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Nonlinear Resonance in Bouncing Universes
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The dynamics of closed LFRW universes with a massive inflaton field is examined where Friedmann equa-
tions are corrected by the introduction of a potential term arising from quantum gravity corrections to cosmo-
logical scenarios near the singularity. This extra term implements nonsingular bounces in the early evolution of
the universe. For certain windows in the parameter space (labeled by the scalar field mass and the conserved
Hamiltonian), phenomena of nonlinear resonance take place. Nonlinear resonance may induce the destruction
of KAM tori that trap the inflaton, leading to a rapid growth of the scale factor and consequent escape of the
universe into inflation. We make a complete analysis of the nonlinear resonance phenomena and show that
windows of parametric resonance, characterized by an integern≥ 2, are the ones that strongly favour inflation
in the system. We discuss how generic is this behaviour for inflationary models.

The initial conditions of our present expanding Universe
must have been fixed when the early Universe emerged from
the semiclassical Planckian regime and started its classical
evolution. Evolving back the initial conditions using classi-
cal equations of motion, the system is driven towards a neigh-
borhood of a singular point, where the classical regime is no
longer valid and must be substituted by the quantum regime.
Here we consider quantum gravity corrections to cosmolog-
ical scenarios in Friedmann equations on the brane, due to
the influence of a bulk geometry, that implement nonsingular
bounces in the scale factor[1]. We are then led to consider the
introduction of an extra potential term in Friedmann’s equa-
tions when treating a class of closed FRW models with a con-
formally coupled massive scalar fieldφ (the inflaton field) plus
radiation. We assume the potentialU(φ) = Λ+m2φ2/2 where
the cosmological constant termΛ is the vacuum energy of the
inflaton field andφ its spatially homogeneous expectation val-
ues. For perfect fluid cosmologies this correction term may
be assumed to be of the formA/aα, whereA is a constant,
a the scale factor and the integerα ≥ 2. For simplicity we
will fix α = 6 in the present paper, but the features of the dy-
namics may be substantially different for other choices ofα
and deserve a future examination[2]. In the conformal time
gauge, the dynamics of the model may then be derived from
the Hamiltonian constraint

H =− p2
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a2ϕ2−E0 = 0, (1)

with a the scale factor andE0 the total conserved energy of the
model. pϕ andpa are the momenta canonically conjugated to
ϕ = aφ anda, respectively. In the aboveV(a) is the effective
potential, given by

V(a) = 3a2−Λa4 +
A
a2 . (2)

The parameter space is labelled by (m,E0), and here we will
treat dynamical configurations for which the universe under-
goes a series of bounces before the universe enters an infla-
tionary regime. The initial conditions for these configurations
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FIG. 1: Diagram(m,ϕ0) of parametric bifurcation of the periodic
orbit at the origin(ϕ = 0, pϕ = 0), between the resonancesn= 2 and
n = 4. The shaded regions correspond to values ofm connected to
disruptive resonances for initial condition values near the invariant
plane(ϕ = 0, pϕ = 0). On their left is the region of parametric stabil-
ity for the periodic orbit. Further to the left, a value ofm is reached
beyond which the periodic orbit at the origin bifurcates. The stable
and unstable branches are shown by white and black dots, respec-
tively, marking the parametric domain of the resonance.

will be fixed by resonance windowsin the parameter space
since the resonances destroy KAM tori that trap the inflaton
about the origin(ϕ = 0, pϕ = 0). We can show that reso-
nance windows are approximated by the curve in parameter
spaceR= 2/n, wheren≥ 2 andR is a transcendental func-
tion of (m,E0)[3]. The nonlinear resonance of KAM tori pro-
duces complex dynamical phenomena, as long time diffusion
through Cantori, a phenomena that may have some striking
consequences for structure formation [3]. In the following we
fix E0 = 0.8.

In Fig.1 we show a bifurcation diagram connected to the
resonancesn= 2 to n= 4. There it is seen that, in the paramet-
ric domain of a resonance, the origin (ϕ = 0, pϕ = 0) becomes
a saddle and allows the inflaton to escape to the DeSitter con-
figuration at infinity.

We are now ready to compare the dynamical behavior of the
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FIG. 2: Poincaŕe maps with surface of sectionpa = 0 for m =
3.80085 in the domain of parametric resonancen = 2 (top), and
m = 4.29 in the domain of parametric stability between the reso-
nancesn = 2 andn = 3 (bottom). The origin in the first map (top)
is a saddle with two associated centers, consequence of the bifurca-
tion of the periodic orbit due to the resonance. The structure of the
stochastic sea differs in each case. The maps were constructed with
τ' 4,000.

system in the parametric domain of an resonance as opposed
to the behavior in the region of parametric stability, as shown
in Fig. 2. We consider the valuem= 3.80085corresponding
to the parametric domain of the resonancen= 2, andm= 4.29
corresponding to the region of parameter stability between the
resonancesn = 2 and n = 3. In the map corresponding to
m= 3.80085the two main islands are centered about(ϕ0 '
±0.18, pϕ0 = 0) and the origin is a hyperbolic point. Beyond
the border of the main islands, we note the large region of
phase space corresponding to a long time diffusion (before
the orbits escape to inflation). The stochastic sea beyond the
fuzzy border of the main islands presents the structure of a
stochastic web through which diffusion takes place to large

regions of phase space. No islands are seen in this region. This
is opposed to the Poincaré map form= 4.29 in the region of
parametric stability, where the main island is centered about
the origin and the stochastic sea beyond the border of the main
island contains several secondary islands. The diffusion of
orbits (with initial conditions beyond the border of the main
island) in the stochastic sea towards the DeSitter infinity is
extremely rapid.

The crucial point for the dynamics of inflation is the insta-
bility versus the stability of the originϕ = 0, pϕ = 0. The
differences in the two situations will have a bearing in the dy-
namics of the spatially homogeneous expectation valuesϕ(τ)
of the inflaton field related to the escape into inflation. In
this instance the initial conditions of the expectation values
ϕ are assumed to be small, and are taken near the invariant
plane of the dynamicsϕ = 0, pϕ = 0 – that corresponds to
a neighborhood of the critical point of the map at the origin
(ϕ = 0, pϕ = 0). Therefore the region of parametric stability
of the system will be unfavorable to the physics of inflation
since the orbit (a configuration of the early universe) will be
trapped in a stable state between two KAM tori near the cen-
ter of the main island. However if the system is in the region
of parametric resonance, initial conditions near the invariant
plane would undergo a long time diffusion to large regions of
phase space, and finally escape to the DeSitter configuration
at infinity.

The above phenomena are generic for closed inflationary
models, as far as bounces are included in the theory. In-
deed the minimal ingredients in the inflationary paradigm are
a FRW geometry plus a scalar field (the inflaton field) together
with well formulated ideas of modern quantum field theory.
The basic idea of inflation is that the vacuum energy of the in-
flaton field was the dominant component of the energy density
of the universe in an early epoch of its evolution. The dynam-
ics, ruled by Einstein’s equations, has thus the cosmological
constant-type term (connected to the vacuum energy of the in-
flaton field) and the two degrees of freedoma(τ) and ϕ(τ),
respectively the scale factor and the spatially homogeneous
expectation value of the inflaton field. In general the result-
ing potential forϕ has always a minimum, providing then the
condition for nonlinear resonance.
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