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We study the phase diagram of the three-dimensional classical ferromagnetic Heisenberg model with an easy-
plane crystalline anisotropy and an easy-axis exchange anisotropy through Monte Carlo simulations. We em-
ploy the Metropolis algorithm together with single-histogram techniques in order to characterize the transitions
in each region of the phase diagram. Our results reveal, besides the disordered phase, the existence of Ising-like
and XY-like ordered phases which are separated by a first-order transition line.

1 Introduction

Much work has been done on two- or three-dimensional
Heisenberg models submitted to exchange or crystalline
anisotropies [1-5]. However, as far as we know, much less
work has been performed concerning the Heisenberg model
submitted to both exchange and crystalline anisotropies. In
this paper we focus our attention on the three-dimensional
classical ferromagnetic Heisenberg model taking into ac-
count the competition between these different kinds of
anisotropies and determining the phase diagram of the sys-
tem.

The anisotropic Heisenberg model in a crystal field can
be described by the Hamiltonian

H = −J
∑

<i,j>

�Si · �Sj −A
∑

<i,j>

Sz
i Sz

j + D
∑

i

(Sz
i )2, (1)

where J , A, D are non-negative coupling constants and
< i, j > means a sum over nearest neighbor spins (in what
follows we set J = 1). The second term is related to the
exchange anisotropy and behaves as an easy-axis anisotropy
since it tends to align the spins in the z direction in order to
lower the energy of the system. The third term, on the con-
trary, corresponds to the crystalline, easy-plane anisotropy,
which favors the spin alignment in the XY plane. We have,
thus, a competition between the exchange anisotropy, which
induces an Ising-like ordering, and the crystal field, which
induces an XY-like ordering. Consequently, one expects a
crossover from an Ising-like to an XY-like behavior for some
special combination of A and D. In fact, it can be shown that,
at zero temperature, two different phases coexist for D=3A
namely, one with all the spins aligned in the z-direction and
another one with all spins aligned along an arbitrary direc-
tion in the x − y plane. It is the purpose of this work to
study the phase diagram of this model as a function of the
parameters of the Hamiltonian and locate not only the first-
order transition line at finite low temperatures, but also the

second-order lines, separating these ordered phases from the
disordered one, that appears at high temperatures. In the
next section we present some details of the simulations and
the quantities we have computed from them. The results are
discussed in section 3 and the conclusions are given in the
final section.

2 Simulational methods

In order to study the model above we performed Monte
Carlo simulations [6, 7] and computed the specific heat

cV = L3 (< E2 > − < E >2)
T 2

, (2)

the magnetic susceptibility

χ = L3 (< m2 > − < m >2)
T

, (3)

and its z-component

χz = L3 (< m2
z > − < mz >2)

T
, (4)

where E is the energy per spin, and m = 1
L3

∑L3

i Si and

mz = 1
L3

∑L3

i Sz
i are the total magnetization and its z-

component, respectively. The mean value of a quantity A
is given by

< A >=
1

N − N0

N∑

j>N0

Aj , (5)

where N0 is the number of Monte Carlo steps per spin
(MCS) used for equilibration and N is the total number of
MCS. In the definitions above, we have also set kB = 1.
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The global phase diagram is obtained through the lo-
cation of the maxima of the specific heat and the mag-
netic susceptibilities. We consider finite L × L × L lat-
tices with periodic boundary conditions. To locate the max-
ima we performed preliminary simulations for each value
of the parameters, using a temperature step ∆T = 0.1 and
No = 100×L2 Monte Carlo steps per site for the system to
achieve thermal equilibrium at the lower, initial temperature.
For the subsequent temperatures, we used the final configu-
ration of the previous temperature as the initial configuration
for the next one and No = 3000 MCS for reaching the new
equilibrium state. Following equilibration, runs comprising
up to 3 × 104 MCS were performed in order to evaluate
the corresponding thermodynamic quantities. Once we get
the approximate location of the maximum from this prelim-
inary simulation, we performed another one in the vicinity
of the peak using ∆T = 0.01 with runs comprising now up
to 105 MCS. This procedure has been done considering a
particular lattice size, namely L = 14. However, we have
also done a finite-size scaling analysis [6-9] at some spe-
cific values of the parameters by taking L = 10, 12, 14, 16
for second-order transitions and L = 12, 14, 16, 20, 24 for
first-order transitions and using the single histogram re-
weighting technique[10]. In this case the histograms have
been taken with 106 MCS for second-order and 2×106 MCS
for first-order transitions. From this approach we were able
to obtain a more precise value for the transition tempera-
tures, as well as critical exponent ratios. We have neverthe-
less observed that the extrapolated transition temperatures
were very close to the value obtained for L = 14 (a discrep-
ancy of less than 2%).

3 Results

We determine the properties of the system defined by the
Hamiltonian of Eq. (1) using the methods described in the
previous section. We considered first A = 1. Apart from the
finite-size scaling analysis, all the curves were obtained tak-
ing L = 14. To show the competition between anisotropies,
Figure 1 illustrates the temperature dependence of the z-
component of the magnetic susceptibility and total magnetic
susceptibility for different values of the parameter D.

In both cases, we observe that the peaks initially move
towards smaller temperatures with increasing D (see Figs.
1(a) and 1(c)). For D ≈ 3.5, a secondary peak appears,
although more distinctively in the z-component of the mag-
netic susceptibility. With further increase of D (Figs. 1(b)
and 1(d)), this secondary peak travels towards higher tem-
peratures, in opposition to the primary peak, in such a way
that they coalesce for D ≈ 4.0. From this value on just one
peak going to higher temperatures is observed in the mag-
netic susceptibility. For the z-component of the magnetic
susceptibility, this peak progressively fades away as D con-
tinues to increase. A similar behavior is observed in the spe-
cific heat. Associating these maxima to the phase transition
we are able to plot the phase diagram for the model as in
Fig. 2. This diagram reveals an Ising-like region, separated
from an XY-like region by a first-order transition line. Both
ordered phases are separated from the paramagnetic phase

by second-order transition lines.
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Figure 1. Behavior of the magnetic susceptibility and its z-
component as a function of temperature for various values of D
for A = 1 and L = 14. In (d) the arrows indicate the position of
the secondary peaks and the symbols have been suppressed for the
sake of clarity.
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Figure 2. Phase diagram for the model given by Eq. (1). Here
A = 1 and L = 14. Full circles represent second-order and open
circles first-order transitions. The lines are guides to the eyes and
meet at a bicritical point. The error bars are of the same order as
the symbol sizes and have been omitted for clarity.

In order to characterize the order of the transitions we
have done a finite-size scaling analysis with the use of sin-
gle histogram re-weighting techniques. Fig. 3 shows the
scaling behavior of the maximum of the magnetic suscep-
tibility for D = 0 and D = 3 (on the Ising-like bound-
ary) and D = 6 and D = 8 (on the XY-like bound-
ary). One can see an expected second-order scaling behav-
ior with γ/ν = 2.05(6) for D = 0 and γ/ν = 2.08(6)
for D = 3 at the Ising-like boundary. As for the XY-like
boundary one has γ/ν = 2.12(6) and γ/ν = 2.13(6) for
D = 6 and D = 8, respectively. Although the present ap-
proach is inadequate to discriminate between the ratio γ/ν
of the three-dimensional Ising and XY universality classes
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(namely, γ/ν = 1.970(9) and 1.97(1)[11], respectively) a
clear universal second-order transition is observed for these
lines at high temperatures. A finite-size scaling analysis
of the critical temperature is shown in Figure 4 for several
values of D along the second-order lines. One can notice
again a clear second-order scaling behavior with the extrap-
olated temperatures very close to those obtained by just tak-
ing L = 14. These results justify the use of L = 14 in order
to obtain the phase diagram depicted in Figure 2.
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Figure 3. Finite-size scaling analysis of the maximum of the to-
tal magnetic susceptibility for particular points on the Ising-like
(D = 0 and D = 3) and XY-like (D = 6 and D = 8) bound-
aries.
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Figure 4. Finite-size scaling for the temperature and various values
of D along the second-order transition lines. Tc means the extrapo-
lated temperature and Tc(14) is the corresponding value for lattice
size L = 14. For D = 0 and D = 3 we have used νIsing = 0.630
and for D = 6 and D = 8, νXY = 0.669.
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Figure 5. Temperature dependence of the z and xy components
of the magnetization in the low temperature region for D = 3.5,
A = 1 and L = 14. Increasing and decreasing temperatures are
indicated by the arrows. The two different hysteresis curves are
apparent from this figure. Open circles represent mz and open
squares mxy.
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Figure 6. Characterization of the first-order transition line. (a)
Finite-size scaling analysis of the maximum of the total magnetic
susceptibility for a particular point on the first-order transition line
namely, D = 3.8 and T = 1.5. The errors are smaller than the
symbol sizes. (b) Fourth-order cumulant as a function of D for
T = 1.5 and L = 14. The behavior of this quantity also indicates
the occurrence of a first-order phase transition.
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A different behavior occurs at low temperatures. Fig. 5
shows the behavior of the z and xy components of the mag-
netization as a function of temperature for D = 3.5 and
0.95 ≤ T ≤ 1.12 i.e., crossing the first-order boundary. For
T ∼ 0.95 one has mz ∼ 0 and a finite value of mxy , charac-
terizing the XY-like phase. On the other hand, for T ∼ 1.1
the opposite occurs with mxy ∼ 0 and a finite mz , char-
acterizing thus the Ising-like phase. The hysteresis in both
magnetization curves is apparent from this figure. We have
also done a finite-size scaling analysis of the maximum of
the susceptibility for D = 3.8 on this boundary line. The
results are shown in Fig. 6(a) with a slope of 3.11(4), which
is reasonably close to the expected value d = 3 for a first-
order phase transition [9]. In addition, Fig. 6(b) also shows
the fourth-order magnetization cumulant as a function of D
for T = 1.5, which exhibits a minimum around D = 3.8,
corresponding in fact to the transition value. From the re-
sults above the first-order character of this transition line is
clear.

4 Conclusions

In this work we have studied the phase diagram of the three-
dimensional anisotropic Heisenberg model in a crystal field
by means of Monte Carlo simulations. We have shown that
the phase diagram presents, besides the disordered phase at
high temperatures, an XY-like and an Ising-like phase at low
temperatures. Both ordered phases undergo a second-order
phase transition to the disordered phase and are separated by
a first-order boundary. These lines meet at a bicritical point
given by T = 1.73(3) and D = 3.95(4). A similar picture is
observed for other values of A, with the bicritical point mov-
ing towards smaller T and D as A decreases. For instance,
for A = 0.5 one has the bicritical point at T = 1.68(4) and
D = 2.00(3).
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