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Attractors in Dark Energy Models with Born-Infeld Scalar Field

Ronaldo Carlotto Batista, Luı́s Raul Weber Abramo, and Thiago dos Santos Pereira
Instituto de F́ısica, Universidade de S̃ao Paulo, CP 66318, 05315-970, São Paulo, Brazil

(Received on 17 October, 2005)

We derive, in the large scale limit, analytical solutions for a dark energy model described by the Born-Infeld
field plus a perfect fluid, both for homogeneous background and first order perturbations. These analytical
results are compared with numerical solutions in a model with radiation, pressureless matter and the field. We
investigate the non-adiabatic perturbed pressure associated with this attractor and whether it corresponds to
isocurvature contribution.

I. INTRODUCTION

Recent observations [1] indicate that expansion of the uni-
verse is accelerated. Models with cosmological constantΛ
and canonical scalar fields [2] have been proposed to explain
this acceleration. Another class of scalar field theory is the
Born-Infeld theory [3]:

L =
√−gV (ϕ)

√
1+∂µϕ∂µϕ . (1)

We use a inverse power-law potentialV (ϕ) = M4+αϕ−α,
where, for dark energy models, we must have0≤ α < 2 [4].
The equation of motion of such field is:

∇µ∂µϕ+
∇µ∂νϕ

1+∂µϕ∂µϕ
∂µϕ∂νϕ+ ln(V),ϕ = 0 , (2)

which, at homogeneous level becomes

ϕ̈
1− ϕ̇2 +3Hϕ̇+ ln(V),ϕ = 0 . (3)

In this case, the density and pressure are:

ρϕ =
V (ϕ)√
1− ϕ̇2

, pϕ =−V (ϕ)
√

1− ϕ̇2 , (4)

andωϕ = pϕ/ρϕ.
The background evolution is given by the Friedmann equa-

tion, with 8πG = 1,

H2 =
(

ȧ
a

)2

=
1
3

(
ρr +ρm+ρϕ

)
, (5)

the equation (3) plus the equations of continuity for radiation
and matter.

II. ATTRACTORS

The equation (3) may assume the solutionϕ̈ = 0. When a
perfect fluid with equation of stateω f = γ f −1 dominates the
background evolution, we haveH = 2

3γ f t
and the field grows

linearly in time [4]:

ϕ = At , (6)

whereA =
√

αγ f
2 for α < 2/γ f , andA = 1 for α > 2/γ f .

We evaluate first order scalar perturbations in the
newtonian-longitudinal gauge [5], with no anisotropic stress:

ds2 =−(1+2Φ)dt2 +a2 (t)(1−2Φ)d~x2 . (7)

In this case, the first order perturbations of the field obey the
equation:

δϕ̈
1− ϕ̇2 +

[
3H +

2ϕ̈ϕ̇
(1− ϕ̇2)2

]
δϕ̇+

[
k2

a2 + ln(V (ϕ)),ϕϕ

]
δϕ

= 2

[
3Hϕ̇+

ϕ̈
(1− ϕ̇2)2

]
Φ+4ϕ̇Φ̇ (8)

In the large scale limitk/aH ¿ 1, assumingΦ̇ = 0, H =
2

3γ f t
, and the background solution (6), the field perturbation

has the following attractor solution:

δϕ = AΦt +c1t
−1 , (9)

wherec1 is a constant. Neglecting the decaying mode, we
have

δϕ
ϕ

= Φ , (10)

In this case, the field evolves as a perfect fluid with constant
equation of state, given byωϕ = A2−1.

When the attractor regime is reached at matter domination,

we haveγ f = 1, then alwaysα < 2/γ f andA =
√

αγ f
2 . But,

when the attractor regime is reached at radiation domination,
we haveγ f = 4/3, then we may haveα < 2/γ f = 1.5, thus

A =
√

αγ f
2 , or α > 2/γ f = 1.5 andA = 1. In the latter case,

the field perturbations can grow indefinitely when the transi-
tion between radiation domination and matter domination is
going on. This behaviour is strongly dependent on the initial
conditions for the field perturbations. Hence, we call models
with α < 1.5 “stable” and withα > 1.5 “unstable”.

III. ISOCURVATURE PERTURBATION

We want to investigate, in the large scale limit, whether the
Born-Infeld field generates isocurvature perturbations. The
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FIG. 1: for α = 1, the evolution ofδϕ/ϕ (red line),Φ (green line) andζ
(blue line). The attractor solutions are well verified, even during the transition
(z≈ 104). Note that theζ function is constant almost all the time, only when
the field starts to dominate this function starts do vary, this shows that the
field induces some nonadiabatic pressure.
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FIG. 2: for α = 1.51, the evolution ofδϕ/ϕ (red line),Φ (green line) andζ
(blue line). The attractor solutions are well verified at radiation dominated
era. During the transition (z≈ 104), the field perturbation escapes from the
attractor and generates isocurvature modes, what can be seen from the varia-
tion of theζ function at this period. Here we have chosen initial conditions
for the field perturbations such thatδϕ roughly reaches the modified attractor
at matter dominated era.

function [6]

ζ =
2
3

Φ′+Φ
(1+ωtot)

+Φ , (11)

where the prime denotes the derivative with respect toN =
ln(a/a0), has the following equation of motion [5, 6]

ζ′ =
δpnad

(1+ωtot)ρtot
, (12)

whereδpnad is the total nonadiabatic pressure. From (12),
we see thatζ can only vary in large scales if the nonadiabatic

pressure is nonnegligible.

To verify if the Born-Infeld field generates isocurvature
modes we set adiabatic conditions between matter and radi-
ation,δmi = 0.75δr i , and evaluate the functionsδϕ/ϕ,Φ andζ
for α = 1 (stable case - Figure 1) andα = 1.51 (unstable case
- Figure 2) .

To illustrate the dependence of the evolution of the field per-
turbations on its initial conditions and how this can generate
isocurvature modes, we show in Figure 3, for three different
sets of initial conditions, the evolution ofζ function, for three
different values ofα.
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FIG. 3: evolution of theζ function, for three different sets of initial con-
ditions for the field perturbations. Note that the variation ofζ grows with
α.

IV. CONCLUSIONS

For dark energy models, the isocurvature modes tend to be
very small. This occurs because to approachωϕ = −1 today,
we needα near zero, what decreases the isocurvature modes.
On the other hand, since we haveα > 1.5, the isocurvature
modes can be very significant. But, in this case, we do not
have good models for dark energy, once we have, in the mat-
ter dominated era,ωϕ = −0.25 at least, what does not allow
values ofωϕ close to−1 today. For this case, we have a model
closer to a dark matter model.
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