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We have extended the Dirac-Hartree-Bogoliubov (DHB) approximation developed in a previous work [1] with
the inclusion of blocking terms in order to study the pairing properties of both even and odd nuclei. We have
concentrated our attention in the isotope chains of 12−26O, 34−56Ca, 48−78Ni and 100−132Sn as well as on the
α-decay of the new superheavy element 277112.

1 Introduction

The development of new facilities with the aim of studying
unstable nuclei has enabled experimental measurements of
masses, radii and deformations of such systems in a wider
region of the nuclear chart. Studies in this ‘terra exotica’
have revealed new features such as neutron halos or skins
[2, 3, 4] and brought new perspectives to nuclear physics.

Relativistic many-body theories have been applied to nu-
clei and nuclear matter with remarkable success [5, 6, 7].
In a previous work [1], the Dirac-Hartree-Fock-Bogoliubov
(DHFB) approximation was developed to describe the
ground state wave functions and energies of finite nuclei. It
was applied to spin-zero proton-proton and neutron-neutron
pairing within the Dirac-Hartree-Bogoliubov (DHB) ap-
proximation (the exchange term was neglected) using a
zero-range approximation to the pairing tensor. The latter
can be justified by demonstrating that the effective length for

spatial variations of the wavefunctions, in the calculations
performed, is much larger than the range of the non-locality
of the pairing tensor, rendering the spatial variations of the
wave function close to negligible within the range of pair-
ing non-locality. The Dirac structure of the pairing field is
retained in the DHFB approximation. The resulting pairing
field is dominated by a scalar term and the zero component
of a vector term, as found in the case for 1S0 pairing in sym-
metric nuclear matter.

2 Dirac-Hartree with blocking

The Lagrangian density can be written as:

L = L0 + Lint (1)

where L0 is the free Lagrangian density given by
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with

Fµν = ∂µAν − ∂νAµ,

Ωµν = ∂µων − ∂νωµ, (3)

�Gµν = ∂µ�ρν − ∂ν�ρµ,

and U(σ(x)) being a non-linear potential given in Ref.[1].

The interaction terms in the Lagrangian density are taken
to have the simplest possible form consistent with their
Lorentz and isospin structure,
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�

The DHFB approximation is obtained by characteriz-
ing the average effect of the interaction of a nucleon with
the other nucleons through an effective single particle La-
grangian, Leff , given in terms of the self-energy, which de-
scribes the average interaction of a nucleon with the sur-

round matter and the pairing field ∆ (and its conjugate ∆̄)
which describes the creation (annihilation) of a pair during
the propagation. It was shown in Ref.[1] that these fields
satisfy the following self-consistency equations,
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where the sum runs over the negative frequency solutions, εγ < 0.
The generalized baryon (quasi-particle) propagator is
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and can be written as
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with the componentsUα,β and Vα,β being Dirac spinors cor-
responding to the normal and time-reversed components of
the positive (negative) frequencies, εα (εβ) respectively, of
the Dirac-Gorkov equation whose solutions occur in pairs
with real eigenvalues of opposite signs. The pairs of eigen-
vectors, for neutrons or protons, are related as.

ε = εα :
(
U(�y)
V (�y)

)
ε = −εα :

(−γ0BV
∗(�y)

γ0BU
∗(�y)

)
.

where B = γ5C.
In order to treat odd systems we have performed Pauli-

blocking of selected single-particle states, interchanging one
of a pair of eigenvectors by its time-reversed state. This cor-
responds to the following transformation(

U(�y)
V (�y)

)
→

( −γ0BV
∗(�y)

γ0BU
∗(�y)

)
, (7)

which modifies the densities that enter in the Hartree terms
of the self-energy given in equation (5) and annuls the con-
tribution of the blocked states to the pairing field, given in
equation (6).

3 Results

As a first test of our approach, we have calculated the mass
deffects of the 12−26O, 34−56Ca, 48−78Ni and 100−132Sn
isotope chains using the Dirac-Hartree-Bogoliubov approx-
imation (DHB) with blocking, treating the pairing correla-
tions through the Dirac-BCS approximation. The results are
labled by (DHB+BCS) in figures (3)-(3) and are compared
to the experimental results of Ref. [8].
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Figure 1. DHB+BCS calculations for mass deffects of the 12−26O
(Z=8) isotope chain compared with the experimental values of Ref.
[8]..
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Figure 2. DHB+BCS calculations for mass deffects of the 34−56Ca
(Z=20) isotope chain compared with the experimental values of
Ref. [8].
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FIgure 3. DHB+BCS calculations for mass deffects of the 48−78Ni
(Z=28) isotope chain compared with the experimental values of
Ref. [8].
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Figure 4. DHB+BCS calculations for mass deffects of the
100−132Sn (Z=50) isotope chain compared with the experimental
values of Ref. [8].

We have also calculated the α-decay chain of of the new
superheavy element 277112 [9] within the blocked+DHB
formalism. The results, compared to those of a non-
relativistic Hartree-Fock-Bogoliubov approach, which con-
siders a Gogny force (HFB+Gogny), and also to the exper-
imental data of Ref. [8], are shown in Table 1. As can be
seen, the results are very promising.

TABLE 1. α-decay chain of 277112 calculated in blocked+DHB, HFB+Gogny compared with the experimental data of Ref. [8].

mother→daughter gs→gs gs→gs expt (MeV)

blocked+DHB HFB+Gogny
277112→273112 12.246 12.323 11.45 − 11.65
273110→269Hs 10.187 11.266 9.73 − 11.08(?)
269Hs→265Sg 10.099 9.034 9.17 − 9.23(?)
265Sg→261Rf 8.462 9.084 8.77
261Rf→257No 6.711 8.487 8.52
257No→253Fm 7.068 8.048 8.34 − 8.45
253Fm→249Cf 8.308 7.446 7.197
249Cf→245Cm 6.350 6.350 6.295

4 Conclusions and Perspectives

We have included Pauli-blocking terms in the Dirac-
Hartree-Bogoliubov approach previously developed in Ref.

[1]. As a initial test we have calculated the mass deffects
of the isotope chains of O, Ca, Ni and Sn and the α-decay
chain of the superheavy element 277112. We have obtained
very reasonable results compared to the experimental data
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in the former case, and with a non-relativistic calculation as
well in the latter case. As a next step, after repeating the cal-
culations shown in this work within the full DHFB approxi-
mation, we intend to apply the formalism along the nuclear
chart, giving special attention to light neutron-rich isotopes
such as those of Li, Be, B, C and N.
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