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Gravitational Waves: A 100-Year Tool Applied to the Dark Energy Problem
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Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies
have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called
dark energy constituent of the Universe. Determining the properties of dark energy is one of the most important
tasks of modern cosmology and this is the main motivation for this work. The analysis of cosmic gravitational
waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach
in the determination of parameters that may constrain the dark energy models and their consistence. In recent
work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of
gravitational waves was obtained. In the present work we have added a massless gas component to that model
and the new spectrum has been compared to the previous one. The Chaplygin gas is also used to simulate a
Λ-CDM model by means of a particular combination of parameters so that the Chaplygin gas and theΛ-CDM
models can be easily distinguished in the theoretical scenarios here established. We find that the models are
strongly degenerated in the range of frequencies studied. This degeneracy is in part expected since the models
must converge to each other when some particular combinations of parameters are considered.

I. INTRODUCTION

The wave-like solutions of the Einstein equations – the so-
called gravitational waves – are among the most outstanding
predictions of the general relativity and one can actually say
the gravitational radiation represents a new window, besides
its electromagnetic analog, to the astrophysical and cosmo-
logical observations. Due to the lack of direct detection one
cannot say this window is already open, but great efforts have
been done in order to overcome such difficulty and a large
amount of theoretical work (the present one included) has
been motivated by these good perspectives.

As soon as this new window is open, one could use the
gravitational wave signal to obtain extra information about the
very same problems up to now investigated only in the electro-
magnetic band and the aim of this work is to stablish weather
this potential tool could be applied to the trickiest problem of
modern cosmology: the dark energy.

A large number of dark energy candidate models have been
proposed since that the SNeIa [1–3] and CMB [4] experi-
ments revealed the accelerating expansion of the universe. In
order to explain the observational data all these models con-
sider an equation of state with negative pressure. Thecosmo-
logical constantmodels consider a simple equation of state,
p = −ρ, which however results a huge discrepancy with the
data [5]. Another class of models considers a scalar field,
calledquintessence[6], a third class assumes a perfect fluid
with a negative pressure which is proportional to the inverse
of the energy density, theChaplygin gas[7], and finally a forth
class, considers anX-fluid with an equation of statep = ωρ,
whereω is a negative constant, known as phantom energy
when| ω |> 1 [5].

Until the present the combined observations have been un-
able to determine the most appropriate description, but grav-
itational waves represent a potential tool that may – in near
future – offer additional constraints to the cosmological para-

meters and distinguish among the models.
In this paper, we study the spectrum of gravitational waves

due to the X-fluid model and compare the results with a pre-
vious work [8], where the cosmological constant and the gen-
eralized Chaplygin gas models were taken into account. In
section§II these models are described; in§III the GW equa-
tions are presented. The spectra analysis is left to§IV, which
is followed by the conclusions of this work.

II. OUTLINE OF THE MODEL

We consider a flat, homogeneous and isotropic universe
described by the Friedman-Robertson-Walker metric, which
makes the Einstein’s equations to assume the form
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wherea is the scale factor of the universe, whileρm andρde
are the pressureless fluid and the dark energy densities, re-
spectively. The pressurespm and pde of the fluids are re-
lated with their densities by the equations of statepm = 0,
and px = ωρx, with ω < 0 (in the case of an X-fluid) or
pc =−A/ρα

c , with A,α > 0 (in the case of the Chaplygin gas),
respectively. We take the scale factor today as the unity,a0 = 1
(the subscripts0, according to the current notation, indicate
the present values of the quantities) and rewrite the dark en-
ergy density for both cases as:
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With equations (3) and (4), we write the Einstein’s equations
in the form
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for the X-fluid case, and
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for the Chaplygin gas. The Hubble constantH0 is defined
asH0 = ȧ0/a and, once we are restricted to a flat universe,
the fractions of pressureless matter and dark energy gas today,
Ωm0 andΩde0, respectively, obey the relationΩm0 +Ωde0 = 1.

With these two last equations we are able to write the GW
amplitude differential equation as a function of the observable
parametersH0, a, Ωm0 andΩde0, and of the dark energy fluid
parameters:̄A, α or ω. It is also important to remark that
(i) if Ā = 0, then the Chaplygin gas behaves like the pres-
sureless fluid and the situation is the same as if we had set
Ωm0 = 1;
(ii) on the other hand, for̄A= 1 it behaves like the cosmolog-
ical constant and therefore, we recover theΛ-CDM scenario;
(iii) the X-fluid is equivalent to the cosmological constant for
ω =−1.

Taking into account the above remarks we use different sets
of parameters to compare three classes of models – cosmolog-
ical constant, X-fluid and generalized Chapligyn gas – and test
how they affect the evolution of the cosmic GW background.

III. GW EQUATIONS

Cosmological gravitational waves are obtained through lit-

tle perturbationshi j on the metric. Hence, the tensorg(0)
i j , re-

lated to the unperturbed metric, is replaced bygi j = g(0)
i j +hi j

and the resulting expression is [9] :
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wherek is the comoving wave number times the velocity of
light (k= 2πc/λ), the dots indicate time derivatives andh(t) is
defined as:hi j (~x, t) = h(t)Qi j , whereQi j are the eigenmodes
of the Lagrangian operator, such thatQii = ∂kQki = 0.

Proceeding with a variable transformation from time to the
scale factora, and representing the derivatives with respect to
a by primes, equation (9) assumes the form
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and, from the substitution of the background equations (7) and
(8), or (5) and (6), which concern to the dark energy fluid, into
(10), one can easily expressh in terms of the parameters of the
model.

A. Generalized Chaplygin gas

Let us perform the last operation mentioned above and, in
order to findh as a function of the redshiftz, let us (i) use
the known relations1+z= a0

a , a0 = 1; (ii) perform a second
change of variables (froma to z); and (iii) take back the dots
to indicate, from now on, the new integration variable. These
operations result in

ḧ +[
2

1+z
+

3
2
(1+z)2 f1

f2

]
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f1 = Ωm0 +Ωc0(1− Ā)(1+z)3α×
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where k is redefined to absorb the Hubble constant, i.e.,k =
2πc/H0λ and, therefore,h is a dimensionless quantitiy.

B. X-fluid

To obtain the equivalent equations for the X-fluid model,
we use the same procedure described above. The result may
be written in the same form as in (11), withf1 and f2 redefined
as:

f1 = Ωm0 +Ωx0(1+ω)(1+z)3ω , (14)

f2 = Ωm0(1+z)3 +Ωx0(1+z)3(ω+1) . (15)

One can easily notice that, ifω = −1 andĀ = 1, both cases
converge to the same equation and then reproduce theΛ-CDM
scenario.
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IV. GW SPECTRA ANALYSIS

The power spectrum of gravitational waves, defined as

P≡
(

dΩGW

d lnν

)1/2

= |h0(ν)|ν5/2 (16)

[whereh0(ν) = h(0) andν = H0k/2π], is generally obtained
from the solutions of (11) which are found by means of a nu-
merical algorithm specifically created for this problem. In the
particular case of theΛ-CDM model, an analytical result is
also possible and this fact is used to verify the accuracy of the
calculation.

For each of the cases of interest, we have assigned some
common parameters, namely the initial conditionsh(zi) =
ν−310−5, ḣ(zi) = ν−210−5, zi = 4000; the range of frequen-
cies 10−18Hz≤ ν ≤ 10−15Hz, which is a small part of the
range of observational interest for GW that goes up to1010Hz;
and the normalization constant imposed by the CMB [10]

dΩGW

d lnν

∣∣∣
10−18

≤ 10−10. (17)

The resulting spectra have all a similar behavior: they are
strongly oscillating, but with an increasing amplitude, as
indicated in the figures below.
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Figure 1. Comparison of GW spectra due to the Einstein-de Sitter (solid

line) model and the X-fluid model, withΩx0 = 0.7 andΩm0 = 0.3 (dashed

line). The latter is not sensitive to the parameterω.

¿From Figure 1 one can notice that the X-fluid class of
models is completely degenerated (dashed line), i.e., the mod-
els with cosmological constant (ω = −1), phantom energy
(ω <−1), and the intermediate cases (−1 < ω < 0) are indis-
tinguishable. It is worthwhile to remark however that the dark
energy component (70%of the total energy density) leads to a
faster-increasing spectrum compared to the Einstein-de Sitter
(Ωm0 = 1) case.

The spectra produced by the Chaplygin gas model is
represented in Figures 2 and 3, where two important features
are straightforward. The first is that this model plays the role
of a unified dark energy-matter fluid, since the curves with
Ωc0 = 0.7 andΩc0 = 0.97 (cf. Figure 2) are coincident.
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Figure 2. GW spectrum for the Chapligyn gas model withΩc0 = 0.7 (long

dashed line) andΩc0 = 0.97 (short dashed line) showing its behavior as a

unified dark energy-matter model.

The second is that the Chaplygin gas interpolates the
dust and cosmological constant fluids: the region allowed for
the curves due to this model is bounded by the cosmological
constant and the matter-only curves.
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Figure 3. Four models compared: de Sitter (thick solid line), Einstein-de

Sitter (thin solid line), Chapligyn gas withα = 1 andĀ = 0.5 (long-dashed

line) andΛ-CDM or Chapligyn gas with̄A = 1 (short dashed line).

Not so straightforward to interpret is the fact that a faster-
increasing spectrum is obtained here not with larger values of
dark-energy densities, but with larger values of the parameter
Ā. This means that the Chaplygin gas behaves like a mix-
ture of cosmological constant and matter: asĀ tends to unity,
the cosmological constant dominates de mixture and therefore
the spectrum tends to its upper bound; on the other hand, asĀ
tends to zero, the matter component dominates and the spec-
trum becomes similar to the Einstein-de Sitter one, which is
a fixed lower bound. The upper bound is not fixed though. It
can change with the variation of the density parameter and the
last upper boundary is fixed by the de Sitter curve (thick solid
line in Figure 3). The long-dashed line in Figure 3, for in-
stance, represents the case whereĀ = 0.5 and it lays between
theΛ-CDM (with Ωc0 = 0.7) and the Einstein-de Sitter lines
and, as we increasēA it tends to the short-dashed line, which
is the upper limit forΩc0 = 0.7.

Actually, since we (i) cannot distinguish betweenΛ and the
other X-CDM cases (as discussed above), and (ii) can easilly
reproduce the corresponding curve with an appropriate com-
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bination of the parameters̄A andΩc0, the Chaplygin gas and
the X-fluid models are partially degenerated.

A criterious reader must have noticed we said any word
about the parameterα. The reason for this silence is that no
dependence onα was found in our previous works [8, 11]
on this subject. The spectrum presents no significative differ-
ences for0≤ α≤ 1, in the frequency range studied.

V. CONCLUSIONS

In this work we have compared three important dark energy
models in the context of the gravitational wave spectra that
they should be able to induce and we observe that the models
are strongly degenerated in the range of frequencies studied
– from 10−18 up to 10−15Hz. In addition, for the Chaplygin
gas, the negligible dependence on the density parameterΩc0

is consistent with the idea of a unified dark component [7, 8].
Since the gas interpolates both dark energy and matter, the

suppression of the dark matter density parameter (see, Figure
2) should not affect the spectrum, as observed. The X-fluid
component contribution seems to be completely degenerated
and must be better studied in the near future, specially at larger
frequency ranges.

Unfortunately, no direct observational data from cosmolog-
ical gravitational waves is available up to now, but still it is
important to investigate the relation between these gravita-
tional waves produced or amplified by the presence of the
dark energy component and the CMB temperature and polar-
ization anisotropies which are already observationally deter-
mined [12]. This correlation between CMB and gravitational
waves will be properly studied once we have a larger range of
frequencies in the GW spectra.
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