp = sdT + ndµ , (69)

and the property,
uν(∂µuν) = 0 .

Finally we arrive at the standard form of the relativistic hy-
drodynamic equation (1),

∂νTµν = 0 , (70)

where

Tµν = wuµuν − gµνp

= (p + ε)uµuν − gµνp (71)

is the usual energy-momentum tensor of the fluid.
It is important to observe that, the effective Lagrangian

Eq.(62) evaluated in the proper comoving frame of the fluid
motion is

L(fluid)
eff

∣∣∣
comoving

= −ε(n, s) + µn + Ts = p , (72)

which is nothing but the negative of the thermodynamic po-
tential of the fluid element at xµ.

Now, interesting application of this approach appears, if
we can parametrize possible solutions of continuity equa-
tions (59) in terms of a certain number of time-dependent
parameters ~a(t) = {ai(t), i = 1, . . . , N}, such that

n = n

(
r,~a(t),

d~a(t)
dt

)
,

s = s

(
r,~a(t),

d~a(t)
dt

)
,

together with the velocity field,

uµ = uµ

(
r,~a(t),

d~a(t)
dt

)
,

then the action, Eq. (58), may be written as a time integral
of an effective Lagrangian

Leff

(
~a(t),

d~a(t)
dt

)
= −

∫
dr ε(n, s) . (73)

The constraint terms vanish for these ansatz. In this case,
the equations of motion for the variables ai(t) are obtained
as the Euler-Lagrange equations. This method could be ap-
plied to relativistic heavy-ion collisions, trying to describe
them in a simple analytic and effective way in terms of few
parameters. However, the general parametrization which
solve exactly the continuity equations is not easy. An ap-
proximate way to solve the continuity equation is proposed
in a numerical method called Smoothed Particle Hydrody-
namics.

4.3 Smoothed particle hydrodynamics

The SPH algorithm was first introduced for astrophysical
applications [35, 36]. In [37], we extended this numerical
method to heavy-ion collisions by the use of the variational
approach discussed in the preceding subsection.



34 Brazilian Journal of Physics, vol. 35, no. 1, March, 2005

4.3.1 SPH representation of densities

The basic idea of the SPH method is to parametrize the con-
tinous density distribution of any extensive physical quantity
in terms of sum of base functions with finite support. This
procedure introduces two types of approximations of differ-
ent nature. To see this, let us suppose that A is the physical
extensive quantity and a(r, t) the corresponding density dis-
tribution. We start with the identity,

a(r, t) =
∫

a(r′, t)δ(r− r′)d3r′.

Now, let us introduce the first approximation. Substitute the
Dirac δ-function by a smooth, normalized function W with
finite support, say, h, and transform the density a to ã as

a(r, t) → ã(r, t) =
∫

a(r′, t)W (r− r′; h)d3r′, (74)

where as mentioned, W is normalized,
∫

W (r− r′; h)d3r′ = 1 .

and having the property of finite support,

W (r− r′; h) → 0, for |r− r′| > h .

At this stage, the new density ã(r, t) describes the smoothed
part of the original density a(r, t). From the Fourier trans-
form, we can see that for this smoothed density, the Fourier
components with large wave numbers, corresponding to

k >
1
h

,

vanish rapidly. In other words, the kernel function W serves
as the short wavelength cut-off filter. Physically, it is useful
to introduce such a filter, since we very often want to elim-
inate very short scale part in order to extract the global fea-
ture of the dynamics of the system. In 60’s, similar idea has
been used to smooth out the spectrum density of the nuclear
shell model to extract the collective liquid drop potential by
Strutinski [40].

Now, we introduce the second approximation. This is
rather to do with the practical aspect, that is, to reduce the
degrees of freedom involved in the calculation. We replace
the integral Eq.(74) by the sum over a finite and discrete set
of points,{ri, i = 1, .., N}.

ã(r, t) → aSPH(r, t) =
N∑

i

AiW (r− ri;h), (75)

where the weight Ai should be chosen appropriately to min-
imize the difference between ã(r, t) and aSPH(r, t) every-
where. The above expression means that we are represent-
ing the continuous density as due to a sum of a finite number
of dynamic units carrying the quantity Ai. These units are
centered at the position ri .

Finally, the correspondence,

a(r, t) → aSPH(r, t) =
N∑

i

AiW (r− ri;h) (76)

can be considered as an approximation ansatz for the den-
sity a(r, t) with a finite number of parameters, {Ai, ri, i =
1.., N} . Due to the normalization of the kernel W , we have

∫
aSPH(r, t)d3r =

N∑

i

Ai ,

so that we should choose

N∑

i

Ai

as the total value of the quantity A of the system.

4.3.2 Solution of continuity equations

For the application in Hydrodynamics, we can use these pa-
rameters as the variational variables so that they are time
dependent. When we deal with one or more extensive quan-
tities, we usually choose one conserved quantity as the refer-
ence density, say ρ, and represent it by the SPH form, choos-
ing appropriately the weights {νi} to get

ρSHP (r, t) =
N∑

i

νiW (r− ri(t); h) , (77)

and take νi constant in time. Other extensive quantity, say
A, is calculated as in Eq.(76) with weights,

Ai =
(

a

ρ

)

i

νi . (78)

The quantity (a/ρ)i then represents the quantity A for the
unit reference quantity ρ at the position r = ri(t) . Note that
the time dependence of the density in Eq.(77) comes from
those of {ri(t)} . In this sense, Eq.(77) can be understood
as if {ri(t)} were Lagrangian coordinates attached to small
volumes of the order of h3, with some conserved quantity,
such as baryon number or entropy in the adiabatic expan-
sion. From now on, we refer to these dynamic units char-
acterized by their coordinates {ri} and carrying the quantity
Ai as “SPH particles”. From Eq.(78), the quantity Ai can be
interpreted as the part of A carried by the i-th SPH particle.

The most powerful point of the above scheme of SPH
representation is that we can solve the continuity equation
in a very simple manner. Suppose M is a conserved quan-
tity. Then the corresponding density ρ should satisfy the
continuity equation,

∂ρ(r, t)
∂t

+∇ · (ρv) = 0 , (79)

where v is the velocity field. The SPH expression for the
current j = ρv is

jSPH(r, t) =
∑

i

vi νiW (r− ri(t)) ,
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so that

∇ · jSPH(r, t) =
∑

i

vi νi∇W (r− ri) .

On the other hand, from Eq.(77),

∂ρSPH(r, t)
∂t

=
∑

i

νi
d

dt
W (r− ri(t))

=
∑

i

νi
dri(t)

dt
· ∇W (r− ri(t)) ,

By inspection, if we identify

vi =
dri(t)

dt
,

then we can see that Eq.(79) is automatically satisfied.
For the application to the relativistic heavy ion colli-

sions, we can take the entropy and baryon number as the ba-
sic conserved quantities. Then, their densities (in the space-
fixed frame) are parametrized as

s∗(r, t) =
N∑

i

νi W (r− r i(t)) , (80)

n∗(r, t) =
N∑

i

bi W (r− r i(t)) , (81)

where νi and bi are the entropy and baryon number attached
to the i-th “particle”. The total entropy and baryon number
are then given by

S =
∫

d3r s∗(r, t) =
N∑

i

νi . (82)

B =
∫

d3r n∗(r, t) =
N∑

i

bi . (83)

The proper densities of entropy and baryon number are re-
lated with these space-fixed frame quantities as

s = γ−1s∗,
n = γ−1n∗,

where γ = u0 is the Lorentz factor asscociated with the fluid
velocity. For the hydrodynamical description of nuclear and
hadronic collisions at ultra-relativistic energies, we prefer
to use the entropy than the baryon number as the reference
conserved number to write the SPH representation of any
other extensive quantities. This is because, the baryon den-
sity may become zero but the entropy density never vanishes
in the physically interesting region within a hydrodynamical
description.

4.3.3 SPH action and SPH equations

In the variational derivation of this method, the set of time-
dependent variables {ri, i = 1, ..., n} are taken as the vari-
ational degrees of freedom and their equations of motion

are determined by minimizing the action for the hydrody-
namic system. Thus, SPH may be considered as an effec-
tive description, in which the coordinates {ri(t)} associated
with “particles” are the optimal dynamical parameters which
minimize the model action. We observe that {νi} or {bi} are
not dynamical variables and are determined by the initital
conditions together with the constraints for the variational
procedure.

The effective Lagrangian, Eq. (73), is rewritten in SPH
representation as

LSPH({ri, ṙi}) = −
∑

i

νi(ε/s∗)i = −
∑

i

(
E

γ

)

i

,

(84)
where Ei is the “rest energy” of the i-th “particle”. Then, the
equations of motion are obtained from the usual variational
procedure. This leads to the following coupled equations

d

dt

(
νi

pi + εi

si
γi vi

)

+
∑

j

νiνj

[
pi

s∗i
2 +

pj

s∗j
2

]
∇iW (r i − r j ; h) = 0 .

(85)

4.3.4 General coordinate system

The variational procedure can readily be extended to coor-
dinate system, with a non-Cartesian metric. The use of gen-
eralized coordinate systems is particularly important when
we consider realistic initial conditions for simulations of
RHIC processes. As we know, in a relativistic heavy-ion
collisional process, the initial state is a cold, quantum nu-
clear matter. Just after the collision, the hadronic matter
stays at a highly off-shell state and the materialization oc-
curs only after ∼ 1 fm/c in the proper time. Therefore, the
local thermodynamical state would emerge for some local
proper time and not for the global space-fixed time t. Thus,
it is important to choose a convenient coordinate system for
the description of the relativistic heavy-ion collisions. For
example, one often uses the hyperbolic time and longitudi-
nal coordinates to be described later.

Let us consider a general coordinate system, with

ds2 = gµνdxµdxν . (86)

However, in order to unambiguously define the conserved
quantity, we consider only the case where the time-like co-
ordinate is orthogonal to the space-like coordinates,

gµ0 = 0 . (87)

The action principle for the relativistic fluid motion can be
written as [34]

δI = −δ

∫
d4x

√−g ε = 0 , (88)

together with the constraint for the conserved entropy cur-
rent,

(suµ);µ =
1√−g

∂µ(
√−g suµ) = 0 , (89)
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or

1√−g
∂τ

(√−gsγ
)

+
1√−g

∑

i

∂i

(√−gsγvi
)

= 0 , (90)

where

vi =
ui

u0
(91)

and we use the notation

τ = x0, γ = u0.

The generalized gamma factor γ is related to the velocity ~va

through uµuµ = 1, so that

γ =
1√

g00 − ~v T g~v
, (92)

where −g is the 3 × 3 space part of the metric tensor. That
is

(gµν) =
(

g00 0
0 −g

)
. (93)

Let us now introduce the SPH representation. We may,
for example, express the entropy density by the ansatz
√−gsγ = s∗ → s∗SPH =

∑

i

νiW (~r − ~ri(τ)) , (94)

or by

sγ = s∗ → s∗SPH =
∑

i

νiW (~r − ~ri(τ)) (95)

as well. These two possibilities, besides others, are simply
different ways to parametrize the variational ansatz in terms
of a linear combination of given functions W (~r − ~ra(τ)).
The most important property of an ansatz should be that W
satisfies the normalization condition imposed by the basic
conserved quantity. Since the total entropy is expressed as

S =
∫

d3~r
√−g sγ =

∑

i

νi , (96)

the normalization of W should be taken to be
∫

d3~r W (~r − ~r ′) = 1 , (97)

for the parametrization Eq.(94) and
∫

d3~r
√−gW (~r − ~r ′) = 1 , (98)

for the parametrization Eq.(95). In the usual SPH calcula-
tions, it is not desirable to introduce in W the space-time
dependence through its normalization condition. In this re-
spect, the most natural way to introduce the SPH represen-
tation is Eq.(94). With this choice, the SPH action is given
by

ISPH = −
∫

dτ

∫
d3~r

∑

i

νi

( √−g ε√−g sγ

)

i

W (~r − ~ri(τ))

= −
∫

dτ
∑

i

νi

(
ε

sγ

)

i

. (99)

The variational principle leads to the following equation of
motion,

d

dτ
~πi = −

∑

j

νiνj

[
1√−giγ2

i

pi

s2
i

+
1√−gjγ2

j

pj

s2
j

]
∇iWij

+
νi

γi

pi

si

(
1√−g

∇√−g

)

i

+
νi

2
γi

(
p + ε

s

)

i

(∇g00 − ~v T
i ∇g~vi), (100)

where

~πi = γi νi

(
p + ε

s

)

i

g~vi (101)

and the operator∇ is just the simple derivative operator with
respect to the coordinate variables in use.

For ultrarelativistic heavy-ion collisions, a useful set of
variables is

τ =
√

t2 − z2, (102)

η =
1
2

tanh
t + z

t− z
, (103)

~rT =
(

x
y

)
. (104)

As mentioned above, the initial conditions for RHIC
processes are specified in terms of the proper time rather
than of the fixed-frame time t. The variable τ is not exactly
the physical proper time of the matter, but in general it is a
good approximation in ultra relativistic collisions.

The metric tensor for this coordinate system is given by

g00 = 1,

g =




1 0 0
0 1 0
0 0 τ2


 ,

√−g = τ .

Since the metric is space independent, we can use the para-
metrization

τγisi = s∗i =
n∑

j=1

νjW (qij),

where

qij =
√

(xi − xj)2 + (yi − yj)2 + τ2(ηi − ηj)2

and W is normalized as

4π

∫ ∞

0

q2dq W (q) = 1 .
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The SPH equation becomes

d

dτ
~πi = −1

τ

∑

j

νiνj

[
1
γ2

i

pi

s2
i

+
1
γ2

j

pj

s2
j

]
∇iWij ,

where the η component of the momentum is related to the
velocity dη/dτ as

πη = τ2νγ

(
p + ε

s

)
dη

dτ
,

whereas in the transverse direction, we have

~πT = νγ

(
p + ε

s

)
d~rT

dτ
.

The Lorentz factor is given by

γ =
1√

1− ~v2
T − τ2v2

η

.

4.3.5 Landau Model

In order to show the efficiency of the method and also to
show the correct choice of the coordinate system, let us in-
vestigate the Landau model in the SPH scheme, using the
ordinary Cartesian coodinates and η − τ coodinates. Since
the analytical solution is known, we can compare the numer-
ical solutions to it.

We thus solve the hydrodynamical evolution of a system
of one-dimensional relativistic massless baryon-free gas ini-
tially at rest. The equation of state of a relativistic massless
boson gas is

p =
1
3
ε = Cs4/3,

where

C =
(

15
128π2

)1/3

.

To apply the SPH method, we introduce the discrete one-
dimensional space variable xi(t), i = 1, .., n (and similarly
for η − τ coodinates). The relation between the momentum
and velocity is then

π = 4Cνs∗1/3γ2/3v, (105)

where, in this case, v can be solved analytically with respect
to π.

In Figs. 9 a and b, we show the results of our SPH cal-
culation together with the exact solution [11,1]. In these
examples, we took only 100 particles with equally spaced
xi (or ηi). As we see from this example, in spite of rather
small number of particles, the SPH solution is quite satis-
factory. In particular, when we use the η − τ coordinates
with an appropriate distribution of ν′is (Fig. 9 b), an excel-
lent agreement with the analytical solution can be obtained.
The computation time needed to get these solutions is even
less than that needed to numerically evaluate the analytical
solution.

0 2 4 6 8 10 12
x

0

0.1

0.2

0.3

0.4

0.5

E
nt

ro
py

 d
en

si
ty

 s exact
SPH

Landau Model
t=0

t=2
t=4 t=6 t=8

t=10

−5 −2.5 0 2.5 5
η

−3.5

−2.5

−1.5

Lo
g(

T
/T

0)

Figure 9. a) (above) Entropy profiles of the Landau model in
Cartesian coordinate for different times. The exact results are given
by the broken curves. The SPH solution is shown by the full curves.
b) (below) Temperature profiles of the Landau model in the hyper-
bolic coordinate system (see text), for different time τ . The SPH
calculation is represented by the circles, and the exact result by the
broken curves.

4.3.6 Transverse expansion on longitudinal scaling ex-
pansion

As a further test, closer to a realistic situation than that of
Figs. 9, we calculated the transverse expansion of a cylindri-
cally symmetric homogeneous massless pion gas, undergo-
ing a longitudinal scaling expansion, and initially at rest in
transverse directions. Such a problem has been discussed by
several authors as a useful base to understand the transverse
expansion. In Fig. 10, we compare our results (a full 3D cal-
culation without assuming cylindrical symmetry) with (2+1)
numerical results, obtained by the use of the method of char-
acteristics [41]. In this example, we used also 50× 50× 50
particles. The result is quite satisfactory. If we decrease the
accuracy by 10%, we can reduce the particle number almost
by one order of magnitude.
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Figure 10. Temperature profile of a cilyndrically symmetric flow
with longitudinally scaling expansion, shown as a function of
r =

p
x2 + y2. The SPH results at η = 0 (circles) are com-

pared with the numerical solution obtained by a space-fixed grid
method [41]. The SPH calculation has been perfomed in full 3D.

4.3.7 Shock formation and Neumann-Richtmyer
pseudo viscosity

As seen in the previous examples, our entropy-based rela-
tivistic SPH method works quite well for the adiabatic dy-
namics of the massless pion gas. However, for the applica-
tion to realistic problems, it is fundamental to see how this
scheme works for non-adiabatic cases, too. This is because,
whenever a piece of fluid matter flows into another region
of the fluid with a speed exceeding the sound velocity of the
fluid, there appears a shock wave, and this is essencially a
nonadiabatic process. Thus, except for a really quasi-static
dynamics, there should be an entropy production mecha-
nism. This becomes especially important in a domain close
to the phase transition region, because there the velocity of
sound tends to zero. In the following, we study some ex-
amples of one dimensional shock problems in the scheme of
the SPH methods.

The shock front manifests as a discontinuity in thermo-
dynamical quantities in a hydrodynamic solution. Math-
ematically speaking, the shock front should be treated as
a boundary connecting two distinct hydrodynamic solu-
tions. The smoothed particle ansatz excludes such a pos-
sibility from the beginning. Since short-wavelength excita-
tion modes do not exist in the SPH ansatz, the energy and
momentum conservation required by the hydrodynamics re-
sults in very rapidly oscillating motion of each SPH parti-
cle. Such a situation occurs, for example, when a very high-
energy density gas is released into a low density region. This
kind of shock, for the case of a baryon gas, is discussed
in [42] and also, in the SPH context, in [43]. Here, we ap-
pliy our entropy-based SPH approach to the massless pion
gas.

Figure 11 gives the typical behavior of SPH solution for
such a situation, if entropy production is not taken into ac-
count. As discussed above, there appear in fact rapid oscil-
lations in thermodynamical quantities just behind the shock
front. Actually, such oscillations always appear in any nu-
merical approach if entropy production is not included.
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Figure 11. Shock wave formation in one-dimensional pion gas,
calculated with SPH. No viscosity is used.

In order to avoid these unphysical oscillations, von
Neuman and Richtmyer [44] introduced the concept of
pseudoviscosity. The idea is to set the dissipative pressure
where the shock wave discontinuity is present. To do this,
Neuman and Richtmyer proposed to replace the pressure by

p → p + Q,

where Q is the pseudoviscosity and they took the following
ansatz,

Q =
{

(α∆x)2ρ (ρ̇/ρ)2, ρ̇ > 0
0 , ρ̇ < 0 .

The above formula is for nonrelativistic one-dimensional
hydrodynamics. Here, ρ is the mass density, ∆x is the space
grid size and α is a constant of the order of unity. In order
to generalize the above pseudoviscosity for relativistic SPH
case, we replace the quantity ρ̇/ρ by −θ = −∂µuµ and ∆x
by h, where h is as before the width of the smoothing kernel
W . More precisely, we take the following form which is a
slightly modified expression suggested by Ref. [43],

Q =
{

p
[−αhθ + β(hθ)2

]
, θ < 0 ,

0 , θ ≥ 0 .
(106)

where

θ =
1
V

dV

dt
= ∂µuµ. (107)

Actually, Q is equivalent to the bulk viscosity and there-
fore there is no heat flow associated with it. What this arti-
ficial viscosity does is to convert the collective flow energy
into the microscopic thermal energy. As a consequence, the
total energy, that is, the sum of the collective flow energy
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and the internal thermal energy is still conserved. In order
to incorporate the internal energy conservation in the SPH
scheme, we substitute all the pressure pi by pi +Qi, and we
add the following equation for the entropy production,

1
νi

dνi

dt
= −Qiγi

Ts∗i
θi. (108)
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Figure 12. After the introduction of the Q term in the SPH calcu-
lation.

Figure 12 is the solution of the same problem as in
Fig. 11, but with the entropy production taken into account.
In this calculation, the parameters have been chosen as

α = 2, β = 4

and h = 0.5fm for 1000 SPH particles. As we see, the
rapid oscillations have been smoothed out (and in turn, the
numerical calculation became much more efficient).

It is known that the energy- and momentum-flux conser-
vations through a shock front relate the ratio s2/s1 of en-
tropy densities after and before the shock to the velocity vs

of the shock front as (Hugoniot-Rankine relation)

s2

s1
=

2
33/4

vs
(9v2

s − 1)1/4

(1− v2
s)5/4

. (109)

In Fig. 13, we show the velocity of the shock front ob-
tained in our SPH calculations as function of the entropy
ratio(dots). Each point corresponds to the different initial
condition. They are compared with the Hugoniot-Rankine
relation Eq. (109) (curve). The accordance shows that our
SPH calculation reproduces faithfully the conservation of
kinetic energy and momentum of the flow through the shock
front.
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Figure 13. Test of Hugoniot-Rankine relation. The circles are re-
sults of SPH calculations with different initial conditions, and the
full curve is Eq. (109).

In the usual hydrodynamic computations using space
grids, the symmetry of the problem is often a crucial
factor to perform a calculation of reasonable size. The
SPH method cures this aspect and furnishes a robust algo-
rithm particularly appropriate to the description of processes
where rapid expansions of the fluid should be treated. The
equations of motion are derived by a variational procedure
from the SPH model action with respect to the Lagrangian
comoving coordinates. This guarantees that the method fur-
nishes the maximal efficiency for a given number of degrees
of freedom, keeping strictly the energy and momentum con-
servation. For this reason, solutions can be obtained with
a very reasonable precision, with a relatively small number
of SPH particles. This is the basic advantage of the present
method, when we analyze the event-by-event dynamics of
the relativistic heavy-ion collisions.

On the other hand, the precision of this method increases
rather slowly with the number of SPH particles. Therefore, a
relatively large number of particles is required if one wants
a very precise numerical solution. However, for the appli-
cation to the RHIC physics, we may need rather crude pre-
cision especially if we consider the dubious validity of the
rigorous hydrodynamics. For a calculation with typically
10% errors, the SPH algorithm presented here furnishes a
very efficient tool to study the flow phenomena in the RHIC
physics.

A fundamental difficulty of the relativistic hydrodynam-
ics for viscous fluid [45, 46] is that the dissipation term
causes an intrinsic instability to the system. This instability
basically comes from the fact that the dissipation term con-
tains θ = ∂µuµ (see Eqs. (106,108)), so that it necessarily
introduces the third time-derivative into the equation. This
means that we have to specify, at least, a part of the accel-
eration as the initial condition. Even we specify the initial
acceleration, the requirement of the internal self-consistency
among the equations above leads to intrinsically unstable so-
lutions. Israel proposed [45, 46] to cure these difficulties



40 Brazilian Journal of Physics, vol. 35, no. 1, March, 2005

by introducing higher-order thermodynamics with respect to
deviations from the equilibrium. Recently this “second or-
der thermodynamics” formalism was discussed in the con-
text of Bjorken type solution [47]. In the examples presented
in the present paper, we did not address this question and
simply estimated the quantity θ from the quantities one time
step before. In practice, this will cause no numerical insta-
bility and the behavior of the solution is quite satisfactory.

In spite of the above conceptual difficulties when nona-
diabatic process is involved, the SPH approach has a nice
feature as its flexibility, allowing the treatment of problems
with initial conditions without any symmetry, as happens in
small systems as those resulting in relativistic nuclear col-
lisions. It should be stressed that, due to the use of La-
grangian coordinates, the method is most suitable for ex-
plosive processes like the relativistic heavy ion collisions.
(Lagrangian coordinates have been used for treatment of
relativistic nuclear collisions also by Nonaka, Honda and
Muroya [14]). Furthermore, the variatioal approach guaran-
tees that the SPH equations (85) give the optimal description
of motions for a given total number of “particles” {ri(t)},
which are our parameters. In this approach, no numerical in-
stabilities will occur, since the whole system is a Lagrangian
system. A numerical code, called SPheRIO has been devel-
opped by us on the basis of this algorithm. We shall discuss,
in Sec.6, some results obtained using this code.

5 Decoupling criteria

5.1 Cooper-Frye prescription
As mentioned in the Introduction, the decoupling process
is customarily described using the Cooper-Frye prescrip-
tion [7], which gives the invariant momentum distribution
as

E
d3N

dp3
=

∫

σ

dσµpµf(x, p) . (110)

This description of decoupling introduces a sharp freezeout
hypersurface σ , usually characterized by a constant temper-
ature Tf.o. . Before crossing it, particles have a hydrody-
namical behavior and, when they cross it suddenly decou-
ple, free-streaming toward the detectors, keeping memory of
the conditions (flow, temperature) of where and when they
crossed the three dimensional surface.

In SPH representation, we write

E
d3N

dp3
=

∑

j

νjnjµpµ

sj |njµuµ
j |

f(ujµpµ) , (111)

where the summation is over all the SPH particles, which
should be taken where they cross the hyper-surface T =
Tf.o. and njµ is the normal to this hyper-surface.

Another often used procedure is to take such a freezeout
temperature not only constant for a given energy but also
energy-independent.

Though operationally simple, and actually useful for ob-
taining a nice comprehension of several aspects of the phe-
nomena, such a concept of sharp freezeout hypersurface and

also of a constant freezeout temperature are clearly highly
idealized when applied to finite-volume and finite-lifetime
systems as those formed in high-energy heavy-ion colli-
sions.

5.2 Finite-size effect

Before going further, let us for a moment assume that such a
freezeout temperature is meaningful. At least, as an average
temperature, it should exist. Then, how can we estimate it
based on the properties of the system? A simple and natural
criterion has already been given by Landau [1], by which a
particle decouples when its mean free-path ` in the medium
becomes larger than the system size L,

` > L . (112)

This means that Tf.o. is not an intrinsic thermodynamic
property of the fluid, but it depends also on the size of the
system. In [48], we applied this idea to estimate Tf.o. as
function of the incident energy both for pp (p̄p) and nucleus-
nucleus collisions, obtaining approximately

Tf.o. ∼ (
√

s)−1/12. (113)

Here, the energy dependence appears as a consequence
of the increase in the initial energy density, which implies
longer expansion time, so larger size L of the system (both
longitudinally and tranversally) at the moment of decou-
pling, requiring lower density, so lower decoupling temper-
ature, too. Fig. 14 shows the comparison made in [48] of an
estimate of the incident-energy dependence of Tf.o. , using
Landau’s criterion mentioned above, with Tf.o. obtained in
a data analysis of π and K transverse-momentum spectra in
pp (and p̄p) collisions, in terms of a hydrodynamic parame-
trization of transverse velocity distribution and temperature.
The data were taken from [49, 50, 51].

Figure 14. Energy dependence of Tf.o. in pp (and p̄p) collisions.
The solid line is the estimate as explained in the text. The points
were obtained from a data analysis [48].
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An independent estimate of Tf.o.(s) for pp was made by
Navarra et al. [52], based on somewhat different but related
freeze-out criterion

τhydro ∼ τcol ,

where τhydro and τcol are, respectively, characteristic time
for hydrodynamic expansion and particle collision, obtain-
ing a similar result.

Figure 15. Energy dependence of the inverse slope parameter for
K+ in central Pb + Pb (Au + Au) collisions. Here, averaged IC
were used. Stars correspond to Tfo=155 MeV (see Table 1). Data
are from [56].

TABLE 1. Freezeout temperature Tfo , averaged transverse veloc-
ity v̄T in −0.5 ≤ y ≤ 0.5 and the inverse slope parameter T ∗ for
K+ production in central Pb + Pb (Au + Au) collisions, obtained
using SPheRIO with averaged NeXuS IC. T0 and ε0 are the initial
values at the midpoint of the fluid.

√
s T0 ε0 Tfo v̄T T ∗

(A·GeV) (MeV) (GeV/fm3) (MeV) (MeV)
2.7 98 0.75 85 0.067 92
3.3 128 0.66 94 0.28 155
3.8 131 1.01 97 0.41 192
4.3 135 1.38 115 0.37 212
4.9 140 1.55 120 0.39 225
8.8 198 4.06 144 0.31 226

12.3 248 9.04 147 0.32 226
17.3 265 11.37 148 0.33 233
130 281 13.22 128 0.54 288

155 0.35 237
200 288 14.54 125 0.57 310

155 0.37 242

When Au + Au collisions data began to appear, Xu and
Kaneta [53] reported that Tf.o. seems to decrease with

√
s

also in nuclear collisions at high energies, and we could
verify that the reported results are consistent with Tf.o. ∼
(
√

s)−1/12. It is interesting that, more recently [54], in
trying to understand the experimentally observed anom-
alous behavior of the inverse slope parameter T ∗ of kaon
transverse-momentum spectra in central Pb + Pb (Au + Au)
collisions [55], we could succeed to obtain the increase in
T ∗ when going from SPS to RHIC domain only with de-
creasing freezeout temperature Tf.o.(s) with increasing

√
s

as shown in Fig. 15 and Table 1. Here, SPheRIO code has
been used with averaged IC. This is because, as will be
shown in Sec. 6, Figs. 19, 20, 21, 22, the slope parameter
is not sensitive to IC fluctuations.

5.3 Continuous emission
The decoupling temperature discussed in the preceding
paragraphs should actually be interpreted as an average
value of such a temperature. When applied to finite-volume
and finite-lifetime systems as those formed in high-energy
heavy-ion collisions, a sharply defined freeze-out hypersur-
face is clearly too idealized and for a more precise analysis
of data, one needs a more elaborate description of the decou-
pling process. In [57], we introduced a method that we call
Continuous Emission (CE) and, as compared to the usual
Cooper-Frye one, we believe closer to what happens in the
actual collisions. The essential point is the introduction of
momentum-dependent escape probability

P(x, p) = exp
[
−

∫ ∞

τ

ρσvdτ ′
]

(114)

of a particle from a space-time point x without collision
in the medium, so that the emission may occur from any
point of the fluid and at any time, according to this probabil-
ity. This means that we are interpreting probabilistically the
Landau condition, (112), as should be and also giving the
system size L a more precise meaning, namely, the quantity
of matter the escaping particle encounters in his trajectory.
The integral above is evaluated in the proper frame of the
particle. Then, the distribution function f(x, k) of the ex-
panding system has two components, one representing the
portion of the fluid already free and another corresponding
to the part still interacting, i.e.,

f(x, p) = ffree(x, p) + fint(x, p) . (115)

We may write the free portion as

ffree(x, p) = Pf(x, p) . (116)

The inclusive one-particle distribution, for instance, is then
written as

E
d3N

dp3
=

∫

σ0

dσµpµffree(x0, p)

+
∫

d4x ∂µ[pµffree(x, p)], (117)
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where the surface term corresponds to particles already free
at the initial time.

As particles can be emitted in different stages of the
fluid expansion, it is natural that the appearance of the ob-
servables in CE becomes different from that of the usual
Cooper-Frye prescription at a constant temperature [7]. In
general, in CE, the large-pT particles are mainly emitted at
early times when the fluid is hot and mostly from its surface,
whereas the small-pT components are emitted later when the
fluid is cooler and from a larger spatial domain. We shall dis-
cuss, in Sec. 6, the manifestation of this effect in two-pion
interferometry.

More detailed description of this method and several of
its predictions are accounted for by Grassi in a separate pa-
per of this issue [58].

6 Applications
In the following, we shall present some applications of
NeXuS+SPheRIO code [59, 60, 61], which has been con-
structed by coupling the NeXuS event generator to SPheRIO
code, described in Subsection 4.3.

As mentioned in the Introduction, the main ingredients
of hydrodynamic calculations are IC, EoS and the decou-
pling procedure. None of these are well known at the present
moment.

Since we are mainly concerned with the effects of IC
fluctuations and consequences of different decoupling de-
scriptions, here we just take the IC created by NeXuS event
generator and use the equations of state described in Sec-
tion 3.5. The strangeness conservation has not been taken
into account. As for the decoupling procedure, we adopted
both the conventional sharp freeze-out prescription and the
continuous emission description, because one of our pur-
pose is to see the differences resulting from these two de-
scriptions.

We do not expect that these options will reproduce all
the experimental data. In fact, we found that the use of the
same version of NeXuS code for high- and low-energy nu-
clear collisions caused some discrepancies in reproducing
the rapidity distribution of charged particle. Therefore, we
have introduced additional parameters to ajust at least the
overall rapidity distributions.

6.1 Effects of fluctuating initial conditions
In Sec. 2, we stressed that, due to the finite size of the sys-
tems, large fluctuations are expected in the initial stage of
actual nuclear collisions, even for a fixed impact parameter,
and that IC generated by realistic event generators do show
such effects [12, 15]. Let us see in this Section what are the
effects of fluctuating IC on some of the observables.

In [12], by solving the hydrodynamic equations with
longitudinal boost-invariance, it has been shown that the
bumpy IC i) develop azimuthally asymmetric flows, even
for central collisions, because there is no symmetry in each
fluctuating event; and also ii) enhance high-pT direct photon
yields due to the high temperature in the blobs.

Since our interest here is just to show the effects of
fluctuating IC, we chose the simplest decoupling crite-
rion, namely the usual Cooper-Frye sudden decoupling with
freezeout temperature Tfo in this Subsection.

6.1.1 Rapidity and mT distributions

Let us first consider Pb + Pb collisions at SPS. In Fig. 16,
we show the rapidity distributions for negative particles and
p − p̄ , respectively, for the most central Pb + Pb collisions
at
√

s = 17.3 A GeV. Each event, computed from randomly
generated IC like the one shown in Figs. 1 and 2 (left), is
represented by a thin curve (for each type of particle, either
negatives or p − p̄). The thick solid lines represent the av-
erages over 50 events, with the corresponding dispersions.
We compare the average distributions with the distributions
computed starting from the averaged IC like the one shown
in Figs. 1 and 2 (right), represented by dashed lines here.
Here, we took Tfo = 140 MeV. The data points are shown
for comparison [62].
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Figure 16. Rapidity distributions as indicated, with Tfo =
140 MeV. The solid lines represent the averages over the fluctuat-
ing distributions (with dispersions), whereas the dashed lines are
results with the averaged initial conditions. The data are from
NA49 [62].

As is seen in this Figure, the rapidity distributions show
large fluctuations from event to event and, although simi-
lar, there is a non-negligible difference between the average
distributions and the ones obtained from the average IC, es-
pecially in the case of negative particles, constituted mostly
of pions. For the same average initial energy, the multiplic-
ity decreases about 6 ∼ 7% if fluctuations exist, confirming
what we showed in Sec. 2. Finally, the data points in Fig. 16
are closer to the averaged distribution over fluctuating IC.
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Figure 17. Centrality dependence of rapidity distributions, for
Pb + Pb collisions at

√
s = 17.3 A GeV (SPS). Here, “with fluc-

tuation” (the solid lines) means results with NeXuS fluctuating IC
and “without fluctuation” (dashed lines) those with the averaged
IC.

What happens with other centralities is similar as seen
in Figs. 17 and 18. Some differences are: i) as the collisions
become more peripheral, naturally the dispersions increase;
ii) the differences between the average distributions and the
ones produced by average IC seems to decrease.

In Fig. 19, we show the corresponding mT dis-
tributions, for the most central Pb + Pb collisions at√

s = 17.3 A GeV. One can see that apparently the
fluctuation effects on the transverse-momentum spec-
tra are very small and the averaged spectra are in
good agreement with those computed with averaged
IC, and also with data. This smallness of the fluc-
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Figure 18. The same as the previous Figure, for less central events.

tuation effects on the transverse-momentum spectra is not in
contradiction with the large fluctuations we saw above of
rapidity distributions. In part this is due to the logarith-
mic scale used here. One can conclude, however, that the
IC fluctuations affect very little the slope of the mT spec-
tra. This conclusion is valid for other centralities, as seen in
Figs. 20 and 21, except for the most peripheral case, where
the dispersions are very large. If we look more carefully, we
can perceive some difference between the averaged spectra
and those computed with the averaged IC, which appears in
all the centralities, that is the tail of the averaged spectra is
more concave and the distributions become higher, probably
because the expansion is more violent in this case, due to the
high density spots in the IC.
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for Pb + Pb collisions at
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Figure 21. The same as the previous Figure, for less central events.

At RHIC energies the results are similar. In Fig. 22, we
show the pT distributions of charged particles in the most
central Au + Au collisions at 130A GeV, calculated both
with NeXuS fluctuating IC and with averaged IC. Like in the
case of Pb + Pb collisions at SPS, we used sudden freezeout,
but with lower freezeout temperature, Tfo = 128 MeV, the
same value used in [54] to fit the inverse slope parameter
of kaons, in the same collisions, as shown in Fig. 15 and
Table 1 of Section 5. As is seen, the fluctuation effects are
small in pT distribution, both curves agree each other and
with data, and the average over fluctuating events gives a
slightly more concave shape, just like in Pb + Pb collisions
at SPS.
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We show in Fig. 23, the pseudorapidity distribution of
charged particles in the most central Au + Au collisions at
130A GeV, calculated with NeXuS fluctuating IC and the
corresponding averaged IC, and compared with data [63].
Qualitatively, the behavior is similar to the case of Pb + Pb
collisions at SPS, namely the average η distribution is close
to the distribution with the averaged IC, being the latter
slightly higher than the former. The difference here is
smaller than at the lower energy case. Probably this is due
to the decrease of ∆Ei/ < E > in Eq. (9) as the incident
energy increases.

6.1.2 Elliptic-flow parameter v2

Let us turn to the elliptic-flow parameter v2 , defined as the
second Fourier coefficient of the azimuthal distribution [65]

dN

dφ
∝

(
1 + 2

∑
n

vn cos [n(φ− ψ)]

)
. (118)

Thus,
v2 =< cos [2(φ− ψ)] > , (119)

where the bracket denotes the average value and ψ gives the
event-dependent collision plane.

Usually, v2 parameter is interpreted as indicating a flow
asymmetry caused by the initial-condition asymmetry as-
sociated with the non-zero impact parameter. In this case,
as the produced matter in the collision is likely to be flat-
tened in the impact-parameter direction, the pressure gradi-
ent would be larger in this direction and so would be the
flow. However, as mentioned at the top of this section, it
was shown in Ref. [12] that, even for central collisions, fluc-
tuating IC develop azimuthally asymmetric flows, because
in this case there is no symmetry in each event and, experi-
mentally, the impact parameter cannot be determined unam-
biguously. So, one expects larger v2 for fluctuating IC as
compared to averaged IC case. Remark that the fluctuation
we are talking about is not the often discussed [65, 66] finite-
multiplicity fluctuation at the end of the process. In Fig. 24,
results of NeXuS+SPheRIO for v2 of pions produced in
Pb+Pb collisions at 17.3A GeV are shown, both with fluc-
tuating IC and averaged IC and compared with data [62].
Large discrepancy is seen between the two ways of calcu-
lating this parameter, and the data are closer to < v2 >,
calculated with fluctuating IC.
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Figure 24. Centrality dependence ov v2 for pions for Pb+Pb colli-
sions at SPS. The data are from NA49 [62].

6.1.3 Two-pion interferometry

As is well known, the identical-particle correlation, also
known as Hanbury-Brown-Twiss effect (HBT effect) [67] is
a powerful tool for probing geometrical sizes of the space-
time region from which they were emitted. If the source
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is static like a star, it is directly related to the spatial di-
mensions of the particle emission source. When applied
to a dynamical source, however, several non-trivial effects
appear [68, 69], reflecting its time evolution as happens in
high-energy heavy-ion collisions. Being so, the inclusion of
IC fluctuations may affect considerably the so-called HBT
radii, because, as discussed in Sec. 2, the IC in the event-
by-event base often show small high-density spots in the
energy distribution, and our expectation is that such spots
manifest themselves at the end when particles are emitted,
giving smaller HBT radii.

We shall discuss here only the recent application of
NeXuS+SPheRIO code for HBT effect with IC fluctuations,
for Au+Au collisions at 130A GeV [61]. A more detailed
account of two-particle correlations is given by Padula [70]
in a separate paper in this issue.

For studying the fluctuation effects of IC on HBT corre-
lation, first we assume Cooper-Frye sudden freezeout (FO)
at Tf.o. = 128 MeV. This freezeout temperature is the
same one previously found by studying the energy depen-
dence of kaon slope parameter T ∗ [54], discussed in Sub-
section 5.2 and appears in Table 1. We showed in Sub-
section 6.1.1 that indeed this choice of Tf.o. reproduces the
charged pT -distribution data (including pions) at 130A GeV,
both with averaged and fluctuating IC. We also neglect the
resonance decays. It is argued [71] that, since resonance de-
cays contribute to the correlations with very small q values
(q <∼ qmin , where qmin is the minimum measureable q), the
experimentally determined HBT radii are essentially due to
the direct pions. Then the two-particle correlation function
is expressed in terms of the distribution function f(x, p) as

C2(q, P ) = 1 +
|I(q, P )|2

I(0, p1)I(0, p2)
(120)

where P = (p1 + p2)/2 and q = (p1 − p2) and pi is the
momentum of the ith pion. Usually

I(q, P ) ≡ 〈a+
p1

ap2〉 =
∫

Tf.o.

dσµPµf(x, P )eiqx. (121)

In SPH representation, we write I(q, P ) as

I(q, P ) =
∑

j

νjnjµPµ

sj |njµuµ
j |

eiqµxµ
j f(ujµPµ) , (122)

where the sumation is over all the SPH particles. In
the Cooper-Frye freezeout, these particles should be taken
where they cross the hyper-surface T = Tf.o. and njµ is
the normal to this hyper-surface. Notice that, if we put
p1 = p2 = P , so that q = 0, Eqs. 121 and 122 are reduced,
respectively, to Eqs. 110 and 111, that is, to the inclusive
one-particle distribution.
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In Fig. 25, we compare the correlation function C2 av-
eraged over 15 fluctuating events with those computed start-
ing from the averaged IC (so, without fluctuations). One can
see that the IC fluctuations are reflected in large fluctuations
also in the HBT correlations. When averaged, the resulting
correlation < C2 > are broader than those computed with
averaged IC, so giving smaller radii as expected. Also the
shape of the correlation functions changes.

We plot the mT dependence of HBT radii, with Gaussian
fit of C2 , in Fig. 26, together with RHIC data [72, 73] and
results with CE, which will be discussed in Sec. 6.2.2. It
is seen that the smooth IC with sudden FO makes the mT

dependence of Ro flat or even increasing, which is in agree-
ment with other hydro calculations [8] but in conflict with
the data. The fluctuating IC make the radii smaller, espe-
cially in the case of Ro , however without changing the mT -
dependence.

6.2 Effects of continuous emission
As discussed in Sec. 5, it is more likely that the decoupling
occurs not suddenly, but continuously from every point of
the fluid and at every instant of time, according to some es-
caping probability P(x, p) given by Eq. (114). There are
several nice predictions of the Continuous Emission Model
(CEM) as discussed in [58]. However, although more real-
istic, this description is not handy because, P depends on
the momentum of the escaping particle and, moreover, on
the future of the fluid as seen in Eq. (114). In order to make
the computation practicable, in [61] we first took P on the
average, i.e.,

P(x, p) ⇒< P(x, p) >≡ P(x) .

Then, approximated linearly the density

ρ(x′) = αs(x′)
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(where, for example in the ideal massless pion gas case,
α = (45 ζ(3))/2π4 = .278) in the integral of Eq. (114).
Thus,

P(x, p) ⇒ P(x) = exp
(
−κ

s2

|ds/dτ |
)

, (123)

where < σv > has been included in κ = 0.5 α < σv >.
Although approximately, now we can compute P in each
space-time point.

In Fig. 27, we show the time evolution of the escap-
ing probability P(x) given by Eq.(123) in the mid-rapidity
plane for the most central Au+Au collisions at 130 A GeV.
The IC have been computed at τ = 1 fm and averaged over
30 NeXuS events. Here and in the computations of observ-
ables below, the parameter κ has been estimated to be .3,
corresponding to < σv >= 2 fm2 in the zero temperature
limit and some 20% larger at T = mπ . As seen, the prob-
ability remains 0.1 < P(x) < 0.8 in a quite large domain,
especially for τ > 10 fm, indicating that both the emission
zone and duration are expected to be large, in opposition
to the standard sudden freezeout case. For comparison, we
show also the temperature distribution in Fig. 27, with some
isotherms.

To calculating the spectra, now Eq. (117) is translated
into SPH language, which is given by Eq. (111), but where
the sum is computed in the present case not over T = Tf.o.

hypersurface but picking out SPH particles according to

the probability P , given by Eq. (123) with the normal njµ

pointing to the 4-gradient of P . Since our procedure fa-
vors emission from fast outgoing SPH “particles”, because
ρ decreases faster there and so does s in this case making P
larger, we believe that the main feature of CEM is preserved
in our approximation.
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Figure 27. Upper panel: Probability distribution as given by
eq.(123) for the most central Au+Au collisions at 130 A GeV, in
the mid-rapidity plane for averaged IC. Lower panel: Correspond-
ing temperature distribution.

6.2.1 mT distributions

In Fig. 28, we show the charged mT distribution at mid-
rapidity in the most central Au + Au collisions at 130A
GeV, computed by using CEM, with and without fluctua-
tions. Compare this figure with Fig. 22, where the same
data are compared with calculations using sudden freeze-
out. One sees that, although the emission mechanisms are
quite different, the results are similar, for the choice of the
parameters, Tfo in one case and κ in the other. However,
the origins of the spectrum shape are different. Whereas, in
the freezeout case, all the particles are emitted at the same
temperature Tfo and the concave shape of the spectra is due
to different transverse velocities of the fluid at different in-
stants of time, in the continuous emission case, the large-pT

particles are in general emitted earlier and at higher temper-
ature, the small-pT particles are emitted later, when the fluid
is cooler.
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6.2.2 Two-pion interferometry

Let us now consider the effect of continuous emission on
HBT effect. Since HBT is sensitive to the space-time geom-
etry of the fluid, and CEM produces important modification
of the emission zone, we expect considerable changes in
the so-called HBT radii. As mentioned above, according
to this picture, the large-pT particles are mainly emitted at
early times when the fluid is hot and mostly from its surface,
whereas the small-pT components are emitted later when the
fluid is cooler and from larger spatial domain.

In [74], we considered this effect, using the boost-
invariant solution [30], and showed that whereas the so-
called side radius is independent of the average pT , the out
radius decreases with < pT >, because of the reason men-
tioned above. This behavior is expected to essentially re-
main in the general 3-dimensional expansion, described by
SPheRIO code.

To compute the correlation function C2(q, P ) in CEM,
we first rewrite the integral (121) as

I(q, P ) =
∫

σ0

dσµPµffree(x0, P )eiqx

+
∫

d4x ∂µ[Pµffree(x, P )]eiqx, (124)

which is similar to Eq. (117). Then, translate it into SPH
language by using Eq. (122), but with the sum evaluated by
picking out SPH particles according to the probability P ,
given by Eq. (123) with the normal njµ pointing to the 4-
gradient ofP , exactly in the same way as done in calculating
the inclusive spectrum.

We plot in Fig. 26, some results for the mT dependence
of HBT radii computed in this way, both with fluctuating IC
and averaged IC, for Au + Au collisions at 130A GeV. For
comparison, we show also the results with sudden freezeout
and data [72, 73]. Comparing the averaged IC case (with
CEM (CE1)), with the corresponding freezeout (FO1), one
sees that, while RL remains essentially the same, Rs de-
creases faster and as for Ro , it decreases now inverting its
mT behavior.

In Fig. 26, one can also see the combined effect of fluc-
tuating initial conditions together with continuous emission
(curve CE2). All the radii are smaller than CE1, with aver-
aged IC (but using CEM), as happend in the sudden freeze-
out case. The agreement with data is excelent both for RL

and Rs , and improved considerably the results for Ro with
respect to the usual hydrodynamic description.

7 Conclusions and Outlook
In this survey, we discussed on several aspects of applica-
tions of hydrodynamic model to nucleus-nucleus collisons,
giving especial emphases on i) method of solving the hydro-
dynamic equations for arbitrary configurations; ii) account-
ing for the probable event-by-event fluctuations of the initial
conditions; and iii) the decoupling criteria for obtaining the
observables.

The Smoothed-Particle Hydrodynamic approach, using
a special hyperbolic coordinate system, is particularly in-
teresting tool for describing rapidly expandig matter as that
in high-energy nucleus-nucleus collisons, because of its ef-
ficiency and flexibility, as demonstrated through examples
considered in Sec. 4.3.5, 4.3.6 and through applications,
shown in Sec. 6, where the systems, in general, do not
present any symmetry.

The initial conditions for hydrodynamic expansion of
matter formed in relativistic heavy-ion collisions are likely
neither smooth nor symmetrical, because of small size of
these systems. This property has also been shown by some
event generators, which take the microscopic dynamics into
account. The fluctuations in the initial conditions may pro-
duce large discrepancies in the computed results for some
observables, in comparison with those obtained with the
usual averaged, smooth and symmetrical initial conditions.
So, it is our opinion that, to extracting correct information
from certain experimental data, the inclusion of the fluctua-
tions mentioned above is mandatory.

We find that, although Cooper-Frye formula can give
good results in many cases, a more realistic decoupling de-
scription is needed for obtaining many other observables. A
description we proposed is the Continuous Emission Model.
One typical example we showed here, in which this model
improve considerably the description of data is the mT de-
pendence of HBT radii, observed at RHIC.

In addition to the points summarized above, there are
several basic questions to be addressed in the hydrodynam-
ical scenary. First of all, although for the bulk properties
of observables so far studied the ideal hydrodynamical de-
scription works fairly well, we still do not know how the
non-equilibrium processes affect the results of these stud-
ies. This question refers both to the initial conditions and
to the final particle decoupling process. For example, the
present study of continuous emission showed that the real
particle emission mechanism seems to be very far from the
conventional Cooper-Frye scenary of sharp freeze-out sur-
face. In Fig. 27, we showed that the escape probability P
varies rather slowly both in space and time, and there is no
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indication of a sharp freezeout hypersurface. Another way
of showing the same is given in Fig. 29, where we plotted the
entropy vs. temperature of the SPH particles at the emission
point. The temperature values corresponding to the particle
emission spread widely. This shows that, even for a large
system (Au+Au) there exists a substantial part of the sys-
tem which remains out of equilibrium for a long time. Up to
now, no dynamical reaction of these non-equilibrium com-
ponents on the hydrodynamical evolution is studied. In this
sense, it is very important to develop transport theoretical
investigations [75, 76] related to hydro description.
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Figure 29. The entropy liberated vs. temperature of SPH particles
at the decoupling point. The freeze-out temperature Tfo used in
the studies above is also shown.

Another interesting type of phenomena related to the hy-
drodynamical model is the ocurrence of instabilities associ-
ated to the phase transition and surface tension (finite-size
effects), such as spinodal instabilities [77]. Some studies in
this direction is in progress.
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Weiner, and G. Wilk Phys. Rev. C 40, 1219 (1989); See also
F.S. Navarra, Braz. J. Phys. 35, 3 (2005).

[11] I.M. Khalatnikov, Zh. Eksp. Teor. Fiz. 27, 529 (1954); see
also [1].

[12] M. Gyulassy, D.H. Rischke, and B. Zhang, Nucl. Phys.
A613, 397 (1997).

[13] B.R. Schlei and D. Strotman, Phys. Rev. C59, 9 (1999).

[14] C. Nonaka, E. Honda, and S. Muroya, Eur. J. Phys. C17, 663
(2000).

[15] H.J. Drescher, F.M. Liu, S. Ostapchenko, T. Pierog, and K.
Werner, Phys. Rev. C65, 054902 (2002).

[16] V.K. Magas, L.P. Csernai, and D. Strottman, Phys. Rev. C64,
014901 (2001).

[17] K.J. Eskola, P.V. Ruuskanen, S.S. Räsänen, and K. Tuomi-
nen, Nucl. Phys. A 696, 715 (2001).

[18] T. Hirano and Y. Nara, nucl-th/0403029.

[19] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, second ed.
Butterworth-Heinemann Ltd. Oxford (U.K.).

[20] J. Berges, S. Borsanyi and C. Wetterich, hep-ph/0403234.

[21] T. Kodama, H.T. Elze, C.E. Aguiar, and T. Koide, cond-
mat/0406732.

[22] T. Kodama, Introduction to Relativistic Gases, in AIP Conf.
Proc. 631, 3 (2003).

[23] See for example, P. Braun-Munzinger, K. Redlich and J.
Stachel, nucl-th/0304013.

[24] E. Beth and G.E. Uhlenbeck, Physica 3, 729 (1936).

[25] R. Dashen, S. Ma, and H. Bernstein, Phys. Rev. 187, 345
(1969).

[26] D.H. Rischke, M.I. Gorenstein, H. Stöcker, and W. Greiner,
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