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Microphase Separation of Diblock Copolymer with Moving Walls
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Diblock copolymers are linear chain molecules consisting of two subchains A and B grafted covalently to each
other. Below some critical temperature Tc these two blocks tend to segregate, but due to the covalent bond
they can segregate at best locally to form periodic structures (microdomains). For molecules whose subchains
have the same length, the equilibrium pattern is lamellar. In the bulk regime, these microdomains are ordered
at random. To obtain an oriented lamellar pattern it is necessary to consider some asymmetry. In the presence
of an external field, the lamellae will align to it. Directional quenching also can lead to the growth of oriented
microphase separation. The effect of boundary conditions (confinement between parallel walls) also generates
well-aligned lamellae, parallel to the walls. If the distance between the walls is comparable to the molecular
sizes, another constraint is imposed on the system since the domains are forced to accommodate between the
walls and, for certain conditions we will see a frustration phenomenon. If we allow the walls to move with a
certain velocity during phase segregation, the accommodation of the lamellae can be changed. We use a cell
dynamical system, which is a very efficient computational method, in order to investigate the effect of moving
walls in lamellae formation.

1 Introduction

Diblock copolymers are linear-chain molecules consisting
of two subchains of different monomers A and B, bounded
covalently to each other [1]. Below some critical tempera-
ture TC , the two polymers species tend to separate, but due
to the covalent bond they are unable to form only two do-
mains, growing in a periodic structure which is locally seg-
regated on the scale of nanometers, referred to microphase
separation. If the two blocks have equal length, they segre-
gate in a lamellar structure parallel to the walls of confine-
ment, when this interaction is dominant.

Microphase separation has been widely studied during
the last twenty years, for technological and theoretical rea-
sons. As shown by Bates and Fredrickson [2], control over
molecular scale morphology allows the development of new
kinds of materials, of great utility for industry. From a
fundamental viewpoint, films of polymers present advanta-
geous model systems for investigations of phase equilibria
in reduced geometry. Likewise, the influence of physical
boundaries on the kinetics of phase separation and the result-
ing equilibrium morphology can be studied in quite some
detail [3]. From the technological view, they are present in
commercial products as coatings, paints, photoresists, and
even exciting applications in lithography, because of self-

organization of amphiphilic block copolymers [3].

Diblock copolymers films have been studied in a variety
of settings: interacting walls either symmetric or asymmet-
ric, neutral walls with matched densities [4, 5, 6, 7, 8, 9] and
neutral walls confining molecules with mismatched densi-
ties [10] and gravity effects [11] , to investigate pattern for-
mation in a film confined between two hard surfaces. As
for pattern formation, we can summarize all the above sit-
uations: when the walls are neutral, in the absence of mis-
match, lamellae will form in the direction normal to the sub-
strate; if interaction with the walls is added, the lamellae
will form parallel to the walls; for molecules with density
mismatch in the presence of a gravitational field normal to
the confining walls, lamellae form parallel to the walls.

In this article we assume that the walls are not rigid,
and we investigate the influence of moving walls on pat-
tern formation. For this we simulate the diblock copolymer
using the cell dynamics system (CDS) model [12]. Oono
and Shiwa [13] first studied pattern formation in this model,
which is intensively used nowadays. The spirit of their mod-
eling was purely phenomenological [14], however the mo-
tivation was to have the simplest model to give a spatially
nonuniform equilibrium pattern. CDS consists in a map
that describes the order parameter evolution of each little
portion (cell) of the system in a mesoscopic scale. It is a
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discreet formulation able to describe on a non-continuous
functional, computationally efficient to the numerical study
of phase ordering [15]. This work is organized as follows:
in the next section we present the basic formulation of CDS
model and our considerations to include the effect of mov-
ing walls. Then, in the third section, we discuss the results
obtained. Our conclusions are presented in the final section.

2 CDS Model

The CDS model is a map that sends an instantaneous dis-
crete frame of spatial pattern to another near it. We assign
a scalar variable ψ(n, t) to each lattice site corresponding
to the coarse-grained order parameter in the nth cell at time
t (time here is defined as the number of interations). This
order parameter represents the difference ψA − ψB, where
ψA (ψB) is the local number density of A(B) species. First,
we consider the local dynamics (each cell), analyzing if the
order parameter increases or not. Second, we include the
nearest neighbor interaction. Next, we must impose the con-
dition of conservation of order parameter and connectivity
of distinct species. Taking this to account, we can write

ψ(n, t+ 1) = (1 − ε)ψ(n, t) +
〈〈C (i, j; sgn [α]) × α〉〉 , (1)

where α = [I (n, t) − I (j, t)] and

I (n, t) = D tanh [ψ(n, t)] − ψ(n, t)
+E (〈〈ψ(n, t)〉〉 − ψ(n, t)) (2)

is the chemical potential; 〈〈〉〉 represents the isotropic space
average and ε, D and E are positive phenomenological con-
stants. The parameter ε appears in this model to stabilize the
solution ψ = 0 in the bulk. Also,

C (i, j;α) = [ψc + αψ (j)] [ψc − αψ (i)] /ψ2
c , (3)

where ±ψc denote the zeroes of D tanh [ψ(n, t)] − ψ(n, t).
The DCS formulation is equivalent to a discrete formu-

lation of the Cahn-Hilliard equation, usually employed to
study polymer phase separation. The former has the advan-
tage that the function tanh [ψ(n, t)] is more stable than the
cubic polynomial form of the Cahn-Hilliard order parameter
[1].

The movement of the walls and the interaction of the
subchain with the surface are considered in the boundary
conditions. The intensity of the interaction with the surface
is given by the parameter σ, and we assume that each surface
attracts a different subchain.

3 Results and Discussion

For the simulations we choose a 25 × 256 initial lattice,
A = 1.2, D = 0.5, ε = 0.01, and a uniformly distributed
initial condition. At each time step, we impose the move-
ment of the walls, with a stochastic velocity,

v = 〈
∑

∆xi

t
〉αP (4)

where ∆xi = 0 or 1 with the probabilityP and t is the com-
putational time (number of interactions). A schematic view
can be seen in Fig. 1.

Figure 1. Schematic view of the movement of the wall.

Figure 2. For all patterns, P = 0.005. (a) σ = 0, (b) σ = 0.0001,
(c) σ = 0.001, (d) σ = 0.01.

In Fig. 2, we can see the effect of the surface interaction
on the pattern formation, after 2000 iterations. For larger
values of σ, the tendency of the pattern is to form lamellae
parallel to the surface. When σ is small, the movement of
the walls leads to the formation of perpendicular lamellae.

In Fig. 3 the time evolution of the pattern is shown for
parameter values P = 0.01 and σ = 0.01. We now see the
competition between the two effects: the pattern exhibits
both parallel and perpendicular lamellae. The size of lamel-
lae, w, changes slowly, as can be seen in Fig. 4. To ac-
commodate the pattern between the walls, the number of
lamellae changes, growing with time.
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Figure 3. For all patterns, σ = 0.01 and P = 0.01. (a) t = 500,
(b) t = 1000, (c) t = 1500, (d) t = 2000, (e) t = 2500.

Figure 4. Lamellae size evolution.

4 Final Remarks

In this work, we applied a cell dynamical system computa-
tional method to investigate the effect of moving walls on

lamellae formation of diblock copolymers. The effect of
confinement between parallel walls, simulated in boundary
conditions, generated well-aligned lamellae, parallel to the
walls for larger values of the surface interaction σ. For small
σ, the movement of the walls provokes formation of perpen-
dicular lamellae. When the distance between the walls is
comparable to the molecular sizes, the domains are forced
to accommodate between the walls and, for certain condi-
tions, we observe frustration. If we allow the walls to move
during phase segregation, the accommodation of the lamel-
lae changes. Our results also demonstrate a slow time evo-
lution of the size of lamellae due to competition between the
stochastic velocity of movement and the surface interaction.
In this case the pattern exhibits both parallel and perpendic-
ular lamellae.
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