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Computer simulations of partial differential equations of mathematical physics typically lead to some kind of
high-dimensional dynamical system. When there is chaotic behavior we are faced with fundamental dynamical
difficulties. We choose as a paradigm of such high-dimensional system a kicked double rotor. This system is
investigated for parameter values at which it is strongly non-hyperbolic through a mechanism called unstable
dimension variability, through which there are periodic orbits embedded in a chaotic attractor with different
numbers of unstable directions. Our numerical investigation is primarily based on the analysis of the finite-time
Lyapunov exponents, which gives us useful hints about the onset and evolution of unstable dimension variability
for the double rotor map, as a system parameter (the forcing amplitude) is varied.

1 Introduction

Computer simulations of partial differential equations are a
main tool in the hands of physicists, playing an increasingly
important role in their formation [1]. There are plenty of
physical problems where computer simulations have an out-
standing position, like in the study of turbulence in fluids
and plasmas [2], percolation [3], statistical mechanics [4],
and molecular dynamics [5], just to cite a few. Many nu-
merical methods for numerical solution of partial differen-
tial equations rely on some form of discretization of space
and/or time, such that those methods boil down to a system
of coupled ordinary differential equations or coupled maps,
in the case of a continuous or discrete time variable, respec-
tively [6].

Nonlinear dynamical systems, including many par-
tial differential equations of physical interest, commonly
present chaotic motion, i.e. extreme sensitivity to initial
conditions [7]. Since there are unavoidable errors inherent
to the process of discretizing a partial differential equation,
besides the usual one-step integration errors, the computer
simulation of such equations may lead to fundamental dy-
namical difficulties. One of the aims of the present paper is
to present the basic ideas and results underlying the study
of the dynamical problems related to high-dimensional sys-

tems undergoing chaotic motion.
We will choose as a paradigm of a high-dimensional dy-

namical system a mechanical system consisting of a double
rotor subjected to periodic impulsive excitation, in which
we adress the most severe of those dynamical difficulties,
the so-called unstable dimension variability [8]. The ap-
proach we choose to investigate the onset, evolution and ef-
fects of unstable dimension variability in dynamical system
is to consider the behavior of their numerically computed
finite-time Lyapunov exponents.

Finite-time, or time-n, Lyapunov exponents are obtained
exactly in the same way as the usual exponents, but over
a finite time interval instead of the infinite-time limit al-
ways supposed in calculations [9]. Obviously, in practice
any computed exponent is a finite-time one, but here we are
concentrating in very small time intervals, in the n = 1 to
100 range. The usefulness of finite-time exponents result
from their interpretation as local expansion or contraction
rates of a given trajectory during a small interval of time
[10, 11]. Hence, it is particularly sensitive to dynamical
situations wherein the phase space presents a complicated
structure of invariant sets with different numbers of stable
and unstable directions.

This is the case, for example, of strongly non-hyperbolic
dynamical systems presenting unstable dimension variabil-
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ity, which is characterized by the simultaneous occurrence,
within the same invariant chaotic set, of unstable periodic
orbits with a different number of unstable eigendirections
[12]. It turns out that, as a typical chaotic trajectory wan-
ders through the invariant set, it experiences alternate con-
tractions and expansions with respect to the eigendirection
which varies from point to point in the set. This is reflected
in a fluctuating behaviour (around zero) of the correspond-
ing finite-time Lyapunov exponent, since it is the local ex-
pansion rate for that eigendirection.

We remark that there are severe consequences of un-
stable dimension variability on the validity of numerically
generated trajectories (which have small yet unavoidable
one-step errors), since they fail to be shadowed by fiducial
chaotic trajectories for a sufficiently large timespan [13]. In
cases where a physical system is found to present unstable
dimension variability we are thus able to closely follow a
computer-generated trajectory for a time so short that it can-
not be taken individually as a faithful representation of the
actual dynamical behavior we are investigating [14]. Even
statistical averages computed with help of non-shadowable
chaotic trajectories may be doubtful since tiny errors may be
largely amplified by system dynamics [15].

Unstable dimension variability was first described in a
dynamical system of physical interest, a periodically kicked
double rotor [16], and later on it was recognized that a fin-
gerprint of unstable dimension variability, when it occurs at
all, is the fluctuating behavior (around zero) of the finite-
time Lyapunov exponent closest to zero [17]. It must be
stressed, however, that it may happen that such exponents
may fluctuate in such way without being a clearcut charac-
terization of unstable dimension variability, since this fluc-
tuations can come from other sources of non-hyperbolic be-
havior [18]. Hence, the onset and evolution of unstable di-
mension variability should be also sought for in the stability
analysis of unstable periodic orbits embedded in the invari-
ant chaotic set, and which support the ergodic measure of
the orbits whose initial conditions lie in that set.

Nevertheless, the analysis of finite-time Lyapunov expo-
nents has been proved to be very useful to give numerical
insights on the onset and evolution of unstable dimension
variability, especially in high-dimensional dynamical sys-
tems (like coupled oscillator and map lattices), where un-
stable dimension variability has been found to be very com-
mon [19]. The purpose of this paper is to investigate the
onset and evolution of unstable dimension variability in the
kicked double rotor map, as one system parameter (the forc-
ing amplitude) is varied. We will base our analysis on the be-
havior of the finite-time Lyapunov exponents, as well as on
the stability analysis, whenever it is possible due to the high-
dimensionality of the system, of the relevant low-period un-
stable orbits. Two basic issues are highlighted through this
work: the onset of unstable dimension variability, which we
conjecture to coincide with the onset of chaotic behavior it-
self; and the point where unstable dimension variability is
most intense, namely, when occurs a codimension-one bi-
furcation within the chaotic set.

The rest of this paper is organized as follows: Section II
presents the kicked double rotor system and the correspond-

ing map equations, as well as some aspects of its chaotic
dynamics. Section III discusses the onset and evolution of
unstable dimension variability, when a system parameter is
varied. The last section contains our conclusions.

2 Kicked double rotor map
The kicked double rotor system consists of two rods of neg-
ligible mass and of lengths `1 and `2, respectively (Fig. 1).
The former rod, which has a point mass m1 attached to one
of its ends, is pivoted at the point P1, and its angular po-
sition θ1 ∈ [0, 2π) is measured with respect to a reference
line. The latter rod, with length 2`2, is pivoted at its mid-
point P2 and has two point masses m2/2 attached to its free
ends. The corresponding angular position, θ2, is measured
with respect to a line parallel to the first reference line. We
do not consider any gravity effects on this system (for ex-
ample, it can move on a horizontal plane without friction).

An impulsive force

f(t) = f0

∞∑

k=1

δ(t− kT ), (1)

with amplitude f0 ≥ 0 and period T , is applied at one of
the free ends, in a direction parallel to the reference line (cf.
Fig. 1). Dissipation in this system occurs at the pivoting
points P1 and P2 by means of viscous frictional forces. The
friction at P1, with damping coefficient ν1 > 0, slows down
the first rod at a rate proportional to its angular velocity θ̇1.
The friction at the other pivot, P2, slows down the second
rod (but accelerates the first one) according to the relative
angular velocities θ̇2− θ̇1, with damping coefficient ν2 > 0.
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Figure 1. Sketch of a kicked double rotor.

We introduce the following discretized dynamical vari-
ables:

Xn =
(

(x1)n

(x2)n

)
= lim

ε→0

(
θ1(nT + ε)
θ2(nT + ε)

)
(2)

representing the angular positions of the rotor rods just af-
ter the n-th impulsive kick, i.e., at discrete times t = nT
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(n = 0, 1, 2, · · · ), T being the period of the delta-function
excitation; and

Yn =
(

(y1)n

(y2)n

)
= lim

ε→0

(
θ̇1(nT + ε)
θ̇2(nT + ε)

)
(3)

being the corresponding discretized angular velocities.
Given the angular positions and velocities at time n, one

can obtain the corresponding variables at the next instant
n + 1 by using the following map (further details on the ob-
tention of this map can be found in Ref. [16]):

Xn+1 = MYn + Xn (4)
Yn+1 = LYn + G(Xn+1) (5)

where the nonlinear functions are

G(X) =
(

(f0`1/I) sin x1

(f0`2/I) sin x2

)
, (6)

and I = (m1 + m2)`21 = m2`
2
2 is the moment of inertia of

the rotor.
The 2× 2 constant matrices L and M are such that

L = I2 + AνM, (7)

where I2 is the identity matrix, and

Aν =
( −(ν1 + ν2) ν2

ν2 −ν2

)
, (8)

with

M =
2∑

j=1

Wj
exp (sjT )− 1

sj
, (9)

where
s1,2 = −1

2
(ν1 + 2ν2 ±∆) , (10)

are the eigenvalues of Aν , with ∆ ≡
√

ν2
1 + 4ν2

2 , and we
have defined the following matrices

W1 =
(

a b
b d

)
, W2 =

(
d −b
−b a

)
, (11)

with constant entries

a ≡ 1
2

(
1 +

ν1

∆

)
, d ≡ 1

2

(
1− ν1

∆

)
, b ≡ −ν2

∆
. (12)

In the following, we simplify matters, without loss of
generality, by taking convenient numerical values for the
physical magnitudes involved:

`1 = 1/
√

2, ν1 = ν2 = T = I = m1 = m2 = `2 = 1,

such that

L =
(

0.2414 0.2726
0.2726 0.514

)
, M =

(
0.4860 0.2133
0.2133 0.6993

)
.

(13)
As already mentioned, the control parameter to be varied is
the driving amplitude f0.

The dynamics of the kicked double rotor map (KDRM)
is structured on their fixed points and periodic orbits. Due
to the yi → −yi symmetry of the kicked double rotor map
it turns out that the plane y1 = y2 = 0 is an invariant sub-
space of the system, embedded in its four-dimensional phase
space. Any initial conditions belonging to this plane will
generate orbits which cannot escape from it as time evolves.
Hence, at least some of the fixed points of the map, given by

X∗ = MY∗ + X∗(mod2π) (14)
Y∗ = LY∗ + G(X∗) (15)

must lie on this invariant subspace. The solutions of the
above equations can be classified in one-parameter families
[16]

X∗ =

(
x

(n1,n2,q)
1∗

x
(n1,n2,q)
2∗

)
Y∗ =

(
y
(n1,n2)
1∗

y
(n1,n2)
2∗

)
(16)

where (n1, n2) are integer rotation numbers, and q =
1, 2, 3, 4. In fact, four of these fixed points (X∗,Y∗) lie
on the y1 = y2 = 0 plane. We will analyze particularly
the fixed point with n1 = n2 = 0 and p = 4, called
P = (x∗1 = π, x∗2 = π, y∗1 = 0, y∗2 = 0).

A representative part of the bifurcation diagram for the
kicked double rotor map is depicted in Fig. 2, where one
of the dynamical variables, namely the angular position of
the second rod, x2, is plotted versus the kick strength f0 in
the interval [4.0, 7.0]. For small values of f0 we observe the
stable fixed point, P , which undergoes a period doubling
bifurcation at f0 ≈ 4.27 producing a stable period-2 orbit.
The latter is followed, for higher forcing amplitudes, by a
period-doubling cascade leading to chaos for f0 ≈ 6.75.
The chaotic bands merge together and eventually fuse them-
selves into a single large chaotic band, at f0 ≈ 6.85 due
to a crisis triggered by the collision of the two-band chaotic
attractor with some unstable orbit.
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Figure 2. Bifurcation diagram of x2 versus the control parameter
f0 ∈ [4.0, 7.0].

Besides this main structure, we observe in Fig. 2, just
after f0 = 5.2, a coexisting periodic orbit born through
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a saddle-node bifurcation (i.e., there is also a companion
unstable periodic orbit). This orbit undergoes a period-
doubling cascade (not shown in the figure due to insufficient
graphical resolution) leading to a chaotic motion suddenly
interrupted at f0 ≈ 5.4 due to a crisis (caused by the col-
lision between the chaotic attractor and the unstable orbit
created at the saddle-node bifurcation). Another coexisting
periodic orbit appears and disappears in the narrow interval
[6.2, 6.3].

3 Unstable dimension variability in
the kicked double rotor map

To introduce the key question to be discussed in this pa-
per, let us make a simple numerical experiment with the
kicked double rotor map: we choose a given value of the
control parameter and an initial condition for which the map
is known to generate a chaotic orbit. Next we iterate the
map for a given number of times, using both single and
double precision (see Fig. 3). It is seen that, after no more
than 18 map iterates, the resulting orbits are far apart by a
distance comparable to the length scale used of that phase
space region. Since the only difference between these tra-
jectories (∼ 10−8) has been the truncation furnished by
the computer arithmetics we have chosen, one could under-
standably regard both orbits as equally suspicious, because
a third and different trajectory would result from using an-
other (e.g., quadruple) numerical precision. As this problem
is not likely to end with an ever increased arithmetical pre-
cision, one could ask whether or not should we trust those
computer-generated orbits?
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Figure 3. Projection, on the (x1, x2) plane, of the phase points of
two chaotic trajectories arising from the same indicated initial con-
dition (5.5, 5.7, 0.0, 0.0) and iterated 18 times using single and
double precision, for the KDRM (f0 = 7.5).

This is obviously nothing but a consequence of the
chaotic nature of the orbits. Consider that, for the value

of control parameter used in plotting Fig. 3, the maximal
Lyapunov exponent of the KDRM is λ1 ≈ 1.1 [16]. The
phase-space distance between the single and double preci-
sion trajectories after one iterate, which is of the order 10−8,
grows exponentially as the time n increases at a rate equal
to the maximal Lyapunov exponent; in that way, the number
of iterations for which the distance increases to a number of
order 1 is

1
λ1

ln
(

1
10−8

)
∼ 17,

in accordance with the result illustrated by Fig. 3.

In spite of this, it is far from trivial to get the answer to
the question about whether or not those computer-generated
chaotic orbits are meaningful. In fact, the efforts to come
to a comprehensive understanding of such problems have
stimulated a branch of pure mathematics called “shadowing
theory” [13]. There has been proved that only hyperbolic
systems are shadowed by an arbitrarily large (in fact, infi-
nite) timespan [20, 21]. When the dynamics fail to be hy-
perbolic due to glitches caused by near-tangencies between
stable and unstable manifolds of an unstable orbit, it can
still be argued that shadowing is possible during a timespan
of the order δ−1/2, where δ is the magnitude of the one-step
errors commited during numerical computation of that orbit
[22]. If the system is non-hyperbolic due to unstable dimen-
sion variability, however, the shadowing time depends on the
statistical properties of the finite-time Lyapunov exponents,
and may be so short that no useful prediction can come from
single chaotic trajectories [15].

In order to investigate the onset and evolution of unsta-
ble dimension variability in the kicked double rotor map,
we will focus on the first representative chaotic attractor of
the double rotor, which appears at f0 ≈ 6.75 [see Fig. 2],
where the maximal Lyapunov exponent λ1 crosses zero and
becomes positive [16]. Exception being made to periodic

windows, such as those occurring at 7.0 <∼ f0
<∼ 7.2 and

around 8.2, the exponent λ1 is almost always positive indi-
cating a reasonably steady chaotic dynamics for the system.
As the forcing amplitude is further increased, it turns out that
the second Lyapunov exponent, λ2, builds up monotonically
and crosses zero at f∗0 = 8.1104126. This is recognized as
the onset of hyper-chaos in the system, since there is more
than one positive exponent. The unstable fixed point P is
embedded in this chaotic attractor.

Computing the eigenvalue ξ2 (the closest to unity in ab-
solute value), of the linearized map for the fixed point P ,

there results that, when f0
<∼ f∗0 = 8.1104126, P possesses

three stable and one unstable direction, hence ds(P) = 3
and du(P) = 1. Evaluating the eigenvalue ξ2 in the neigh-
borhood of the hyper-chaotic transition point f∗0 (Fig. 4),

there occurs a period-doubling bifurcation. For f0
>∼ f∗0

the fixed point P acquires two stable and two unstable di-
rections, i.e., its unstable dimension becomes du(P) = 2.
Moreover, there is an infinite number of pre-images of P ,
embedded in the chaotic attractor of the system, but this set
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does not contain all points belonging to the attractor. In ad-
dition to this set of periodic orbits with du = 2, there re-
mains an infinite number of other periodic orbits that con-
tinue to have unstable dimension du = 1. Since these sets
are densely intertwined in the attractor, a typical chaotic tra-
jectory will approach points with one or two unstable direc-
tions.
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Figure 4. Eigenvalue of the Jacobian matrix of the KDRM as a
function of the control parameter f0 near the emergence of hyper-
chaos.

This is a direct evidence that unstable dimension vari-
ability occurs for the chaotic attractor of the double rotor

when f0
>∼ f∗0 . However, as we will see in the next section,

the onset of unstable dimension variability occurs before f∗0 .
This is because there may occur variations on the unstable
dimension of other fixed points or periodic orbits embedded
in the chaotic attractor, before this happens for this selected
fixed point P . The problems with shadowability of numer-
ical trajectories, in this case, follow from this complicated
mixture of high-dimensional saddles and repellers. Con-
sider a hyper-sphere in the four-dimensional phase space
filled with initial conditions, whose evolution according to
the double rotor map, generates “true”, or fiducial chaotic
trajectories. When this sphere approaches a given saddle
(du = 1), it will shrink along three stable directions and
elongate along one unstable direction, becoming a cigar-like
tube centered at the saddle (Fig. 5) [23].

A numerically generated, or pseudo-trajectory A, will be
contained inside this cigar-like tube of radius δ (δ being the
one-step error level commited during numerical iteration of
the map), and this tube will also contain a true orbit B which
will shadow A, since their pointwise distance is bounded by
δ . After a further number of iterations, the cigar-like tube
will approach a repeller (du = 2) and will rapidly expand
along the extra unstable direction. In this case, the pointwise

distance between A and B will be no longer bounded and in-
creases exponentially along the new unstable dimension. As
a consequence, A will be no longer shadowed by B, for they
diverge exponentially with time. Since the sets of saddles
and repellers are dense in the chaotic attractor, the time dur-
ing which we preserve shadowing may be extremely short.

repeller (d = 2)δ

A B

A B

saddle (d = 1)
u

u

Figure 5. Schematic illustration of the evolution of a cigar-like tube
of trajectories (which cross-section in the page plane is a circle) in
presence of unstable dimension variability. The direction perpen-
dicular to the page is repulsive.

These observations about expansion and contraction of
phase space volumes can be made more quantitative by
introducing the corresponding finite time Lyapunov expo-
nents. Let f(x) be a d-dimensional map, where n is a pos-
itive integer, such that Dfn(x0) is the Jacobian matrix of
the n-times iterated map, with entries evaluated at the initial
condition x0. Suppose that the singular values of Dfn(x0)
are ordered: ξ1(x0, n) ≥ ξ2(x0, n) . . . ≥ ξn(x0, n). Then,
the k-th time-n Lyapunov exponent for the point x0 is de-
fined as [24]

λk(x0, n) =
1
n

ln ||Dfn(x0).vk||, (17)

where vk is the eigenvector corresponding to ξk(x0, n).
The infinite time-limit of the above expression is the

usual Lyapunov exponent

λk(∞) = lim
n→∞

λk(x0, n) (18)

Although the time-n exponent λk(x0, n) generally takes on
a different value, depending on the point we choose, the in-
finite time limit takes on the same value for almost all x0

with respect to the natural ergodic measure of the invariant
set. For the kicked double rotor map there are four time-n
exponents, ordered as λ1(n) > λ2(n) > λ3(n) > λ4(n),
but we will be interested only in the closest to zero, which
in this case turns out to be λ2(n).

A numerical indication of unstable dimension variabil-
ity is the fluctuating behavior (around zero) of the time-n
Lyapunov exponent closest to zero [17]. This follows from
the fact that there are unstable points with different unsta-
ble dimensions, such that a typical trajectory on the chaotic
(or hyper-chaotic) attractor will visit neighborhoods of ra-
dius ε of saddles and repellers in the attractor for any ε, no
matter how small. This means that there are time-n seg-
ments for which the trajectory is transversely attracting (on
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average) and others for which it is transversely repelling
(also on average). This is properly quantified by the time-n
Lyapunov exponent closest to zero λ2(n): when the trajec-
tory sections of duration n are such that there is an average
contraction (expansion) along its eigendirection, the corre-
sponding time-n exponent is negative (positive). Hence, if
the chaotic invariant set displays unstable dimension vari-
ability, there will be length-n sections of a typical trajectory
for which λ2(n) is positive, even when the infinite-time ex-
ponent λ2(∞) is negative. This suggests the use of a prob-
ability distribution P (λ2(n)), such that P (λ2(n))dλ2(n) is
the probability that the second time-n exponent lies between
λ2(n) and λ2(n) + dλ2(n).
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Figure 6. Probability distribution for the second finite-time Lya-
punov exponent, λ2(10), for the kicked double rotor map.

We can obtain a numerical approximation for this prob-
ability distribution, for the double rotor map, by means of a
histogram drawn on a large number of trajectories of length
n from randomly chosen initial conditions. In Fig. 6, we
show a few distributions of time-10 exponents, obtained for
different values of the forcing amplitude f0, chosen in a pa-
rameter interval roughly centered at the onset of hyper-chaos
(f∗0 ), the bell-shape of P (λ2(n)) being more evident as we
approach this point. The maxima of the distributions drift
towards positive values, as f0 varies in the vicinity of the
hyper-chaos transition f∗0 . Fig. 7 plots the average values
of the distributions of the time-10 exponents along the four
eigendirections, < λi(n) >, i = 1, 2, 3, 4. This figure is
very similar to the corresponding diagram for the infinite-
time Lyapunov exponents [16, 23]. In fact, for Gaussian
distributions it follows that [8]

〈λ2(x0, n)〉 =

∫ +∞
−∞ λ2(x0, n)P (λ2(x0, n))dλ2∫ +∞

−∞ P (λ2(x0, n))dλ2

= λ2(∞)

(19)

Figure 7 points out that the average time-n exponent
crosses zero at a constant rate in the neighborhood of the
hyper-chaos transition. Since the distributions depicted in
Fig. 6 have most of the λ2(n)-values in the [−1,+1] range,
there results a considerable distortion of these distributions,
with respect to a Gaussian shape. This is confirmed by
Fig. 8, which plots the variance σ2

n of the P (λ2(n)) dis-
tributions in the same range, showing a highly fluctuating
behavior before hyper-chaos, and a mostly smooth decrease
before it. In other dynamical systems for which unstable
dimension variability has been studied [25, 26], the distrib-
utions of the corresponding time-n exponent of interest, be-
sides being Gaussian-shaped, drift towards positive values
without noticeable distortion of shape.
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Figure 7. Average time-10 Lyapunov exponents for the kicked dou-
ble rotor map, as a function of the forcing amplitude.

A quantity of interest is the fraction of positive values of
λ2(n)

φ(n) =

∫∞
0

P (λ2(n))dλ2(n)∫ +∞
−∞ P (λ2(x0, n))dλ2

. (20)

We can obtain an approximate location for the onset of un-
stable dimension variability, as a system parameter is con-
tinuously varied, as the parameter value for which the frac-
tion φ(n) becomes nonzero. Fig. 9 depicts a numerical ap-
proximation of this fraction for the double rotor map, in-
dicating is apparently at a value f0 = (f0)C ≈ 6.8. The
second (infinite-time) Lyapunov exponent in the interval be-
tween 6.8 and 8.0 is negative [16], indicating that unsta-
ble dimension variability actually starts before the onset of
hyper-chaos.
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Figure 8. Variance of the second time-10 Lyapunov exponents for
the kicked double rotor map, as a function of the forcing ampli-
tude.
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Figure 9. Fraction of positive second time-10 Lyapunov exponents
for the kicked double rotor map, as a function of the forcing ampli-
tude.

The transition to hyper-chaos is identified in Fig. 9 with
a positive fraction of 50% of the exponents. In fact, Fig. 6
shows, for this value, a distribution with symmetric tails
whose maximum crosses the λ2(n) = 0 line. When half of
the time-n exponents are negative, given a certain value of
λ2(n) in modulus, say 0.2, there is an approximately equal
probability of this value be positive or negative. In other
words, the relative weight of local expansions or contrac-
tions is roughly the same, what is the worst situation when

one tries to obtain a “true” chaotic trajectory which shadows
a numerical one. This argument can be made more precise
by assigning these relative contributions of contractions and
expansions the weights of unstable periodic orbits with dif-
ferent unstable dimensions by computing the natural mea-
sure of the chaotic attractor [23, 8].

Hence, the onset of hyper-chaos does not coincide, in
general, with the onset of UDV, but the former is rather the
point at which the effect of UDV is of maximum strength.
This point marks also the blowout bifurcation, at which the
chaotic set as a whole loses transversal stability (the eigendi-
rection related to λ2, in the double rotor map) [27]. The
parameter interval between the onset of unstable dimension
variability and its maximum value ((f0)C < f0 < f∗0 for
the KDRM) is related to the bubbling phenomenon, when
the chaotic set is contained in an invariant subspace of the
system [28]. For f0 > f∗0 , according to Fig. 9, the fraction of
positive exponents continues to increase, and so the contrast
between negative and positive values. In this case, the ef-
fect of unstable dimension variability (for example, in terms
of the shadowability properties of chaotic trajectories) be-
comes progressively less pronounced, even though the two
higher infinite-time Lyapunov exponents increase in this re-
gion. Curiously, it appears that strongly hyper-chaotic tra-
jectories are best shadowed than those at the verge of the
hyper-chaos transition.

The above observations can be made more quantitative
by using the concept of shadowing time, defined as the time
interval τ during which a δ-pseudo-trajectory is shadowed
by a “true” one. Sauer and co-workers [14] have developed
a theoretical model of the pseudo-trajectory behavior in the
KDRM by considering a biased stochastic diffusion process
with a reflecting barrier, the latter playing the role of the
one-step errors of level δ which bound the noisy pseudo-
trajectory. They estimated an average shadowing time scal-
ing as power law, < τ >∼ δ−h, where it has been defined
the hyperbolicity exponent [15]

h ≡ 2 < λ2(n) >

σ2
1

(21)

in terms of the average and variance, respectively, of the dis-
tribution P (λ2(1)) of the time-1 Lyapunov exponent closest
to zero. The latter is related to the variance of the time-n
exponent by σ2

n = nσ2
1 .

In the vicinity of the blowout bifurcation point, where
< λ2(n) >≈ 0, the hyperbolicity exponent is nearly zero,
and the shadowing time can be so small as a few iterations
of the map, hence the effects unstable dimension variability
are indeed more intense at these points. As we move apart
from this point, the shadowing time increases in a nonuni-
form fashion due to the peculiar behavior of the average and
variance (see Figs. 7 and 8, respectively). Nevertheless, the
occurrence of unstable dimension variability yields values
of τ which are usually too small to give us confidence on
long-time averages made using computer generated trajec-
tories. Even extremely small errors propagate at an expo-
nential rate and plague any statistics made on the basis of
such chaotic trajectories [15].
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Figure 10. Average shadowing time for the kicked double rotor
map, as a function of the forcing amplitude. Bottom panel: magni-
fication of the interval for which unstable dimension variability is
most intense.

4 Conclusions
We have discussed in the last Section the issue of finding
“true” trajectories of a chaotic system which can shadow,
for a time long enough, a numerically generated pseudo-
trajectory of the same model. However, we can also think
of these two trajectories as coming from different models of
a same physical phenomenon. If the computer generated tra-
jectory is a δ-pseudo trajectory, it can also be regarded as a
“true” trajectory which stems from a slightly perturbed ver-
sion of the original model. This perturbation, or modeling
error, whose intensity is bounded by a number of the order
of δ, can come from different sources [29].

One possibility is that the trajectory to be shadowed
comes from a perturbed version of the model, resulting from
either: (i) a parameter imperfect determination; (ii) a small
change in the external influence on the model. In the KDRM
case, a perturbed version of the model can be due to (i) a
small change in the one of the masses or lengths; whereas
(ii) could stand for an experimental uncertainty related with
the determination of the forcing amplitude, for example.
The noisy trajectory is then due to a value of f0 determined
within an accuracy proportional to δ. Another possibility
(iii) is to regard the noisy trajectory as coming from a replica
of the KDRM which has been corrupted by an external noise
term bounded by δ (this excludes unbounded, e.g. Gaussian,
noise).

In both cases, the same concepts of shadowability ap-
plied to pairs of trajectories can be extended to pairs of mod-
els. One mathematical model A of a physical phenomenon
(like the KDRM) is then said to shadow the mathematical

model B, which turns to be a slightly perturbed version of
A, if the set of all possible outcomes (or trajectories coming
from typical initial conditions) from modelA agrees closely
with the set of all possible outcomes from modelA. In terms
of the ε-shadowing property of trajectories, this means that
for every trajectory of model A there exists at least one tra-
jectory of model B that ε-shadows the particular trajectory
of model A, and vice-versa.

As a consequence, UDV represents a serious obstacle
also for model shadowability, since there are trajectories
from one model, as A, that do not ε-shadow any trajectory
from the other one (B) for all but extremely short periods
of time. Considering that trajectories from both models do
not agree with each other in terms of shadowability, it is un-
likely that either A or B is a good model for the physical
phenomenon it intends to describe, like the kicked double
rotor, for no model trajectory shadows any true trajectory of
the actual physical system being investigated.

We stress that this uselessness of mathematical models is
not due to the inadequacy of the physical hypotheses used in
formulating the model, nor the incorrect application (for ex-
ample, out of the proper range) of the physical laws, not even
due to neglecting subtle but nevertheless key factors under-
lying a good modeling. Unstable dimension variability is a
mathematical pathology that hampers model shadowability,
and which is rather unavoidable, as long as the mechanical
system produces chaotic trajectories.

Hence, even though such a model was intended to de-
scribe a deterministic system, it will produce at best the
same kind of statistical information a stochastic system
would yield, as averages and fluctuations. We can call
mathematical models of chaotic systems displaying unsta-
ble dimension variability as pseudo-deterministic systems,
of which the kicked double rotor is a representative exam-
ple. Such systems may not display model shadowability in a
satisfactory degree for sets of parameter values, and should
be avoided when we are making predictions about the future
state of the system based on individual trajectories. In these
cases, one could resort to time-series analysis methods to
reconstruct the attractor from experimental data, like phase
space embedding using delay coordinates.
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