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Received on 3 November, 2003

We studied a layered mixed-spin Ising model, with spins σ = 1/2 and S = 1, distributed on the sites of a
hexagonal lattice. For this spin arrangement, any spin at one lattice site has two nearest-neigbor spins of the
same type, and four of the other type. We assumed that the exchange interaction between spins σ and S is
antiferromagnetic, with the value J1. J2 is the exchange interaction between two nearest neighbor σ spins,
and J3 is the coupling between two nearest neighbor S spins. We also considered a single-ion crystal-field
contribution D to the S sites. We performed mean-field calculations and Monte Carlo simulations to determine
the compensation point of the model. We have shown that a compensation point can be present for any positive
value of D. We have also found a negative lower bound for D, below which a compensation point can not
appear. For each value of D, we determined the range of values of the J2 and J3 couplings for which a
compensation point is realizable.

In the recent years a lot of efforts has been dedicated
to the study of the ferrimagnetic materials, specially due
to their great potential for technological applications [1, 2].
The search for the new designed ferrimagnetic materials re-
quires also a better understanding of their physical prop-
erties. Despite their simplicity, mixed-spin Ising systems
have shown to be the simplest models for studying ferri-
magnetism. These models have been studied by a vari-
ety of techniques, including effective-field theories [3, 4],
renormalization-group calculations [5, 6, 7] and Monte
Carlo simulations [8, 9].

In a ferrimagnetic material two inequivalent moments,
interacting antiferromagnetically, can give rise to a zero
spontaneous magnetization below its critical temperature
[10]. This happens, due to the different dependences of
the sublattice magnetizations on temperature. Then, a spe-
cial point can appear at a temperature below the critical
one, where the sublattice magnetizations cancel exactly each
other. This point is the so called compensation point. The
magnetic behaviour of a ferrimagnetic system near the com-
pensation point is of fundamental importance in the area of
the thermomagnetic recording devices [11].

The compensation temperature of a mixed-spin Ising
model on the square and honeycomb lattices was already
investigated. In these lattices, the nearest-neigbour interac-
tions are always between spins σ and S. The mean-field ap-
proximation predicts the existence of a compensation point,
but only for a very narrow region of negative values of the
crystal-field parameter. However, these results are in dis-
agreement with Monte Carlo simulations. It is necessary to
include in the simulations a next-nearest ferromagnetic σ−σ
interaction, in order to have a compensation point.

In this work we investigated a layered mixed-spin Ising

model with spins σ = 1/2 and S = 1, defined on a hexago-
nal lattice. The lattice is formed by alternate layers of spins
S and σ. The hamiltonian model for this ferrimagnetic sys-
tem is

H = −J1

∑

〈i,j〉
Siσj − J2

∑

〈i,j〉
σiσj

−J3

∑

〈i,j〉
SiSj − D

∑

i

S2
i , (1)

where J1, J2 and J3 are the exchange couplings between
nearest-neighbor pairs of spins σ − S, σ − σ and S − S,
respectively, and D is the crystal-field contribution. In all
the following analysis we will take J1 < 0. We have also
performed mean field calculations at the one site level. For
the Monte Carlo simulations, the initial configurations were
taken random, and we flipped the spins once a time, accord-
ing to the heat-bath algorithm [12]. We considered hexago-
nal lattices of lattice sizes L, along with periodic boundary
conditions. We used lattices of sizes L = 8, 16, 32 and 64,
and in each Monte Carlo step (MCs) we performed L2 tri-
als of flipping the spins. In order to get reliable results, we
performed around 4000 MCs for the lattice with L = 64,
where the first 1000 MCs were discarded for the thermaliza-
tion process. We also considered averages over 100 differ-
ent samples in our calculations. Although not shown in the
next figures, the error bars are smaller than the symbol sizes.
Then, let us present our results.

In Fig. 1, we show the behavior of the sublattice magne-
tizations (mσ, mS), and of the total magnetization, mtot =
(mσ + mS)/2, as a function of the temperature. For the
set of values of the exchange interactions, J1 = −1.0J ,
J2 = 1.0J and J3 = −1.05J , and for the crystal-field pa-
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rameter D = −0.75J , we observe the existence of a com-
pensation point. Fig. 1(a) shows the results of the mean-field
calculations, and we found Tcomp = 0.78J/kB for the tem-
perature of the compensation point, and Tc = 1.37J/kB,
for the transition temperature. As can be seen, the compen-
sation point appears due to the different dependences of the
sublattice magnetizations on temperature. As the tempera-
ture increases, more and more spins of the sublattice S flip
from their ordered to the disordered state, because of the
antiferromagnetic exchange coupling J3. However, as the
ferromagnetic exchange interaction J2 is positive, the ma-
jority of the spins of the sublattice σ remains in its ordered
state. At T = Tcomp, the two sublattice magnetizations can-
cel each other, giving rise to a zero total magnetization. For
T > Tcomp, the total absolute magnetization increases up to
a maximum value, and then starts to decrease, going to zero
at the critical temperature Tc. Fig. 1(b), Monte Carlo simu-
lations, presents the same trends of Fig. 1(a), but the results
we found for the compensation and critical temperatures are
Tcomp = 0.26J/kB and Tc = 0.62J/kB, respectively.
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Figure 1. Sublattice and total magnetizations as a function of the
temperature for J1 = −1.0J , J2 = 1.0J , J3 = −1.05J and
D = −0.75J . (a) mean-field calculations and (b) Monte Carlo
simulations. The insets show the sublattice magnetizations. Tcomp

and Tc are shown in the figures.

There is a minimum value of the ferromagnetic inter-
action parameter J2 for the appearance of the compensation
point, which depends on the value of the crystal-field D. We
show in Fig. 2(a), the minimum value of J2 as a function of
D in the mean-field approximation for J1 = −1.0J and

J3 = −1.0J . The minimum value of J2 for which a com-
pensation point appears is an increasing function of D. As
D decreases, the magnetization of the sublattice S decays
faster, and the crossing point of the two sublattice magne-
tizations moves to lower temperatures. At these tempera-
tures, the sublattice σ is well ordered even for a small value
of J2. In Fig. 2(b) we present the dependence of J2 on D,
obtained through Monte Carlo simulations for J1 = −1.0J
and J3 = −0.98J . A different behavior appears in the range
of values −0.25J < D < 0.50J , where J2 decreases with
D. In this model, for D < −3.00J , the system is repre-
sented by a set of uncoupled chains of σ spins. We attribute
this behavior to a dimensional crossover, which is not cap-
tured by the one site mean-field approximation.
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Figure 2. Minimum value of J2 for the appearance of a compensa-
tion point as a function of the crystal field parameter D. (a) mean-
field calculations for J1 = −1.0J and J3 = −1.0, and (b) Monte
Carlo simulations for J1 = −1.0J and J3 = −0.98. Region A,
ms > mσ for T < Tc, and B is the region where we have the
compensation points.

Figure 3 shows the range of values of the antiferromag-
netic interaction J3 for which we have a compensation point,
as a function of D, for J1 = −1.0J and J2 = 1.0J . Figs.
3(a) and 3(b) give the mean-field results and Monte Carlo
simulations, respectively. In these figures, we note that there
is a small region of values of J3 for which we have a com-
pensation point, region B in the figures. In the region A
we always have mS > mσ for any value of T < Tc. On
the other hand, in the region C, mσ > mS for any value of
T < Tc. Monte Carlo simulations give a much more narrow
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range of values for J3. Besides, the upper-bond −J3 also
exhibits a different behavior from the mean-field one in the
range −0.5 < D < 0.
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Figure 3. Range of values of J3 giving rise the compensation
points, as a function of the crystal field parameter D. (a) mean-
field calculations, and (b) Monte Carlo simulations. B is the only
region where we can have the compensation points. For the regions
A and C, we always have ms > mσ, and mσ > ms, respectively.

In summary, we presented mean-field calculations and
Monte Carlo simulations for a layered mixed-spin Ising
model on a hexagonal lattice. We have shown that the model
can exhibit a compensation point also for positive values of

D. We have also found a negative lower bound for D, below
which there is no compensation point. For each value of D,
we determined the range of values of J2 and J3 where the
presence of a compensation point is possible.
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