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Growth Surface Model with Non Active Sites
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Received on 5 September, 2003

In this work we studied the effects of non active sites on the substrate of a growing surface. In our model a
particle only sticks at the surface if the site where it falls is an active site. However, we allow the deposited
particle to diffuse along the surface in accordance with some previously defined mechanism. Using Monte
Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions,
considering different relaxation mechanisms. We show that the inclusion of non active sites is a crucial point
in the model. In fact, we have observed that the saturation regime always disappears and that the values of the
growth exponent β go to one, at large times, for any mechanism of diffusion we considered in one and two
dimensions.

1 Introduction

Growth surface models have been extensively studied in the
last years in order to better understand the conditions under
which the growing of a surface is affected. The interest in
this phenomenon is related to the great variety of techno-
logical applications that depend on the morphology of the
surface [1-3]. On the other hand, the growth of a surface,
despite to be a typical non equilibrium process, presents a
scaling behaviour for the fluctuations of the interface width
around its mean, which depends on time and length of the
sample [4]. Then, much attention has been also devoted to
the study of the growing processes, particularly with respect
to the universality class in which a particular model can be
classified [5-12]. In this work we have studied growth sur-
face models in one and two dimensions considering the exis-
tence of defects on the substrate where the particles land. In
our model, the particles can not collide with given surface
sites. As we will see later, the introduction of defects on
the substrate is a crucial factor to determine the morphology
of the surface. For the best of our knowledge, the growth
surface models found in literature do not consider the possi-
bility of defects on the substrate. Our paper is organized as
follow. In section II, we present the Vicsek-Family scaling
relation and the models considered in this study. Besides,
we also present the analytical results for a simple deposi-
tion model in d + 1 dimensions, as well as we show the
results of Monte Carlo simulations for models that take into
account some relaxation mechanism in d + 1 dimensions,
with d = 1, 2. Finally, in section III, we draw our conclu-
sions.

2 Models, scaling laws and results

The simplest model to describe the growing of a surface is
the random deposition model (RD) [1,2]. In this model, a
site on the substrate is randomly chosen and its height is in-
creased by one unit. Therefore, a particle immediately sticks

at the place where it hits. More realistic models consider an
additional step: after the deposition, the particle can move to
a neighbor site following a given rule. In the Family model,
for instance, the particle migrates to the site with the small-
est height among its first neighbor sites [4]. On the other
hand, in the large curvature model (LC) [5,12], the particle
moves to the nearest-neighbor site with the maximum value
of the local curvature. In general, as a result of the particle
diffusion, the interface becames smoother. In the models we
consider, we used a substrate in d dimensions with linear
size L and we took periodic boundary conditions in the di-
rection perpendicular to the growth surface. Besides, at the
initial time t = 0 all the sites of the substrate are empty and
the time unit is the conventional Monte Carlo step (MCs) in
which Ld particles are deposited.

In order to characterize the growth of a surface two func-
tions are defined: (a) the mean value of the height of the sur-
face and the fluctuations of the height of the surface around
its mean value. For a substrate of linear size L in d dimen-
sions these quantities are defined, respectively, by

h̄(t) =
1
Ld

∑

i

h(i, t) , (1)

and

w(L, t) = 〈 1
Ld

[ ∑

i

(h(i, t) − h̄(t))2
] 1

2 〉. (2)

Here, h(i, t) is the height at the position of the site i, the
sum extends over the Ld sites of the lattice and the symbol
< ... > means an average over the K independent samples.
The quantity w(L, t), also known as the interface width, is a
measure of the roughness of the surface at time t, for a par-
ticular value of L. The scaling behavior dependent on time
t and length L of the growth model can be summarized by
the Family-Vicsek scaling law [4]

w(L, t) = tβ F
( L

t1/z

)
, (3)
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where the scaling function F (u) is constant for u >> 1 and
scales with uα for u << 1. Besides, t� ∝ Lz represents a
characteristic time related to the change of the behavior of
the surface roughness. For t << t� the roughness of the sur-
face increases in accordance with w ∝ tβ , while for t >> t�

the roughness of the surface reaches a saturation regime in
which the value of the roughness is constant but dependent
on the lattice length w ∝ Lα. α , β and z are the rough-
ness, growth and dynamic exponents, respectively, and they
are related by β = α/z. In the following table we show the
values of the growth exponents for the models considered in
this work.

model α β z
RD - 1/2 -

Family (2 − d)/2 (2 − d)/4 2
LC (4 − d)/2 (4 − d)/8 4

As we can see, only the exponent β is defined for the RD
in d dimensions. On the other hand, the exponents α and
β are zero for the Family model in d = 2 dimensions and
for the LC model in d = 4. The interface width presents a
logarithmic behavior for the Family model in d = 2 and the
LC model in d = 4.

One of the features that have received little attention in
growth models is related to the nature of the substrate. As
we mentioned before, generally we have a flat substrate in a
regular lattice (square, triangular, hexagonal, etc), in which
the sites are initially empty. However, in a few cases, the
substrate was considered to be a fractal structure or at the
initial time it was not empty. To include defects on the sub-
strate, we have considered a model in which a fixed den-
sity of sites are non active, that is, particles landing on the
surface can not directly stick at these sites. However, if a
relaxation process is possible, the non active sites can be
occupied by migration. We will see that the consideration
of non active sites over a substrate completely changes the
profile of the surface roughness.

Now, we present some results for the growth models tak-
ing into account the presense of defects on the substrate.
Firstly, we present an exact calculation of the surface rough-
ness for the RD model in d + 1 dimensions. So, let us con-
sider a d−dimensional substrate with l = Ld sites, where
0 < m < l are active sites, that is, sites where particles can
collide and stick. We randomly choose an active site and
we increase its height by one unit. By doing so, the height
of the l − m inactive sites is zero at any time. If the time
unit is defined by the deposition of l particles, and if the
flow of particles that arrive at the surface is constant, then,
after a time t, N = lt particles are deposited on the sub-
strate. In this model, the height at each site of the surface
grows independently (the sites are uncorrelated) with prob-
ability p = 1/m. Therefore, the probability that an active
has height h after the deposition of N particles is given by
the binomial distribution

P (h, N) =
N !

h!(N − h)!
ph(1 − p)N−h . (4)

The mean value of the height of the surface is N/l = t.
In order to find an exact expression for the roughness of

the surface we rewrite the equation (2.2) taking into account
that only m sites are active

w2(l, t) = h̄2(t) +
1
l

m∑

i=1

h2(i, t)− 2h̄(t)
l

m∑

i=1

h(i, t) . (5)

But, if N particles are deposited onto the m active sites with
same probability, then we can define

< h�(t) >=
1
m

m∑

i=1

h(i, t) , (6)

and

< h�2(t) >=
1
m

m∑

i=1

h2(i, t) . (7)

On the other hand, the above mean values can be written as

< h�(t) >=
N∑

h=1

h�(t)P (h, N) , (8)

and

< h�2(t) >=
N∑

h=1

h�2(t)P (h, N) . (9)

Substituting P (h, N) given by eq. (2.4) in the last two
equations we obtain, after some algebraic manipulations,

< h�(t) >=
N

m
, (10)

and

< h�2(t) >= Np(1 − p) + N2p2 . (11)

Besides, as h̄(t) = t = N/l and p = 1/m we can easily
show that the equation (2.5) becomes

w2(l, t) = (
l − m

m
)t2 + (

m − 1
m

)t . (12)

From the above equation, we observe a very interesting
behavior of the interface width as a function of the time. As
expected, the roughness does not saturate, but at the initial
times (t << tc) the roughness scales as w ∝ t1/2, while
at large times (t >> tc) the roughness grows as w ∝ t
for m > 1, where tc is a characteristic time of the model
where the linear and quadratic terms give the same contri-
bution to the roughness of the surface. This result implies
that β = 1/2 at the initial times and β = 1 at long times.
Then, independently of the inactive sites density over the
substrate, there is a change in the dynamical behavior of the
surface roughness when defects are present.
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Figure 1. Plot of the interface width versus time for the Family
model in d = 1 and with L = 1000 for different values of the
density of non active sites.

In the RD model with defects a particle can not stick at
an inactive site and, as migration is not permitted to these
sites, their local heights always remain zero. In principle,
this fact could be associated with the anomalous behavior of
the roughness as a function of time. Then, in order to get
a better understanding of this behavior we have considered
models in which inactive sites can be reached by some type
of migration mechanism. We first consider the mechanism
defined for the Family model in which the particle can move
to the nearest-neighbor site with the smallest height after its
deposition. We remember that particles only collide with a
given site if it is an active one. To calculate the roughness
of the surface for this model in 1 + 1 and 2 + 1 dimensions
we have used the Monte Carlo method. In Fig. 1 we show
the behavior of the interface width as a function of time for
a linear substrate with length L = 1000, and four different
values of the density of inactive sites, ρ = 1 − m/Ld. As
we can see, the dynamical behavior of the roughness for this
model changes completely if ρ �= 0. In fact, the behaviour
of this quantity is equivalent to that RD one when defects are
present on the substrate. The same occurs for the model in
2 + 1 dimensions as shown in Fig. 2. Again, the roughness
of the surface does not saturate, and at large times, w ∝ t
for any value of the linear size of the substrate and density of
inactive sites. To draw this figure we have used a quadratic
lattice with linear length L = 256. We also repeated the
same calculations as above for the LC model. In this model,
the particle landing on an active site i of the substrate mi-
grates to its first neighbor site with the maximum value of
the curvature C(i) =

∑n
j=1[h(j) − nh(i)], where the sum

extends to the first neighbor sites, and n = 2(d = 1) or
n = 4(d = 2). In Figs. 3 and 4 we show the dynami-
cal behavior of the roughness of the surface for this model
as a funtion of the time for one and two dimensional sub-
strates, respectively. Again, the roughness of the surface
does not saturate showing an anomalous behavior as seen
for the other models considered in this work. The linear size
of the lattices used in these figures are L = 1000 for the
linear lattice and L = 256 for the square lattice.
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Figure 2. Interface width as a function of time for the Family model
in two dimensions for different values of the density of non active
sites. We have used L = 256 sites in this figure.
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Figure 3. Plot of the interface width versus time for the Large Cur-
vature model in d = 1 and with L = 1000 for different values of
the non active sites density.
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Figure 4. Interface width as a function of time for the Large Cur-
vature model in two dimensions for different values of the density
of non active sites. We have used L = 256 sites in this figure.
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3 Conclusions

In this work we have considered the presence of non active
sites over the substrate for some growth models. By an exact
calculation for the RD model and Monte Carlo simulations
for the Family and LC models, for which relaxation mecha-
nisms were considered, we have shown that the inclusion of
defects is crucial to determine the morphology of the inter-
face. In fact, we found that the interface width does not sat-
urate even when relaxation processes are present. Besides,
the growth exponent β characterizing the dependence of the
roughness on time also changes. At small times, the value of
the exponent β is the same as the one of the standard model
(no defects present) and, at large times, β = 1 for all the
models we considered.
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