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Colloidal particles move in the carrier liquid under the action of several forces and torques. When the particles
carry a dipole moment, electric or magnetic, as in ferrofluids, the rotational and translational motions are cou-
pled because the field on a particle depends on the spatial and directional distribution of the others and the force
and torque on it depends on the field. Moreover, there is Brownian, as well as dissipative forces and torques on
each particle. Consequently, the numerical solution of the equations of motion requires, besides the techniques
of Classical Molecular Dynamics, those of Stochastic Dynamics. The algorithm is explained in some detail
and applied on a typical ferrofluid. For different values of the temperature, the possibility of the formation of
structures is examined.

1 Introduction

Colloidal particles have translational and rotational mo-
tion, due to several forces and torques. Besides forces and
torques due to applied fields and inter-particle interactions,
the molecules of the carrier liquid collide incessantly with
the particle, causing translational and rotational Brownian
motion. Their movement inside the liquid is opposed by
viscous, dissipative, forces and torques. For simplicity, we
will consider only spherical particles. We also assume that
each particle carries a permanent dipole moment, which may
be electric or magnetic. By using the appropriate Langevin
equations we simulate realizations of the stochastic process
which is the coupled motion of a sample of particles dur-
ing a time which is sufficiently long for the thermodynamic
equilibrium to be established. We use in the simulation
typical values for the parameters, which correspond to re-
alistic ferrofluids[1]. For recent references on ferrofluids,
see the book Ferrofluids: Magnetically Controllable Fluids
and Their Applications, edited by Stefan Odenbach[2]. Our
procedure and results of the simulations are compared with
those of Wang, Holm and Mller[3], recently published.

2 The Equations of Motion

The equations of motion for each particle can be written as
one vector equation for its rotation around its center of mass
and one vector equation for the translation of the center of
mass. There is formally only one difference in the rotational
equations of motion of colloidal particles having magnetic
or electric dipole moments. This difference is in the exis-
tence of an intrinsic angular momentum, S, associated to
the magnetic moment µ,

µ = gS (1)

where g is the gyromagnetic factor. There is no intrinsic
angular momentum associated with electric dipoles. The ro-
tational equation of motion for a solid particle is given by
Classical Mechanics,

dJ

dt
= N (2)

where J is the total angular momentum and N is the total
torque. The magnetic particles of ferrofluids may be super-
paramagnetic, when the magnetic moment is free to rotate
with respect to the particle, or ”blocked”, when the magnetic
moment is fixed in the particle. The case of superparamag-
netic particles in ferrofluids has a more complicated dynam-
ics because the magnetic moment and the particle’s Euler
angles are independent, but interacting, variables[4, 5, 6]. In
this work we consider only blocked magnetic particles. For
spherical magnetic particles the angular momentum may be
written as

J = Iω + S (3)

where I is the moment of inertia and ω is the angular ve-
locity. For electric dipolar particle the relation is the same,
except that S =0. The time derivative of µ is related to ω,
for blocked magnetic or electric dipoles, by

dµ

dt
= ω × µ (4)

The torque N has several origins. If there is a field F ,
which may be the magnetic induction B or the electric field
E, at the particle’s position, there is a torque

NF = µ × F .

The field F is the sum of the applied field with the fields
due to the other particles. We assume that the carrier liquid
has no magnetic or electric moments. The thermal molec-
ular motion of the liquid causes a stochastic torque, σ ξ(t),
on the particle, where σ is a constant and ξ(t) we simulate



Claudio Scherer 443

by normalized white noise, with average zero and delta type
correlation function,

〈ξ(t)〉 = 0 (5)

〈ξi(t) ξj(t′)〉 = δi,j δ(t − t′) (6)

where i,j indicate the Cartesian components.
The rotational motion is opposed by a dissipative torque,

−λω, due to the liquid’s viscosity η, through the Stokes re-
lation for rotation,

λ = πη d3

where d is the diameter of the spherical particle. Einstein’s
relation for the constants σ and λ and the temperature T
reads

σ =
√

2λkT (7)

where k is Boltzmann’s constant.
Summing up, we come to the following equation for the

rotational motion,

I
dω

dt
+

1
g

dµ

dt
= µ × F − λω + σξ (8)

which, together with Eq.(4), form, if F is known, a com-
plete set of equations for the vectors ω and µ. The same
equations describe also electric dipolar particles, except that
the second term at the LHS of Eq.(8) is absent. However,
when particle-particle interaction is important, as we want
to consider in this work, F is dependent on the particle po-
sition r as well as on the other particles positions and mo-
ments. Consequently, we have to solve simultaneously the
rotational and translational equations of motion for all parti-
cles.

The translational motion is described by Newton’s equa-
tions,

dr

dt
= v (9)

m
dv

dt
= f (10)

for the position vector r and velocity v. The force f on the
particle, like the torque, has several origins. If there is a field
gradient ∇F at the particle’s position, then the force due to
this field is

fF = ∇F · µ. (11)

The particle-particle interactions are partly due to their
contribution to the field F , but we also assume a hard core
interaction which avoids two particles to come closer than
a distance d between their centers. This is not contained in
the expression for f , but will be introduced directly in the
integration procedure. The stochastic force, due to the col-
lisions of the liquid’s molecules with the particle, has the
form αΓ(t), where α is a constant and Γ(t) is also modeled
by normalized white noise, like in Eqs. (5) and (6). There is

also a dissipative force −γv opposing the translational mo-
tion. The dissipative constant γ is related to the viscosity by
the following Stokes relation,

γ = 3πηd. (12)

Einstein’s relation for the constants α and γ and the tem-
perature T reads

α =
√

2γkT (13)

Summing up, we arrive at the following equation for the
translational motion:

m
dv

dt
= ∇F · µ − γv + αΓ(t) (14)

which, together with Eq.(9), form a complete set of equa-
tions for the variables r and v if F (r, t) and µ are known.
However the particle-particle interactions make F to depend
on the magnetic moments and positions of all particles, so
that simultaneous solutions of all equations of motion is nec-
essary.

3 Numerical Solution of Langevin
Equations

Before discussing the procedures to solve the equations of
motion of section 2, we present a brief introduction to nu-
merical solutions of stochastic differential equations with
white noise terms, known as Langevin equations.

Consider an n-dimensional stochastic process X(t), de-
scribed by the following general Langevin equation,

dX

dt
= A(X, t) + B(X, t) · ξ(t) (15)

where A(X ,t) is a well behaved n-dimensional vector func-
tion, B is an n × m matrix and m is the number of inde-
pendent components of the normalized white noise ξ(t). If
B does not depend on X we say the noise is additive, oth-
erwise it is called multiplicative. For our present purpose it
is not necessary to allow for explicit dependencies of A and
B on t, so that A = A(X) and B = B(X)

It is impossible to simulate, in the computer, realizations
of the white noise, since its correlation time is zero. There-
fore we integrate formally Eq.(15) between t and t + ∆t,

∆X(t) ≡ X(t + ∆t) − X(t) =

=
∫ t+∆t

t

A(X(t′))dt′ +
∫ t+∆t

t

B(X(t′)) · ξ(t′)dt′ (16)

Since A is a continuous function of X , which is a con-
tinuous function of t, we know, from the mean value theo-
rem, that there is at least one value t̄ of t′ such that the first
integral above is

∫ t+∆t

t

A(X(t′))dt′ = A(X( t̄ ))∆t (17)
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For the second integral at the RHS of Eq.(16) we con-
sider first the case of additive noise. Then B may be taken
outside the integral, so that the equation becomes

∆X(t) = A(X( t̄ ))∆t +

+B ·
∫ t+∆t

t

ξ(t′)dt′ (18)

The integral above is known as Wiener increment,

∆W (t) = W (t + ∆t) − W (t) (19)

where

W (t) =
∫ t

0

ξ(t′)dt′ (20)

is the Wiener process.
The components of the Wiener increment ∆W (t) are

Gaussian stochastic processes with zero averages and stan-
dard deviations equal

√
∆t. These properties of ∆W are

fundamental for simulating realizations of the solution X(t)
of Eq.(15).

Eq.(18) has then a form very appropriate for numerical
simulation,

∆X(t) = A(X( t̄ ))∆t + B · ∆W (t) (21)

In numerical simulation ∆t, in Eq.(21), is the length of
the time step for integration. If we choose a very small ∆t,
X(t̄) may be substituted simply by X(t), or we may prefer
a more precise algorithm, like Runge-Kutta second order.
The components of ∆W are generated, at each time step,
as the product of

√
∆t by random Gaussian numbers with

zero average and unit variance.
The case of multiplicative noise is more complex. The

rigorous treatments of Ito and of Stratonovich give us the
prescriptions to follow, which are equivalent in the limit
∆t → 0, but for finite ∆t they have different speed of con-
vergence to the exact result. According to my own experi-
ence, by treating several examples, the Stratonovich proce-
dure converges more rapidly than that of Ito, but, in many
cases, it is more difficult to implement. We use here the
Stratonovich procedure, according to which the equation
equivalent to Eq.(21) for multiplicative noise should be writ-
ten as

∆X(t) = A(X( t̄ ))∆t + B

(
X(t) +

∆X(t)
2

)
· ∆W (t)

(22)
When we can isolate ∆X(t) in Eq.(22), very good, other-
wise we may, for example, use simply B(X(t)) to obtain a
first approximation for ∆X(t) and then substitute this value
in the RHS of the Equation.

4 Numerical Simulation on Ferroflu-
ids

Initially we consider the orders of magnitude of the terms in
Eqs. (8) and (14). We start with the simplest one, which is

Eq.(14). Applying the procedure described in section 3 to
the system of Eqs. (9) and (14), follows

r(t + ∆t) = r(t) + v̄(t)∆t (23)

and

v(t + ∆t) = v(t) +
1
m

(∇F · µ − γv̄(t))∆t +
α

m
∆W (t)

(24)
An alternative approximation to those equations consists

in neglecting the inertia term in Eq.(14), which leads to

r(t + ∆t) = r(t) +
1
γ

∇F · µ ∆t +
α

γ
∆W (t) (25)

The numerical simulation of the system of Eqs. (23) and
(24) and of Eq.(25) was made for the same realization of
W (t), with ∇F = 0. As parameters we used those of a
magnetite spherical particle of diameter d=10 nm in a liquid
whose viscosity is that of water, at T =300 K. The results for
one component of r(t) are shown in Fig. 1. We see that the
effect of taking into account the mass is, indeed, negligible.
This conclusion becomes even more evident in Fig. 2, where
we used for the mass a value 100 times bigger, keeping the
other parameters unchanged.
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Figure 1. Translational motion of a magnetite particle, with the
standard parameters given on the text.

The advantage of neglecting the mass is that the conver-
gence to the limit ∆t → 0 is much faster than when the
mass term is present, which makes an important difference
in CPU time when we simulate a system of many interacting
particles.

Now we consider the equation of rotational motion,
Eq.(8), using three alternative approximations: 1) neglecting
the moment of inertia, I; 2) neglecting the intrinsic angular
momentum, S = µ/g; 3) neglecting both, I and S.
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Figure 2. Translational motion of a particle; the dotted line cor-
responds to a particle with a fictitious mass 100 times bigger than
that of our standard magnetite particle

1) Neglecting I:
Let us define the following symbols:
s = µ/µ0, where µ0 = |µ| is a constant for blocked mag-
netic moment; ∆W⊥ = ∆W − s (s · ∆W ) is the compo-
nent of ∆W perpendicular to s. After some vector algebra
we get, neglecting terms of order higher than ∆t2,

∆s = A−1 · (g (s × F )∆t + σ̄ ∆W⊥) (26)

where

A =


 1 −λ̄ sz λ̄ sy

λ̄ sz 1 −λ̄ sx

−λ̄ sy λ̄ sx 1


 (27)

being sx, sy, sz the Cartesian components of s, λ̄ = g λ/µ0

and σ̄ = g σ/µ0. Finally,

s(t + ∆t) = s + ∆s . (28)

We improve the quality of the simulation by renormalizing
s after each integration step, making |s| = 1.

2) Neglecting the intrinsic angular momentum S =
µ/g :

Again, after some algebra and neglecting terms of order
higher than ∆t2, we come to the set of equations

∆ω =
µ0(s × F )∆t − λω∆t + σ∆W

I(1 + λ∆t/2)
(29)

ω̄ = ω +
∆ω

2
(30)

and
∆s = (ω̄ × s)∆t (31)

The procedure is then simple: for given
ω(t), s(t), F (t) and ∆W we calculate ∆ω, ω̄ and ∆s
in this order, and then ω(t + ∆t) = ω(t) + ∆ω and
s(t + ∆t) = s(t) + ∆s.

3) Neglecting both, I and S:
In this case Eq.(8) becomes

µ × F − λω + σξ = 0 (32)

It takes again some vector algebra and the use of equation

ds

dt
= ω × s (33)

to transform Eq.(32) to the form

ds

dt
=

µ0

λ
F⊥ +

σ

λ
ξ × s (34)

where

F⊥ = F − s(s · F ) (35)

The corresponding discretized Langevin equation is

∆s =
µ0

λ
F⊥∆t − σ

λ
s × ∆W (36)

In Fig. 3 we show sz(t) obtained with the three ap-
proaches just described, for the same realization of W (t),
using the parameters of a realistic magnetic particle in a fer-
rofluid: a spherical magnetite particle with diameter of 10
nm in a liquid with the viscosity of water at room tempera-
ture and in presence of a weak magnetic field of 10 G.

We see that taking into account the moment of inertia,
I , or the intrinsic angular momentum, S, has practically no
effect on the result of the simulation. To enlarge the effect of
those terms we repeat the simulation with fictitious values of
I and S 10 times bigger than those of the standard magnetite
particle of 10 nm in diameter, keeping the other parameters
unaltered. The result is shown in Fig. 4. In this case S has
a considerable effect but I is still absolutely irrelevant, so
that, if one of those terms should be taken into account, that
should be S and not I . The opposite procedure was made in
reference [3], as mentioned in our introduction.
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Figure 3. z-component of the unit vector parallel to µ; the dotted
line corresponds to taking S into account; the solid line, which cor-
responds to taking I, but not S, into account, is indistinguishable
from the dot-marks, which corresponds to neglecting both, I and S.
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Figure 4. Same as Fig.3, but for a fictitious particle with I and S 10
times bigger than that of our standard magnetite particle.

5 The Inter-particle Forces and
Torques

The forces between the magnetic particles in a ferrofluid are
of two different origins: 1) A short range repulsion, which
avoids two particles to overlap in space and 2) magnetic
dipole-dipole force. The first we simulate by a hard spheri-
cal core with the size of the particle; the dipolar force on a
given particle is calculated in the following way: we calcu-
late the field gradient ∇B, where B is the magnetic induc-
tion on the particle’s position due to the other particles in the
sample, then

fp = ∇B · µp (37)

where µp is the particle’s magnetic moment.

For a particle at position rp, the magnetic induction due
to the other particles is

B(rp) =
∑
j �=p

3n(µj · n) − µj

|rp − rj |3 (38)

where n is a unit vector in the direction of rp − rj .

The torque on µp is

Np = µp × B(rp) (39)
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Figure 5. A two-dimensional sketch of our procedure for periodic
boundary condition.

The numerical simulations on a random homogeneous
distribution of magnetic dipoles have convinced us that the
contribution to B(rp) due to the dipoles which are more
than a few inter-particle distances apart from rp is totally
negligible. This is so because when the spacial distribution
of the moments is precisely homogeneous, even if there is
a preferential direction for their orientation, the field at the
center of a cube, due to the other particles in the cube, is
zero. Therefore a non zero field comes only from deviations
from homogeneity, which is really important only in short
distances. Our simulation is done on a cubic box of side
L of a ferrofluid containing 1000 magnetic particles. We
use periodic boundary conditions. To calculate the induc-
tion B at rp due to the particle at rj , if the x-coordinate
xp − xj > L/2 we substitute xj by xj + L in Eq.(38), and
similarly for the other coordinates; if xp − xj < −L/2 we
substitute xj by xj − L. With this procedure, the field on
each particles considers all other particles which are in the
cube of side L of which the considered particle is at the cen-
ter, as is indicated in a two-dimensional projection in Fig. 5.
To calculate the field on particle p in Fig. 5, due to all other
particles inside the simulation box, in solid line, we use, in
the case of particle 1, its actual coordinates but in the cases
of particles 2, 3, 4 and 5, the coordinates of their periodic
images, which are inside the box in doted line, of which p is
the center.

After each integration step we translate each particle
which went out of the simulation box like particle 2 in the
figure, to inside the box, at the position of its periodic image.

We start the simulation by placing the magnetic particles
at the sites of a cubic lattice inside the simulation box, the
components of the magnetic moments are chosen at random
and the modulus normalized to µ0. The fields and field gra-
dients on the particles are calculated as explained above. For
the integration we use the approach of the equations with-
out mass, moment of inertia and intrinsic angular momen-
tum, as explained in section 4. For realistic values of the
parameters, as those used for Figs. 1 and 3, room temper-
ature and zero applied field, after sufficiently long simula-
tion time, when the distribution seem not to change signifi-
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cantly anymore, the resulting distribution is shown in Fig. 6
for a slice of the simulation box, parallel to the x-y plane
and of width equal to the average inter-particle distance. In
Fig. 6 the lines indicate the projection of the magnetic mo-
ments on the x-y plane. We see that nothing of the lines of
aligned dipoles, as reported in reference [3], can be seen. On
the other hand, simulation made on a fictitious ferrofluid at
T=3K (not 300K) lead to Fig. 7, where lines similar to those
reported in reference [3] are seen. This result makes us sus-
pect that an error in the generation of the noise was made by
the authors of reference [3], resulting in noise terms much
weaker than what should be the case at 300 K.
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Figure 6. A slice of the simulation box at the end of the simulation
for T=300 K, showing the magnetic particles and their magnetic
moments(lines) normalized to one and projected on the x-y plane.
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Figure 7. Same as in Fig.6, but for a fictitious ferrofluid at T=3 K.
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