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We review recently developed decomposition algorithms for molecular dynamics and spin dynamics simula-
tions of many-body systems. These methods are time reversible, symplectic, and the error in the total energy
thus generated is bounded. In general, these techniques are accurate for much larger time steps than more stan-
dard integration methods. Illustrations of decomposition algorithms performance are shown for spin dynamics
simulations of a Heisenberg ferromagnet.

1 Introduction

Molecular dynamics[1] and spin dynamics[2] simulations
are powerful tools for investigating the time evolution of
physical quantities and hence enhancing our understanding
of dynamic properties of many-body systems. In these sim-
ulations the classical equations of motion governing the dy-
namical properties of the systems are solved numerically,
with restrictions given by some initial conditions. Typically
the time scale of the phenomena of interest is much longer
than the time steps that can be used in standard finite time
difference methods. Therefore, a large number of total inte-
gration steps is required, and this generates large truncation
errors unless the time step used is very small. Small time
steps often lead to forbiddingly long integrations.

Progress was accelerated with the advent of new, sym-
plectic methods for integrating coupled equations of mo-
tion [3-6]. These numerical algorithms are based on de-
compositions of exponential operators. They are time re-
versible, symplectic (i.e they conserve exactly the invari-
ant phase-space volume) and the error in the total energy
of the system is bounded[7, 8]. (In some cases the total
energy of the system is conserved exactly[9, 10].) The ef-
fectiveness and efficiency of these symplectic methods have
been illustrated with spin dynamics simulations of the mag-
netic excitations in RbMnF3 using a fourth-order Suzuki-
Trotter decomposition method[6, 9]. The improved integra-
tion method has been used to obtain high-resolution results,
which could, for the first time, be compared directly and
quantitatively with neutron-scattering data, yielding good
agreement and shedding light onto controversies between
theory and experiment[11].

In this paper we review decomposition algorithms ap-
plied to classical molecular dynamics and spin dynamics
simulations. In Section II we express the classical equa-
tions of motion used in molecular dynamics in the Liouville
formulation and in Section III we introduce spin dynamics

simulations. We discuss criteria for good integration meth-
ods in Section IV and we briefly review a few standard inte-
gration algorithms in Section V. In Section VI we describe
the new decomposition algorithms and show some numer-
ical tests and in Section VII we present spin dynamics re-
sults for RbMnF3. Finally, a summary is provided in Section
VIII.

2 Molecular Dynamics

Let us consider a system of N particles with massesmi de-
scribed by their positions ri and velocities vi, interacting via
a potential u(rij), where rij = ri − rj . The Hamiltonian
function of the system can be written as

H =
N∑
i=1

1
2
miv

2
i +

∑
i,j, j �=i

u(rij), (1)

and the force on particle i due to particle j is given by

fij = −∇riu(rij) = −∂u(rij)
∂rij

rij
rij
. (2)

The equations of motion are given by

mi
d2ri
dt2

=
∑
j, j �=i

fij ≡ fi, i = 1, .., N. (3)

The time evolution of the system can be studied by integrat-
ing the equations of motion to obtain ri(t) and vi(t), for
i = 1, 2, · · · , N , and by expressing other physical quanti-
ties in terms of ri(t) and vi(t).

2.1 Liouville Formulation

The equations of motion (3) can be rewritten as

dy

dt
= L̂y(t) (4)
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where y(t) = {ri(t),vi(t)} denotes a configuration of the
N particles, and L̂ is the Liouville operator defined as

L̂ ≡
N∑
i=1

(
vi · ∂
∂ri

+
fi
mi

· ∂
∂vi

)
≡ A+B (5)

The term
∑N

i=1 vi · ∂
∂ri

≡ A in Eq.(5) corresponds to the
free motion of the particles (kinetic part), whereas the po-
tential part is given by the term

∑N
i=1

fi
mi

· ∂
∂vi

≡ B. With
these definitions of operatorsA andB, the equations of mo-
tion (4) can be written as

dy

dt
= (A+B)y(t), (6)

which have the formal solution

y(t+ ∆) = e(A+B)∆y(t), (7)

where ∆ represents a time step. For a general many-body
system the combined operation e(A+B)∆y(t) cannot be eas-
ily performed. However, the separate operators eA∆y and
eB∆y can be written as

eA∆y = exp

(
∆

N∑
i=1

vi · ∂
∂ri

)
{ri,vi} = {ri+vi ∆,vi}

(8)

eB∆y = exp

(
∆

N∑
i=1

fi
mi

· ∂
∂vi

)
{ri,vi} = {ri,vi+

fi
mi

∆}
(9)

and they represent shifts in the positions and in the veloci-
ties, respectively. Moreover, the shift in the positions (ve-
locities) generated by eA∆y (eB∆y) only depends on the ve-
locities (positions) and can be easily computed. However,
note that in general e(A+B)∆ �= eA∆eB∆!

3 Spin Dynamics

For simplicity, let us discuss spin dynamics simulations for
a specific spin model, namely the classical isotropic Heisen-
berg model, described by the Hamiltonian

H = −J
∑
〈i,j〉

Si · Sj (10)

where Si is a unit vector located on a lattice site i, and
nearest-neighbor pairs of spins are coupled with an inter-
action parameter J , which can be ferromagnetic (J > 0) or
antiferromagnetic (J < 0). One of the best physical real-
izations of this model is RbMnF3, where the magnetic ions
Mn+2 have spin S = 5/2, and are located on the sites of a
simple cubic lattice. Nearest-neighbor interactions are anti-
ferromagnetic, with Jexp = −(0.58±0.06)meV. Magnetic
ordering with antiferromagnetic alignment of spins occurs
below the critical temperature Tc = 83K . For the discus-
sions in this section we will consider simple cubic lattices
with periodic boundary conditions.

Unlike the Ising model (Si = ±1), Heisenberg models
have true dynamics governed by the equations of motion

dSi

dt
= −Si × ∂H

∂Si
(11)

which can be rewritten as

dSi

dt
= −Si × Heff i (12)

where the effective field Heff i is defined as

Hk
eff i = −J

∑
j=NN(i)

Skj , k = x, y, z (13)

with the sum performed over all nearest-neighbor sites of i.
If we denote

Si =



Sxi

Syi

Szi


 (14)

we can then write the equations of motion as

dSi

dt
=




0 −Hz
eff i Hy

eff i

Hz
eff i 0 −Hx

eff i

−Hy
eff i

Hx
eff i 0


Si ≡ RSi (15)

for which the formal solution is

Si(t+ ∆) = eR∆Si(t), (16)

where ∆ represents a time step.
Spin dynamics simulations can be used to study several

dynamic properties of classical spin systems[2]. Of partic-
ular interest are the dynamic structure factors, which are
Fourier transforms of space- and time-displaced spin-spin
correlation functions given by

Ck(r − r′, t) = 〈Skr (t)Skr′(0)〉 − 〈Skr (t)〉〈Skr′ (0)〉 (17)

where k = x, y, z.
The simple cubic lattice can be divided into two inter-

penetrating sublattices denoted here as sublattices A and
B. Let us denote as yA and yB the spin configurations on
sublattices A and B, respectively. In this notation, the for-
mal solution of the equations of motion can be written as
y(t + ∆) = e(A+B)∆y(t), where y = {yA, yB}. The oper-
ator eA∆ rotates yA by an angle |HeffA

|∆ at fixed yB , and,
similarly, the operator eB∆ rotates yB by an angle |HeffB

|∆
at fixed yA. HereHeffA

and HeffB
denote the effective field

acting on the spins of sublattices A and B, generated by the
spins on the other sublattice, namely sublattices B and A,
respectively. Because these are spin rotation operators, the
scalar products of spins are preserved in each of these opera-
tions; therefore the spin length and the energy are conserved
exactly (within machine precision) for this system. These
separate operators eA∆y and eB∆y also have a simple ex-
plicit form[9].
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In order to obtain the dynamic properties of the spin
model at fixed temperature T , rather than at fixed energy, we
use equilibrium configurations obtained from Monte Carlo
simulations[12] of the model at a given T as initial configu-
rations for the integration of the equations of motion. Solu-
tions for different initial configurations are then averaged to
yield results in the Canonical Ensemble.

As mentioned earlier molecular dynamics simulations
determine the time evolution of particle positions and ve-
locities, and a system configuration is denoted as y(t) =
{ri(t),vi(t)}. In comparison, spin dynamics simulations
determine temporal evolution of the spin orientations, and a
system configuration is denoted as y(t) = {yA(t), yB(t)}.
In both cases the equations of motion can be written as
dy
dt = (A+B)y(t), for which the formal solution is

y(t+ ∆) = e(A+B)∆y(t), (18)

where ∆ represents a time step.

4 Criteria for a good integration algo-
rithm

Given the limited computer resources and the interest in
long time evolutions of the equations of motion, the over-
all speed of the integration algorithm is very important. Be-
cause each integration step in general involves force (MD)
or spin derivative (SD) computations, which are very time
consuming, it is desirable that an integration algorithm be
accurate for large time steps thus reducing the total num-
ber of force or spin derivative recalculations per unit time.
The speed of a single integration step itself is not such an
important factor because more complex and hence slower
integration steps may allow the usage of much larger time
steps, generating a faster algorithm without larger truncation
errors.

Another criterion for a good integration method is that
it reproduces conservation laws and properties of the clas-
sical equations of motion. Of particular importance is that
it conserves energy and the phase-space volume, and that it
be time reversible. These properties are closely related to
the stability of the algorithm and its accuracy for large time
steps.

5 Standard integration methods

Ordinary differential equations, such as the equations of mo-
tion in MD and SD, are often solved numerically using finite
difference methods[13]. The procedure is to use the vari-
ables such as positions in MD and spins in SD and their time
derivatives at time t to compute the values of these quanti-
ties at a later time t + ∆. The accuracy of this procedure is
often proportional to a power of ∆. An integration method
is referred to as an n-th order algorithm when the local (per
time step) truncation error is of O(∆n+1). Here we briefly
review some of the most commonly used finite difference
methods. To simplify the notation, we will omit the particle
label in the variables.

5.1 Truncated Taylor expansion

The simplest integration method is to write Taylor expan-
sions such as

r(t+ ∆) = r(t) + v(t)∆ +
f(t)
2m

∆2 + ... (MD) (19)

S(t+ ∆) = S(t) +
dS

dt
∆ +

1
2
d2S

dt2
∆2 + ... (SD) (20)

and then truncate them to O(∆3). However, this algorithm
is not time reversible, it does not conserve the phase-space
volume and it gives rise to very large energy drift.

A better implementation based on Taylor expansions that
avoids the large energy drift is the very popular Verlet al-
gorithm. For brevity we will discuss this algorithm in the
next two sections referring to molecular dynamics only. All
equations can be easily converted to spin dynamics vari-
ables.

5.2 Position-Verlet algorithm

Let us consider now the Taylor expansions for the positions
at times t+ ∆ and t− ∆, which are written as

r(t + ∆) = r(t) + v(t)∆ +
f(t)
2m

∆2 +
d3r

dt3
∆3

3!
+ O(∆4)

(21)

r(t − ∆) = r(t) − v(t)∆ +
f(t)
2m

∆2 − d
3r

dt3
∆3

3!
+ O(∆4)

(22)
Adding Eqs.(21) and (22) we have

r(t + ∆) = 2r(t) − r(t − ∆) +
f(t)
m

∆2 + O(∆4), (23)

which is then used to obtain the time evolution of r(t). Note
that the computation of positions at a later time does not use
any velocities, but the velocities will be needed for com-
puting the kinetic energy and thus the total energy of the
system. Subtracting Eq.(22) from Eq.(21) we have

r(t+ ∆) − r(t − ∆) = 2v(t)∆ + O(∆3) (24)

and the time evolution of velocities can be determined by

v(t) =
r(t + ∆) − r(t− ∆)

2∆
+ O(∆2) (25)

The Verlet algorithm is a second-order method that has been
widely used in molecular dynamics simulations[1]. It is time
reversible, it preserves phase-space volume and, although
the total energy is not conserved, the long-term energy drift
is not very large provided a small time step is used. Since
this is a second-order method, it is not very accurate for long
time steps.
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5.3 Velocity-Verlet algorithm

Another implementation of the Verlet algorithm, denoted as
velocity-Verlet algorithm, computes the time evolution of
the position and velocity with

r(t+ ∆) = r(t) + v(t)∆ +
f(t)
2m

∆2 (26)

and

v(t+ ∆) = v(t) +
f(t+ ∆) + f(t)

2m
∆, (27)

respectively. This corresponds to first computing r(t + ∆)
using Eq.(26), then from these new positions the forces
f(t+∆) can be determined. Finally, the velocities v(t+∆)
are computed from Eq.(27).

To show the equivalence between the position- and the
velocity-Verlet algorithms, we write Eq.(26) for time t+2∆,
namely

r(t+2∆) = r(t+∆)+v(t+∆)∆+
f(t+ ∆)

2m
∆2 , (28)

and we then subtract Eq.(26) from Eq.(28) to obtain

r(t+ 2∆) = 2r(t+ ∆) − r(t) + [v(t+ ∆) − v(t)]∆

+ f(t+∆)−f(t)
2m ∆2 (29)

Substituting Eq.(27) in Eq.(29), we get

r(t+ 2∆) = 2r(t+ ∆) − r(t) +
f(t+ ∆)
m

∆2 (30)

which is the position-Verlet algorithm derived before.

5.4 Predictor-Corrector method

Predictor-corrector algorithms are very popular and versatile
higher-order methods. Before introducing one such method,
let us write the equations of motion in the general form
dy
dt = F (y). One common implementation of a predictor-
corrector method is a fourth-order algorithm that uses the
explicit Adams-Bashforth four-step method given by

y(t+ ∆) = y(t) + ∆
24 [55F (y(t)) − 59F (y(t− ∆))

+37F (y(t− 2∆)) − 9F (y(t− 3∆))] (31)

as the predictor step and the implicit Adams-Moulton three-
step method given by

y(t+ ∆) = y(t) + ∆
24 [9F (y(t+ ∆)) + 19F (y(t))

−5F (y(t− ∆)) + F (y(t− 2∆))] (32)

as the corrector step. Both the predictor and the corrector
steps have a local truncation error of O(∆5). The values of
y(t) for the initial three time steps, namely y(∆), y(2∆),
and y(3∆), can be provided by three successive integrations
of the equation of motion by other methods.

One great advantage of this method is that it is easy to
apply for a general set of equations. However, it is in general
not time reversible, it does not preserve the phase-space vol-
ume and it yields large energy drifts unless very small time
steps are used.

6 Decomposition algorithms

A different finite time difference approach to determine
the temporal evolution described by the equations of mo-
tion is to expand the exponential operator in Eq.(18) as
follows[3, 4, 5, 6]

e(A+B)∆ =
P∏

j=1

eAaj∆eBbj∆ + O(∆K+1) (33)

where aj and bj are chosen to provide the highest K ≥ 1
for a given P ≥ 1.

The simplest approximations are the lowest-order de-
compositions, namely

e(A+B)∆ = eA∆eB∆ + O(∆2) (34)

to first order and

e(A+B)∆ = eB
∆
2 eA∆eB

∆
2 + O(∆3) (35)

to second order. Eq.(35) is equivalent to the Suzuki-
Trotter decomposition used in Quantum Monte Carlo
simulations[14, 15] in which A and B represent two non-
commuting parts of the Hamiltonian. Note that Eq.(35) is
also equivalent to the velocity-Verlet algorithm discussed
above, and the position-Verlet algorithm is equivalent to us-
ing Eq.(35) with A and B interchanged[16, 8].

Higher-order integration algorithms can be implemented
using higher-order decompositions, such as the fourth-order
Suzuki-Trotter decomposition[6] given by

e(A+B)∆ =
5∏

i=1

epiA∆/2epiB∆epiA∆/2 + O(∆5) (36)

where p1 = p2 = p4 = p5 ≡ p = 1

4−4
1
3
, p3 = 1 − 4p.

Eq.(36) shows that the fourth-order Suzuki-Trotter decom-
position is composed by a product of 15 exponential op-
erators; however, consecutive operators with A in the ex-
ponent can be combined into a single operation, yielding
a total of 11 operators for this decomposition. Several
other fourth-order and higher-order decompositions of the
exponential operators have been derived in the literature
[6, 3, 5, 4, 17, 8]. For example, the fourth-order Forest-
Ruth decomposition is comprised of 7 operators, and it can
be written as

e(A+B)∆ = eAθ∆/2eBθ∆eA(1−θ)∆/2eB(1−2θ)∆

×eA(1−θ)∆/2eBθ∆eAθ∆/2 + O(∆5) (37)

where θ = 1/(2 − 21/3) ≈ 1.3512. Because this decompo-
sition involves only 7 single exponential operators instead of
11 as in the case of Eq.(36), the cpu time required for one in-
tegration step using Eq.(37) is less than using Eq.(36). How-
ever, truncation errors arising from using Eq.(37) are much
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larger than when Eq.(36) is used, as will be illustrated below.
Recently, Omelyan and collaborators[17] have obtained op-
timized decomposition algorithms in which new operators
are introduced and the parameters in the exponents of these
new operators are chosen to minimize the truncation error.
An optimized Forest-Ruth decomposition is given by

e(A+B)∆ = eBζ∆eA(1−2λ)∆/2eBχ∆eAλ∆eB(1−2(χ+ζ))∆

×eAλ∆eBχ∆eA(1−2λ)∆/2eBζ∆ + O(∆5) (38)

where[17] ζ = 0.17208656, λ = −0.09156203, and χ =
−0.16162176.

6.1 Properties of the decomposition algo-
rithms

The decomposition algorithms described above preserve the
phase space volume element in molecular and spin dynam-
ics simulations. In the molecular dynamics case the operator
eA∆ (eB ∆) acting on y only shifts ri (vi) and the shift only
depends on the vi (ri), as shown in Eqs.(8) and (9). In the
spin dynamics case the operator eA∆ (eB ∆) acting on y ro-
tates yA (yB) at fixed yB (yA). Therefore, in both cases the
Jacobian of the transformation from y(t) to y(t+∆) is equal
to one, hence the preservation of the phase-space volume.

The condition of being time reversible requires that only
even-ordered decompositions be used and that the operators
eA∆ and eB ∆ enter symmetrically in the decomposition.
As an example, we show the time reversibility property of
the second-order decomposition given in Eq.(35). We first
define

Û(∆) ≡ eB∆/2eA∆eB∆/2 (39)

and obtain

Û(∆)Û (−∆) = eB
∆
2 eA∆eB

∆
2 e−B ∆

2 e−A∆e−B ∆
2 = 1

(40)
Similarly, Û(−∆)Û(∆) = 1; hence each time step in the
temporal evolution is reversible, leading to a time reversible
trajectory. This proof can be easily extended to higher-order
decompositions.

Although the decomposition algorithm does not con-
serve the total energy of a general system, the long-term
energy deviation as function of time is characterized by a
random walk, i.e., it does not display a systematic drift in
any direction. This is due to the time reversibility prop-
erty shown in Eq.(40) and applies to other non-conserved
quantities as well as we will illustrate below. In addition,
the higher-order integration methods are accurate for larger
time steps, allowing time evolutions to longer times without
generating large truncation errors.

In general, higher-order decomposition algorithms re-
quire more operations, and hence more cpu time, per in-
tegration step. However, they are accurate for larger time
steps, and they are more efficient methods if the increase
in time steps compensate for the slower integration step.
Higher-order decompositions are also more advantageous if
the physical system studied requires that the conservation
laws be obeyed more strictly.

6.2 Algorithm performance

The performance of some of the algorithms discussed here
will be illustrated with spin dynamics simulations of a
Heisenberg ferromagnet on a 10x10x10 simple cubic lattice
at temperature T = 0.8Tc, where Tc is the critical temper-
ature of the model. The equations of motion conserve both
the total energy per site E(t) and the uniform magnetization
per site M(t) of the system. The fourth-order predictor-
corrector method described above conserves the uniform
magnetization exactly; however, the total energy drifts sys-
tematically and considerably, even for relatively small time
steps, as shown in Fig. 1.

0 200 400 600 800 1000

t J

-1.6176

-1.6174

-1.6172

-1.6170

-1.6168

-1.6166

-1.6164

E(t)

∆   =0.005/J

∆   =0.007/J

∆   =0.010/J

∆   =0.012/J

Figure 1. Energy per site versus time obtained with the fourth-order
predictor-corrector method for a single initial configuration using
different time steps ∆.

In contrast the decomposition algorithms conserve both
energy and spin length exactly, because the scalar product
of nearest-neighbor spins is preserved during the rotation of
a spin around its effective field. The uniform magnetization
is not exactly conserved by the decomposition algorithms;
however, there is no long time drift in the magnetization, as
illustrated in Fig. 2 for the fourth- and an eighth-order[6, 18]
Suzuki-Trotter decomposition with ∆ = 0.10/J . Note that
the size of the integration step used here is almost an order
of magnitude larger than the maximum ∆ in Fig. 1. More-
over, the maximum integration time here is tmax = 5000/J ,
which is a factor of 5 larger than in Fig. 1. Fig. 2 also
shows that for the same time step, higher-order methods
yield smaller magnetization fluctuations. The total fluctu-
ation of the uniform magnetization per site M(t) for the
fourth- and the eighth-order method shown in Fig. 2 are
∼ 2 × 10−5 and ∼ 2 × 10−7, respectively. Fig. 3 shows
the fluctuation in the uniform magnetization from integra-
tions using an eighth-order Suzuki-Trotter decomposition
with different time steps. In this figure, the magnetiza-
tion fluctuations for ∆ = 0.10/J , 0.20/J , and 0.25/J are
∼ 2 × 10−7, ∼ 2 × 10−5, and ∼ 1 × 10−4, respectively. In
Fig. 4 we compare the fluctuations in the uniform magneti-
zation per site obtained with three different fourth-order de-
composition methods, namely the Suzuki-Trotter (SZT), the
Forest-Ruth (FR), and the optimized Forest-Ruth (OFR) de-
compositions given in Eqs.(36), (37), and (38), respectively.
In all
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0 1000 2000 3000 4000 5000

t J

0.616775

0.616780

0.616785

0.616790

0.616795

M(t)

8th-order
4th-order

∆  =0.10/J

Figure 2. Comparison of fluctuations in the uniform magnetiza-
tion per site for the fourth- and an eighth-order Suzuki-Trotter
decomposition with ∆ = 0.10/J for a single initial configuration.
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t J
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0.61682

0.61684

M(t)

∆   =0.10/J
∆   =0.20/J
∆   =0.25/J

8th-order

Figure 3. Comparison of fluctuations in the uniform magnetiza-
tion per site for an eighth-order Suzuki-Trotter decomposition with
different time steps ∆ for a single initial configuration.

0 1000 2000 3000 4000 5000

t J

0.61250

0.61300

0.61350

0.61400

0.61450

M(t)

FR

SZT

OFR

∆   =0.10/J

4th-order

Figure 4. Comparison of fluctuations in the uniform magnetization
per site for three different 4th-order decomposition algorithms,
namely Forest-Ruth (FR), Suzuki-Trotter (SZT) and an optimized
Forest-Ruth (OFR) [see text], as a function of the integration time.
A time step of ∆ = 0.10/J have been used in all cases.

three cases the equations of motion were integrated out to
tmax = 5000/J , using a step of ∆ = 0.10/J . The FR
method requires the fewer operations (rotations) per time

step; however, it also yields the largest magnetization fluc-
tuation (∼ 2 × 10−3). In contrast, much smaller fluctu-
ations were observed with the SZT and the OFR methods
(∼ 2 × 10−5 in both cases).

Each integration step of the predictor-corrector method
used here is approximately 2.5 times faster than each step
using the fourth-order Suzuki-Trotter decomposition. How-
ever, the latter generates results that are accurate for much
larger time steps, and thus constitutes a much faster algo-
rithm. Although the eighth-order method used here provides
better magnetization conservation, it is not a very competi-
tive algorithm because it requires a large number, namely
31, rotations per time step.

6.3 Further developments

Decompositions of exponential operators involving higher-
order derivatives of the variables in the equations of motion,
such as force gradients in the case of MD, have been im-
plemented and shown to be more advantageous for some
applications[19, 20, 21]. One such force-gradient decom-
position is given by[21]

e(A+B)∆ =
P∏
i=1

eaiA∆ebiB∆+ciC∆3
+ O(∆K+1) (41)

where

C ≡ [B, [A,B]] =
N∑
i=1

gi

mi
· ∂
∂vi
, (42)

gi = 2
∑
k,k �=i

∑
jp,j �=p

fjp
mj

∂fik
∂rjp

, (43)

and ai, bi, and ci are chosen to minimize the truncation er-
rors.

For systems involving different time scales, decompo-
sition methods can be used to integrate the slow varying
components of the system with a larger time step than the
rapidly varying components[22, 23]. As a simple example,
let us consider an MD simulation where the Liouville op-
erator can be separated into a slow and a rapidly varying
part denoted as Ls and Lf , respectively. The second-order
decomposition given by Eq.(35) can be further decomposed
into

e(Lf+Ls)∆ = eLs
∆
2 [eLfδ]neLs

∆
2 + O(∆3) (44)

where δ = ∆/n is a smaller time step used to evolve the fast
dynamics of the system.

Depending on the dynamics and types of interactions in
the systems, it may be necessary to decompose the exponen-
tial operator into more than two individual operators. For
example, spin dynamics simulations of a spin system on a
two-dimensional triangular lattice require a three-sublattice
decomposition, and a second-order decomposition can be
written as

e(A+B+C)∆ = eA
∆
2 eB

∆
2 eC∆eB

∆
2 eA

∆
2 + O(∆3), (45)

where each of the three separate operators eA∆, eB∆, and
eC∆ rotates the spins on one sublattice with the spins
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on the other two sublattices fixed. Spin dynamics sim-
ulations of an antiferromagnetic XY model on the tri-
angular lattice have been done using a second-order de-
composition algorithm[24]. The dynamic behavior of the
model was studied for a range of temperatures, includ-
ing around the Kosterlitz-Thouless transition and the Ising
transition, where long-range order appears in the staggered
chirality[24]. There are several other applications studied in
the literature that require decompositions involving multiple
operators[25].

Finally, we remark that the sublattice decomposition re-
quired for the implementation of decomposition algorithms
allows a direct parallelization according to the shared mem-
ory model (OpenMP) which results in essentially 100% par-
allel code for, e.g., a spin dynamics integrator. This is partic-
ularly interesting for many commercially available parallel
clusters in which each node is often equipped with two pro-
cessors on the main board sharing the installed main mem-
ory. However, in practice one observes a severe reduction in
parallel efficiency on many commercially available systems,
e.g., the Intel Xeon, if the storage required to hold the lattice
or the numerical grid of the problem exceeds the cache size
of the processor. The reason for this is a lack of memory
bandwidth in particular if CPU1 has to access the memory
share of CPU2. In this case an additional chip set is invoked
which performs a time consuming memory mapping opera-
tion. We had the opportunity to make a few tests on an AMD
Opteron node with two CPUs and the new Hypertransport
architecture which makes one CPU essentially transparent
for access to its memory share requested by the other CPU.
It turns out that the parallel efficiency on this system remains
on a high level independent of the lattice size which makes
shared memory parallelism an efficient and easy-to-use tool
to increase the turnaround also for simulations on memory
consuming lattices in the future [26].

7 Spin dynamics results for RbMnF3

Spin dynamics of RbMnF3 have been performed on simple
cubic lattices with linear sizes up to L = 72; this corre-
sponds to solving a system of 723 = 373248 equations[27].
Direct comparisons of dynamic structure factors S(q, ω) for
momentum q and frequency ω obtained from spin dynam-
ics simulations and neutron scattering data[28] yielded good
quantitative agreement, with no adjustable parameters[11].
An illustration of this comparison at T = 0.894Tc for mo-
mentum transfer q in the [111] direction is shown in Fig. 5.

Integrations of the equations of motion were done up
to tmax = 1000/J using the fourth-order Suzuki-Trotter
decomposition given in Eq.(36) with a time step of ∆ =
0.2/J . The experimental energy resolution width was 0.25
meV, which is shown as a horizontal line segment in Fig. 5.
For the direct comparison, dynamic structure factors from
the simulations were convoluted with the experimental res-
olution function and the T - and ω-dependent population fac-
tor was removed from the neutron scattering data. The nor-
malization of the intensities of S(q, ω) between simulation
and experiment was done at one T and q, the same factor
was then used to normalize the curves for all values of q.
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Figure 5. Comparison of dynamic structure factor as a function of
frequency from simulation and experiment, for T = 0.894Tc

and q = (q, q, q). The symbols represent neutron scattering
data [the circles, triangles, and inverted triangles correspond to
q = 2π(0.04), 2π(0.06), and 2π(0.08), respectively] while the
solid lines are simulation results for L = 60.

8 Summary

Molecular dynamics and spin dynamics simulations require
good algorithms for the time integration of the equations
of motion. Desirable properties of integration algorithms
include accuracy for long time steps, time reversibility,
good conservation of energy, and being symplectic (con-
serve phase-space volume).

Standard integration algorithms in applied mathematics
are, in general, neither time reversible nor symplectic, and
they yield large long-term energy drift, unless very small
time steps are used. In contrast, algorithms based on decom-
position of exponential operators are time reversible, sym-
plectic, and the energy fluctuations are bounded. In some
cases the energy can be conserved exactly (within machine
precision). In general, decomposition algorithms are also
accurate for larger time steps and allow integration to much
longer times thus allowing study of low frequency modes.
These methods are broadly applicable and may be straight-
forwardly applied to more complicated systems although
more sublattices may be needed with a resultant increase in
complexity.
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