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Cellular automata (CA) are discrete, spatially-homogeneous, locally-interacting dynamical systems of very
simple construction, but which exhibit a rich intrinsic behavior. Even starting from disordered initial configu-
rations, CA can evolve into ordered states with complex structures crystallized in space-time patterns. In this
paper we concentrate on deterministic one-dimensional CA defined by rules that lead to chaotic patterns. In
order to find universality classes for these rules we associate a growth process with the CA dynamics and study
the temporal behavior of the growth exponent, skewness and kurtosis of the height distribution of the interface.
We obtain four universality classes characterized by different values of the growth exponent. These are related
to the random deposition and directed percolation classes.

1 Introduction

Self-affine interfaces generated by non equilibrium surface
growth have been intensively studied in the 1990’s [1, 2].
One of the reasons of interest is to distinguish universality
classes to which these kinetic roughening models can be-
long. Each universality class is related to a diffusion equa-
tion with two main terms: the noise of the process of particle
deposition and the correlations of the growth process. Some
classes - for example, the random deposition (RD), the di-
rected percolation (DP) and the compact directed percola-
tion (CDP) [3] - are characterized by the absence of correla-
tions in the growth process. In other classes - as the KPZ [4]
or EW [5, 6] classes - these correlations are fundamental.

The universality classes are characterized by the behav-
ior of the roughness [7] - the width of the interface - and
of the height distribution [8] of this interface. In the classes
without correlations in the growth process, the roughness
ω(t) grows with the time t as a power law - ω ∼ tβ - with a
well defined exponent, the growth exponent β. The value of
this exponent characterizes the universality class: β = 0.5
in the RD class, β � 0.8 in the DP class and β = 1.0 in the
CDP class [9].

More recently, this approach has been used to study
other kinds of models such as cellular automata [9, 10, 11],
sandpiles [12], and the contact process [13]. These studies
are done by mapping the model into a growth process which
generates an interface - the accumulation method. So, it is
possible to define the height for each site of this interface
and then determine the roughness, the growth exponent and
the skewness and kurtosis of the height distribution.

In this work, we use this technique to study a group of
cellular automata which have a chaotic behavior, that is,
their evolution has a strong dependence on the initial con-
ditions. A cellular automaton (CA) is a dynamical system
that is discrete in space, in time and in the number of states.
It provides a simple model for a great number of problems

in science - chemical reactions, crystal growth models, tur-
bulence, neural networks, biological systems, or other non-
linear process far from equilibrium [14]. In this automaton,
each site (noted i) is associated to a variable σi, which can
be in k different states σi = 0, 1, . . . , k − 1. The dynamics
is defined, at each time step, by rules depending on the val-
ues of {σi} at previous time, associated to a given number
of r arbitrary neighbor sites. The local rules of a CA may
be either probabilistic or deterministic and the states of the
sites are simultaneously updated.

Based on the spatiotemporal patterns generated by CA
evolution, Wolfram [14] developed a classification scheme
consisting of four qualitative classes: homogeneous fixed
point (class I), periodic (class II), chaotic (class III), and
complex (class IV). In this paper, CA in Wolfram’s class III
are investigated using the accumulation method. Our goal
is to distinguish different universality classes in the chaotic
class of these automata. Section 2 introduces the definitions
of the automaton, the accumulation method and the statistic
relevant quantities. In section 3, we show that there are four
distinct universality classes in the chaotic Wolfram’s class.
Finally, we draw some conclusions in section 4.

2 Definitions

Wolfram’s CA consists of a one-dimensional chain of L lat-
tice sites (i = 1, 2, . . . , L), with periodic boundary condi-
tions. We study the automaton with k = 2 , that is, each site
has two possible states σi = 0, 1 and the state of the system
at time t is specified by the set {σi(t)}. At the next time step
the state of a given site is σi(t + 1), depending on the states
of the first neighbors (r = 1), σi−1(t), σi(t) and σi+1(t).
The states of all sites are simultaneously updated at each
time step - synchronous update. So, for this local neighbor-
hood of three sites there are 23 = 8 possible configurations,
and with each one of them a CA rule can associate either
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0 or 1 with state σi at time t + 1. Thus, one can construct
28 = 256 deterministic local rules for CA with a binary
state variable and a neighborhood of three sites. All the 256
Boolean functions that specifies the deterministic CA rules
are labelled by a decimal code [14] obtained in the following
way: we write the eight outcomes associated with the local
neighborhoods ordered in decreasing order, and read them
as the eight binary digits of the CA rule code. Rule 90, for
example, is defined by the configuration given in Fig. 1.

111 110 101 100 011 010 001 000

0 1 0 1 1 0 1 0

Figure 1. The eight possible configurations for a neighborhood of
three sites at time t and the state associated to each one by CA rule
90, at time t + 1. Note that the sequence 01011010 is the binary
representation of the decimal 90.

Based on the spatiotemporal patterns generated by CA
evolution, Wolfram developed a classification scheme con-
sisting of four qualitative classes: homogeneous fixed points
(class I), periodic (class II), chaotic (class III) and complex
(IV) [14]. Rules in Wolfram’s class III are characterized by
a strong dependence on the initial conditions: if one makes
a copy of the system introducing some alterations (damage)
and lets both systems evolve following the same determinis-
tic rule, one can identify chaotic behavior by monitoring the
Hamming distance, defined as

DH(t) =
1
L

L∑

i=1

| σi(t) − σ′
i(t) | (1)

where the set {σ′
i} is the damaged copy of {σi} at t = 0.

By definition [16], chaotic systems have nonzero stationary
Hamming distance DH(∞).

We are interested in the study of all rules [15] in Wol-
fram’s class III so, we associate a growth process to the time
evolution of the CA rules and use the techniques developed
in the study of such processes. In the accumulation method
the height hi(t) associated with site i at time t is defined as

hi(t) =
t∑

τ=1

σi(τ). (2)

In particular we study the height distribution around the av-
erage height, for which we can define the n-th moment at
time t as

µn(t) =
1
L

L∑

i=1

[hi(t) − h(t)]n (3)

where

h(t) =
1
L

L∑

i=1

hi(t) (4)

is the average height of the distribution at time t. The sec-
ond moment is a measure of the width of the interface and
we define the roughness at time t as its square root,

ω(t) = µ
1
2
2 (t). (5)

Generally, in growth processes, the roughness grows as
a power law,

ω ∼ tβ , (6)

where β is the growth exponent.
Other relevant quantities to characterize the distribution

[8] are the skewness, defined as

S(t) =
µ3(t)

µ
3
2
2 (t)

, (7)

which is a measure of the asymmetry of the distribution, and
the kurtosis,

K(t) =
µ4(t)
µ2

2(t)
− 3, (8)

which is a measure of the flatness of the distribution. For a
Gaussian distribution we have S = K = 0.

A universality class of a growth process is defined by the
associated symmetry properties and the conservation laws.
The growth equation that describes the system can present
scaling laws, power laws or some symmetry, which lead to
a quantitative characterization of the universality class.

As an example, we consider the random deposition (RD)
model [1]. Particles are deposited randomly at a constant
rate on a d-dimensional discrete substrate (Ld lattice sites).
This is a very simple model, as we see that the process is
uncorrelated because the height associated to a given site
grows independently from the others. The growth equation
for this process is

∂h(�x, t)
∂t

= F + η(�x, t), (9)

where F is the average number of particles deposited on site
�x (deposition rate per site) and η(�x, t) is a white noise (zero
average, δ-correlated in space and time) that represents the
randomness of the deposition process. The solution for this
equation is exact and leads to a power law for the temporal
behavior of the roughness

ω ∼ tβ , (10)

with β = 1/2 . For the symmetry of the deposition process,
explicitly given by the white noise in the growth equation,
the skewness and kurtosis of the height distribution are both
zero. Thus, the growth exponent β = 1/2, together with
S = K = 0, defines a universality class: the random depo-
sition class.
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3 Simulations Results

We made simulations of systems with L = 104 with peri-
odic boundary conditions, until 105 time steps, averaging
over 100 samples. For some rules we made a finite size
analysis to find the values of the growth exponent with better
precision. For some other rules, we also made an asymptotic
study with L = 103 until 107 time steps. The initial condi-
tion used in the simulations is random, with half the sites
occupied. We considered all 38 rules in Wolfram’s class
III [14].

We used the growth exponent, skewness and kurtosis to
find universality classes and, considering the growth expo-
nent, four universality classes were found, as one can see in
Fig. 2.
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Figure 2. Log-log plot of roughness ω(t) versus time t, where the
slope is the growth exponent β. We identify four distinct values for
rules in Wolfram’s class III, each one corresponding to a different
universality class.

In the first class, corresponding to the CDP universality
class, we have rules 73 and 109, with β = 1.00 ± 0.02.
This value of the growth exponent, meaning that the rough-
ness grows linearly with time, can be understood as follows:
clusters of 0s and 1s are formed and the heights associated
with the clusters of 1s grows one unit in each time step,
while the heights associated with the clusters of 0s do not
grow. So, the interface width grows one unit at each time
step and the height distribution is obviously not symmetric,
thus we found non-zero values of the skewness and kurtosis.

In the second class, we have rules 110, 124, 137 and
193, with β = 0.83 ± 0.01, S = 0 and K < 0. This
value for the growth exponent, close to the value of DP uni-
versality class, is also obtained in the frozen-active transi-
tion in the probabilistic Domany-Kinzel cellular automaton
(DKCA) [9] when a symmetric updating scheme is applied.
For these rules, we found S = 0 for t > 104 and K < 0 for
all t.

Rules 54 and 147 define the third class, with β =
0.66 ± 0.01. As one can see in Fig. 2, the power-law be-
havior only occurs after approximately 102 time steps. This

value of the growth exponent is close to the exponent ob-
tained in the frozen-active transition in the DKCA when the
non-symmetric updating scheme is applied [9]. Here we
have S 	= 0 and K > 0. In the asymptotic study we note
that a size independent crossover occurs for 104 < t < 105

and an exponent β = 0.53 ± 0.01 is obtained. When this
regime is reached, we have S = K = 0. Both second and
third classes correspond to systems described by a growth
equation with non-white noise.

For the other 30 rules, we found β = 0.50 ± 0.01. We
could distinguish four subclasses for these rules, by analy-
sis of the temporal behavior of the skewness and kurtosis, as
one can see in Fig. 3. In the first subclass we have rules 30,
45, 60, 75, 86, 89, 90, 101, 102, 105, 106, 120, 135, 149,
150, 153, 165, 169, 195 and 225, for which we found S = 0
at all times and K → 0 very quickly (t ∼ 102). These
rules are in the RD universality class for all times, and the
growth equation describing the evolution of these systems
has white noise. The other rules present a different behav-
ior of skewness and kurtosis in the beginning of the process,
but go asymptotically to the RD universality class. We can
separate them in three distinct subclasses, according to this
initial behavior. For rules 18 and 183, kurtosis and skewness
oscillate as they go to zero, reaching this value after about
102 time steps for the skewness and after 103 time steps for
kurtosis. These quantities for rules 22, 146, 151 and 182 do
not oscillate, but take a longer time to go to zero. Rules 122,
126, 129 and 161 quickly reach null skewness and kurtosis,
after about 102 time steps.
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Figure 3. Semi-log plots of skewness S(t) (top), and kurtosis K(t)
(bottom), as functions of time t, for rules with β = 0.5. We see
four different behaviors in the beginning of the growth process.
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4 Conclusions

We divide chaotic rules in Wolfram’s class III in four differ-
ent universality classes, through the association of a growth
process to the dynamics of the CA rules and determination
of the growth exponents. Many of these rules are in the RD
class, some of them asymptotically. Other rules are in the
CDP class, in which one can identify clusters of 0s and 1s.
The remaining rules appear to be in the same class as the
frozen-active transition of the DKCA, some in the symmet-
ric updating scheme and other in the non-symmetric scheme.
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