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Probability Distribution of the Order Parameter
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The probability distribution of the order parameter is analyzed in order to obtain the criticality of magnetic
systems. Monte Carlo simulations have been employed by using single spin flip Metropolis algorithm aided
by finite-size scaling and histogram reweighting techniques. A method is proposed to obtain this probability
distribution even when the transition temperature of the model is unknown. A test is performed on the two-
dimensional spin-1/2 and spin-1 Ising model and the results show that the present procedure can be quite
efficient and accurate to describe the criticality of the system.

1 Introduction

The order parameter distribution function has been proved
to be a powerful tool for studying not only magnetic sys-
tems [1-5], but also the liquid-gas critical point [6], the
critical point in the unified theory of weak and electro-
magnetic interactions[7], and the critical point in quantum
chromodynamics[8]. For the specific case of magnetic sys-
tems the order parameter can be chosen as the magnetiza-
tion per spin, namely m = 1

N

∑N
i=1 Si, where N is the

total number of spins and Si is the spin at site i. In finite-
size systems, the magnetization m is a fluctuating quantity,
characterized by the probability distribution P (m) [1, 2]. In
Ising-like models undergoing a second-order phase transi-
tion it is known that at temperatures lower than the critical
temperature Tc, the distribution P (m) has a double peak,
centered at the spontaneous magnetizations +m and −m.
At temperatures greater than Tc, P (m) has a single peak at
zero magnetization, and exactly at Tc a double-peak shape
is observed[1]. Analogously to the usual finite-size scaling
assumptions [9], one then expects that, for a large finite sys-
tem of linear dimension L at the critical point, P (m) takes
the form

P (m) = bP ∗(m̃), (1)

where b = b0L
β/ν , β and ν are critical exponents, m̃ = bm,

b0 is a constant, and P ∗(m̃) is a universal scaling function,
normalized to unit norm and unit variance. Scaling func-
tions, such as P ∗, are characteristic of the corresponding
universality class. Systems belonging to the same universal-
ity class share the same scaling functions. Thus, from the
precise knowledge of P ∗(m̃) one can characterize critical
points and also identify universality classes. This is what has
been done so far in the literature, with the distribution for the
spin-1/2 Ising model being the standard P ∗ function[4, 6]
for this universality class. For instance, it is shown in Fig. 1
the normalized distribution P ∗(m̃) for the two-dimensional

spin-1/2, spin-1, and spin-3/2 Ising model at criticality. Sim-
ulations have been done on square lattices with L = 32 at
the exact Tc for spin-1/2, at Tc = 1.6935 for spin-1, ac-
cording series expansions [10] and Monte Carlo simulations
[11], and at Tc = 3.28794 for the spin-3/2 model [11]. The
universal aspect of these systems can be easily noted.
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Figure 1. Scaling function P ∗(m̃) for the two-dimensional spin-
1/2, spin-1, and spin-3/2 Ising model on square lattices with L =
32. Simulations were performed at the exact Tc for spin-1/2, at
Tc = 1.6935 for spin-1, according series expansions [10] and
Monte Carlo simulations [11], and at Tc = 3.28794 for the spin-
3/2 model [11]. The error bars are smaller than the symbol sizes.
After Ref. [11]

Monte Carlo simulations seem to be the most effective
method to obtain results as those shown in Fig. 1, where the
probability distribution P (m) corresponds to the fraction of
the total number of realizations in which the system magne-
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tization is m, i.e.,

P (m) =
Nm

NMCS
, (2)

where Nm is the number of times that magnetization m ap-
pears and NMCS is the total number of Monte Carlo steps.
To compute the normalized distribution P ∗(m̃) via Eq. (1)
one has to evaluate the pre-factor b. This can be easily done
by noting that b = 1/σ, where σ is the square root of the
magnetization variance (σ2 = 〈m2〉− 〈m〉2). Thus, one ob-
tains the universal function P ∗(m̃) by simply rescaling the
magnetization and by using Eq. (1).

In general, the probability distribution is used for study-
ing models in which the critical temperature or even the dis-
tribution function is exactly (or high-precisely) known. That
is in fact what has been done in the study of several systems.
When this distribution, as well as the critical temperature
and critical exponents, are not known, one can of course do
first a canonical simulation in order to get the critical values
(universal and non universal) and compute, afterwards, the
desired distribution. The present approach is different from
this conventional one in the sense that it does use the order
parameter distribution itself in order to obtain the criticality
of the system. The procedure, as well as the results obtained
for the spin-1/2 and spin-1 Ising model, are discussed in sec-
tion 2 and the conclusions are presented in the final section.

2 Approach and results

We have performed extensive Monte Carlo simulations (up
to 107−108 Monte Carlo steps per spin after 2.0−5.0×104

steps for thermalization) on square L× L lattices with peri-
odic boundary conditions for systems of length 12 ≤ L ≤
64. For a given L, the simulation ran at a fixed temperature,
evolving according the standard Metropolis algorithm. A
histogram reweighting technique [12, 13] was used to obtain
thermodynamic information in the vicinity of the simulated
temperature.

Let us first discuss the spin-1/2 Ising model. Fig. 2
shows the distribution P ∗ as a function of the normalized
magnetization m̃ for temperatures different from the critical
value Tc. As expected, one can see that for a temperature
lower than Tc (Fig. 2a), the maximum value of P ∗ increases
when the lattice size L increases, while for a temperature
greater than Tc, an increase of L leads to a decrease of the
corresponding peaks of P ∗ (see Fig. 2b).

In other words, suppose we have a distribution
function P ∗(m̃) for a given L (say for example,
L = 16) at a fixed temperature TL=16. If TL=16 < Tc,
a similar distribution will be obtained for a bigger lattice
(e.g., L = 64) at a different temperature TL=64 such that
TL=16 < TL=64 < Tc. Analogously, if TL=16 > Tc, we
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Figure 2. Scaling function P ∗(m̃) for the spin-1/2 Ising model
with L = 16, 32, and 64 at a fixed temperature T : (a) lower than
Tc (T = 2.2472) and (b) greater than Tc (T = 2.2831). The error
bars have been ommited for clarity.

will have TL=16 > TL=64 > Tc. This fact suggests a mech-
anism to obtain the critical temperature, as well as the ex-
ponent ν and the universal distribution, for the system un-
der study. Table I shows the temperatures of several lattice
sizes we have used to obtain the distributions displayed in
Fig. 3. These temperatures were evaluated as follows. For
L = 64 and a given temperature, for instance T = 2.2989
in Table I, we compute the corresponding probability dis-
tribution of the order parameter, which will be the “refer-
ence” distribution. For other values of L, we search for the
temperature TL which gives a distribution equivalent to the
reference one. In this way, we obtain the data shown in the
second column of Table I. Taking a different reference dis-
tribution, obtained at a different temperature for L = 64, we
have another set of TL, and so on. All the distributions so
obtained are depicted in Fig. 3. It means that each curve in
Fig. 3 is in fact a superposition of six different distributions
taking at the temperatures given in Table I.

Since one expects that the difference |TL − Tc| scales as
L−1/ν , where ν is the correlation length critical exponent, a
finite-size scaling analysis can be done to estimate the criti-
cal values of the infinite system. In Fig. 4a, we have a plot
of TL vs. L−1/ν , with ν = 1, using the values of the first
five columns of Table I, which confirms the exact exponent
ν = 1 and gives Tc = 2.267(2). Another choice for this
model is, of course, the corresponding critical temperature.
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TABLE I. Temperature for different lattice sizes at which the distribution P ∗(m̃) for L = 16 − 48 is the same as that obtained for L = 64
at the shown temperatures (spin-1/2). Error in parentheses affects the last digits. The second and third columns correspond to temperatures
greater than the critical one, and the two following columns correspond to temperatures lower than the critical one. The last column
represents the data when P ∗(m̃) for L = 64 is obtained at Tc.

Size Temperature (in units of J/kB)
16 2.3923(11) 2.3272(8) 2.2477(8) 2.1901(10) 2.27221(52)
20 2.3666(8) 2.3154(8) 2.2502(8) 2.2036(10) 2.27092(52)
24 2.3502(8) 2.3073(5) 2.2528(5) 2.2134(7) 2.27015(52)
32 2.3288(5) 2.2973(5) 2.2563(5) 2.2262(5) 2.26963(26)
48 2.3089(5) 2.2878(5) 2.2604(5) 2.2399(5) 2.26937(26)
64 2.2989 2.2831 2.2624 2.2472 2.269184
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Figure 3. Normalized distribution P ∗(m̃) for systems with lattice
sizes and temperatures shown in Table I. Each curve is a supper-
position of six different distributions taking with the data from this
table.

In this case (very close to Tc, last column of Table I),
however, it is known that |TL − Tc| scales as L−(1+θ)/ν ,
where θ is the correction to scaling exponent [1]. In Fig. 4b,
we plot the estimates TL as a function of L−(1+θ)/ν with
ν = 1 and θ = 2 [14]. Linear regression gives Tc =
2.2693(1) for the infinite system, which is in fact quite close
to the exact one.

In order to measure the applicability of the present
mechanism for obtaining the transition temperature from
non-universal distributions, we also study the spin-1 Ising
model. To have an idea of the value of Tc, one just per-
forms short simulations in a range of temperatures to check
whether the probability distribution P (m) has single or dou-
ble peak. Then, one proceeds according to the same manner
already discussed for the spin-1/2 case. We fix the temper-
ature and verify how the peaks of the distribution change
if the lattice size L increases. Fig. 5 shows the distribu-
tions obtained for lattice sizes L = 12, 16, 24, and 32 at
two different temperatures: T = 1.660 and T = 1.720. In
the former case an increasing lattice size leads to increasing
peaks, while in the latter case the height of the peaks de-
creases when the lattice becomes larger. Thus, we conclude
that the transition temperature is between 1.660 and 1.720,
and hence we perform longer simulations in this temperature
range.
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Figure 4. (a) Temperature TL as a function of L−1/ν with ν = 1.
Different symbols correspond to different choices of the reference
distribution (from top to bottom we have the results from the sec-
ond to fifth columns of Table I). Error bars are smaller than the
symbol sizes. (b) Temperature TL as a function of L−(1+θ)/ν with
ν = 1 and θ = 2 taking the data of the last column of Table I.

The procedure now is the same as that we have done for
the spin-1/2 model. We fix the temperature and compute
P ∗(m̃) for the lattice with L = 32 (reference distribution).
For a different L, we search for the temperature that gives
a distribution equal to the reference one. Table II shows
the temperatures so obtained. For each set of temperatures
(which corresponds to each column of Table II), we plot TL

vs. L−1/ν and vary the exponent ν until we get a straight
line. Thus, each column of Table II gives an independent
estimate of ν and also of the critical temperature Tc. Fig. 6
illustrates this procedure. By taking the mean value of these
quantities, one obtains ν = 1.0(1) and Tc = 1.6933(16),
where the latter agrees well with the value Tc = 1.6935(10)
[10]. After we have evaluated Tc, we ran a longer simulation
on a larger lattice to determine, by this way, the universal
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distribution P ∗(m̃). Fig. 7 shows the distribution P ∗(m̃)
on a L = 64 lattice for spin-1/2 and spin-1 models, and
confirms the fact that both systems belong to the same uni-
versality class, as already expected.
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Figure 5. Scaling function P ∗(m̃) for the spin-1 model on square
lattices with L = 12, 16, 24, and 32 at a fixed temperature T : (a)
lower than Tc (T = 1.660) and (b) greater than Tc (T = 1.720).

TABLE II. Temperature for different lattice sizes at which the dis-
tribution P ∗(m̃) for L = 12 − 24 is the same as that obtained for
L = 32 at the shown temperatures (spin-1). Error in parentheses
affects the last digits. The second and third columns correspond
to temperatures greater than the critical one, and the two following
columns correspond to temperatures lower than the critical one.

Size Temperature (in units of J/kB )
12 1.598(4) 1.652(2) 1.708(2) 1.765(1)
16 1.624(2) 1.664(2) 1.705(2) 1.747(1)
24 1.649(2) 1.675(1) 1.702(1) 1.730(1)
32 1.660(2) 1.680(1) 1.700(1) 1.720(1)

3 Conclusions

The present approach, using just the order parameter distri-
bution, seems to be a robust way to obtain the criticality of
magnetic systems, regarding its universal and non-universal
aspects. There is a clear distinction between the finite-size
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Figure 6. Temperature TL as a function of L−1/ν (spin-1). Differ-
ent symbols correspond to different choices of the reference distri-
bution (see Table II). The values of ν that give the best linear fit
were (from top to bottom): ν = 0.9(1), ν = 0.9(1), ν = 1.1(1),
and ν = 1.1(1). Error bars are smaller than the symbol sizes.
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Figure 7. Universal function P ∗(m̃) for lattice size L = 64 at
temperatures obtained in this work: T = 2.2693 for spin-1/2 and
T = 1.6933 for spin-1.

behavior of P ∗ close to the critical temperature (scaling with
L−(1+θ)/ν) or away from it (scaling with L−1/ν), as de-
picted in Figs. 4 and 6. It also seems, at first sight, that
there is a limitation regarding the size of the lattices which
could be considered. For instance, we have used here lattice
sizes which are smaller than that from the reference distri-
bution. Nevertheless, this limitation is not so drastic since
in the spin-1 model we considered the reference distribu-
tion for L = 32 and with lattices smaller than this value
the results prove quite accurate. One can, of course, con-
sider lattices larger than that of the reference distribution.
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We feel, however, that reweighting the distribution is more
easily done for smaller systems. Application of the present
procedure to other models (pure and random), as well as to
multicritical behavior, will be very welcome; some are now
in progress.
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