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We develop a Dirac-Hartree-Fock-Bogoliubov description of nuclear matter pairinggand®s; —3 D
channels. Here we investigate the density dependence b6thend®S; —2 D, pairing fields in asymmetric
nuclear matter, using a Bonn meson-exchange interaction between Dirac nucleons. In this work, we present
preliminary results.

1 Introduction and
_ d3
Nonrelativistic calculations dfS, + 3S; —3 D, in symmet- Ap = / o 9 p (Yol ja(k — q)) BTD?B(I{ —q)
ric nuclear matter, using standard nucleon-nucleon interac- (2m)?
tions, yeald d S, pairing gap of about the expected size, but x (@) 70l js(q — k),

an extremely large pairing gap, of the order of 10 MeV, in
the3S; —3 D, channel [1, 2, 3, 4, 5]. It has been suggested
that relativistic effects substantially reduce this pairing gap
[6], as is the case fdrS, pairing at densities near saturation
[7]. However, the size of the pairing gap has also been found
to be related to the energy of the virtual/bound state in the Z
vacuum of the channel under consideration [7]. This would
imply a much larger pairing gap in tHe; —2 D; channel,
corresponding to the deuteron in the vacuum, than that in the
1Sy channel, which corresponds to the two-nucleon virtual
state in the vacuum.

where the indey refers to the different mesons exchanged
and the indicesy and § are their Lorentz/isospin indices.
The normal and anomalous densitig&j) and f(¢), respec-
tively, are given by

qn and f Z qn7

with the sum over running over the appropriate set of so-
Iutlons of the HFB equation.
We take for the Dirac and isospin structure of the mean

fields
_ Bk = (BSs0(k) + Soo(k) + - kSyo(k)) @1
2 The Formalism ( A )
+ (BSak) + Toilk) + & kTui(k)) @ 7
We take the hamiltonian form of the HFB equation to be and
( hy — Mk AL ) ( Ukn ) — e ( Ukn ) Ak = [A”(k}) + 6&01(]43) +a- ]%ATl(k‘)] & T
- Vi n " Vi n ’ A - F A — 7 £
Bi o hretp S Ve ‘ T AR €+ Ba(k) 157 YalR) - €
where +  As(k)y0v57 - € + Au(k) Y057 - Ya(k) - €
hi = -k + BM + 5 + Bs(k)k-Evs+ Be(k)(E x ) - 7] @1,
and where the rank two tenséf, (k) is given by
hri = BRT, Bt =& -k + BM + B85y, . 1 |
Yao(k)ij = —=Bk; kj — d;5) .
with 2( J \@( J J
Y = BYT, BT The densities can be decomposed similarly, where the com-

_ ) ) ponent densities can be obtained with the appropriate traces
The indexn denotes the 16 solutions to the HFB equation.

The self-consistency equations may be written as gs0(q Z By, foi = Z UT 107, V,yn, efc.

g 3
By = Z (VOFjQ(O)D?ﬁ(O)/ (;j (53 Tr[vT;5(0)9(q)]  The vertices and propagators of the mesons are given in
™

j,aB Table 1, where we have defined

d3q B i )
_ / W%Fm(k — ) D" (k — q)g(g) 10l 'js(q — k) da(a) = ——.
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We will neglect retardation effects in the following so

that the composite form-factor/reduced propagator will take
the form

dalg) = —— (Ai‘””i)Q.

T Pem \ A

We will denote the remaining factors of the vertices as the
bare vertices.

To obtain the reduced self-consistency equations, we
substitute these decompositions in the unreduced equations,
calculate and take traces. The equations for the components

of 1S, pairing field that result are uncoupled integral equa-
tions of the form

kg (fm-1)

Figure 2. The same as Fig. 1 for neutron-neutron pair.

3
Agi(k) = —/ (3753 [95ds (K — q) + g5ds(k — q)

Ag%dy(k — q) — 4g2d,(k — q)
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f 2
n _
+ dp(k — ;
(mn) 77( q)>‘| fsz(Q)
Figure 3. The same as Fig. 1 for proton-proton pair, in calculations

The equations for thé = 0 and! = 2 components of  for 'Sy +* 51 —* D, pairing.
38, —3 D, pairing field reduce to coupled equations. To un-
couple these further, we make an additional approximation
- we replace the components of the mean field and pairing
field by their (spherically symmetric) angular averages.

Agp (MEV)

TABLE 1. Meson-nucleon vertices and propagators. The factor
F;(q) is the vertex form factor.

(MeV)

meson vertex propagator ; o ;i :
~ R S
4 golo(g)1®1 Do (q) = —ds(q) 05 o' o 05 o5 of
5 95F3(a) 1® 7 DF'(q) = —0"ds(q) s ()
w 9w Fo (Q) Vo ®1 DY (Q) = g"d, (Q) . i .
P 90 F (@) T © T DIF(q) = "7 5%, (q) Figure 4. The same as Fig. 3 for neutron-neutron pair.
T | ZEF(@)iug" s @7 | DE(g) = —0"dx(q)
n T Fy(9) 179" y5 @ 1 Dy (q) = —dn(q)

Figure 5. The same as Fig. 3 for quasi-deuteron pair.

Figure 1. Proton-proton gap as a function of the asymmetry param-
etera and density for pure standard pairing.
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