
Brazilian Journal of Physics, vol. 34, no. 2A, June, 2004 363
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We review the generalized-ensemble approach to protein studies. Focusing on the problem of secondary struc-
ture formation, we show that these sophisticated techniques allow efficient simulations of all-atom protein
models and may lead to a deeper understanding of the folding mechanism in proteins.

1 Introduction

Because a protein is only functional if it folds into its charac-
teristic shape, it is important to understand how the structure
and the function of proteins emerge from their sequence of
amino acids (the monomers of the linear chain that builds
up a protein). Such knowledge could not only lead to the
de novo design of proteins that serve as novel drugs with
customized properties, but also to a deeper understanding of
various diseases that are caused by the misfolding of pro-
teins.

Computer experiments offer one way to gain such
knowledge but are extremely difficult for realistic protein
models. This is because all-atom models of proteins lead to
a rough energy landscape with a huge number of local min-
ima separated by high energy barriers. Consequently, sam-
pling of low-energy conformations becomes a hard compu-
tational task, and physical quantities cannot be calculated
accurately from simple low-temperature molecular dynam-
ics or Monte Carlo simulations.

The quest for overcoming this so-called multiple-
minima problem is an active area of research (for a review,
see Refs. [1, 2]). One of us suggested almost ten years ago
that generalized-ensemble simulations may allow a better
sampling of low-energy protein configurations [3]. Exam-
ples of this group of closely related techniques are multi-
canonical sampling [4], the broad histogram method [5], the
Wang-Landau algorithm [6], techniques that rely on Tsallis
weights [7, 8], or parallel tempering (also known as replica
exchange method) [9], and over the last decade these tech-
niques have been successfully applied to protein simulations
(for a review, see Ref. [10].

In the following we will present a short review of the
generalized-ensemble approach and demonstrate its useful-
ness for protein simulations. We will focus in our examples
on one particularly important aspect of the protein-folding
problem, namely the role of secondary structure formation
in the folding process.

2 Generalized-ensemble techniques

All generalized-ensemble techniques share the same key-
idea: replace the canonical weights, that suppress the cross-
ing of an energy barrier of height ∆E by a factor ∝
exp(−∆E/kBT ) (kB is the Boltzmann constant and T the
temperature of the system), with such weights that allow the
system to escape out of local minima. In most cases the
weights are chosen in such a way that a Monte Carlo or
molecular dynamics simulation will lead to a uniform dis-
tribution of a pre-chosen physical quantity. For instance, in
multicanonical sampling [4] the weight w(E) leads to a dis-
tribution

P (E) ∝ n(E)w(E) = const, (1)

where n(E) is the spectral density. A free random walk in
the energy space is performed that allows the simulation to
escape from any local minimum. From this simulation one
can calculate the thermodynamic average of any physical
quantity A by re-weighting: [11]

< A >T =
∫
dx A(x) w−1(E(x)) e−E(x)/kBT∫
dx w−1(E(x)) e−E(x)/kBT

, (2)

where x labels the configurations of the system. Note that
the weight w(E) is not a priori known in generalized en-
sembles, and estimators have to be determined by an itera-
tive procedure described in Refs. [4, 12].

Another way of enhancing the sampling of low-energy
configurations in protein simulations is parallel tempering
(also known as replica exchange or Multiple Markov Chain
method) [9], a technique that was first introduced to protein
folding in Ref. [13]. In its most common form, one consid-
ers N non–interacting copies of the molecule, each at a dif-
ferent temperature Ti. In addition to standard Monte Carlo
or molecular dynamics moves that act only on one copy (i.e.
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the molecule at a fixed temperature), an exchange of confor-
mations between two copies i and j = i+ 1 is allowed with
probability

w(Cold → Cnew) = min(1, exp(−βiE(Cj) − βjE(Ci)

+βiE(Ci) + βjE(Cj))) . (3)

The exchange of conformations will lead, especially at low
temperatures, to a faster convergence of the Markov chain
than is observed in regular canonical simulations with only
local moves. This is because the resulting random walk in
temperatures allows the configurations to move out of local
minima and cross energy barriers. Note that parallel temper-
ing does not require Boltzmann weights. The method can
be combined easily with other generalized-ensemble tech-
niques as was demonstrated first in Ref. [13].

The common idea behind all generalized-ensemble tech-
niques is that they avoid by construction of the algorithm en-
trapment in local minima. Another realization of this idea is
energy landscape paving (ELP) a new optimization method
that proved very promising in protein studies [14, 15].

In ELP, one performs low-temperature Monte Carlo sim-
ulations with a modified energy expression designed to steer
the search away from regions that have been already ex-
plored:

w(Ẽ) = e−Ẽ/kBT with Ẽ = E + f(H(q, t)) . (4)

Here, T is a (low) temperature, Ẽ serves as a replacement of
the energy E and f(H(q, t)) is a function of the histogram
H(q, t) in a pre-chosen “order parameter” q. It follows that
within ELP the weight of a local minimum state decreases
with the time the system stays in that minimum till the local
minimum is no longer favored. The system will then explore
higher energies till it falls into a new local minimum. Obvi-
ously, for f(H(q, t)) = f(H(q)) the method reduces to the
various generalized-ensemble methods [10] (for instance for
f(H(q, t)) = lnH(E) to multicanonical sampling).

3 Secondary Structure and Folding

In order to demonstrate that generalized-ensemble simula-
tions are well suited for protein research we will focus in
the following on the role of secondary structure formation
in the folding process.

3.1 Helix Formation in Water

The two most common secondary structure elements are α-
helices and β-sheets. More accessible to numerical simu-
lations are α-helices as they involve only contacts between
residues that are close in the protein chain. It is long known
that α-helices undergo a sharp transition toward a random
coil state when the temperature is increased. The character-
istics of this so-called helix-coil transition have been studied
extensively [16]. An example is Ref. [17] where the order
of the helix-coil transition in polyalanine in gas phase was
studied. While their results, including a helix-coil transition

temperature of more than 500 K, are in agreement with re-
cent experiments of Jarrold and collaborators [18], biolog-
ically more relevant is the question of helix formation for
solvated proteins.

Preliminary investigations of this question were de-
scribed in Refs.[19, 20] where polyalanine chains of length
10 have been studied. Because the size of these chains is
too small to determine the order of the helix-coil transition
for solvated polyalanine, we have performed multicanonical
simulations of chains of length up to 30 residues [21] using
a detailed, all-atom representation of these molecules. The
interactions between the atoms are described by a standard
force field, ECEPP/2 [22], as implemented in the program
package SMMP [23]:

EECEPP/2 = EC + ELJ + EHB + Etor, (5)

EC =
∑
(i,j)

332qiqj
εrij

, (6)

ELJ =
∑
(i,j)

(
Aij

r12ij

− Bij

r6ij

)
, (7)

EHB =
∑
(i,j)

(
Cij

r12ij

− Dij

r10ij

)
, (8)

Etor =
∑

l

Ul (1 ± cos(nlχl)) . (9)

Here, rij (in Å) is the distance between the atoms i and j,
and χl is the l-th torsion angle. The peptide bond angles
are set to their common value ω = 180◦. We further as-
sume that ε = 2 in the protein interior. All energies are in
kcal/mol, hence the factor ’332’ in the electrostatic energy
termEC . ELC is a Lennard-Jones term,EHB the hydrogen-
bond energy and Etor accounts for the torsion energy of the
molecule.

The interactions between the peptide and the surround-
ing water are approximated by adding a solvent accessible
surface term Esolv [24] to the energy function:

E = EECEPP/2 + Esolv with Esolv =
∑

i

σiAi .

(10)
In this approximation, named by us ASA, one assumes that
the free energy difference between atomic groups immersed
in the protein interior and groups exposed to water is pro-
portional to the solvent accessible surface area Ai of the ith
atom with the parameters σi as experimentally determined
proportionality factors.

Simulations are performed for polyalanine with chain
length of 10, 15, 20 and 30. The calculation of the multi-
canonical weight required between 100,000 (N = 10) and
800,000 (N = 30) sweeps. All thermodynamic quantities
are estimated then from one production run of 6, 000, 000
Monte Carlo sweeps starting from a random initial confor-
mation. Thermodynamic quantities that we have calculated
from these multicanonical simulations include the average
energy, specific heat, helicity, susceptibility and the com-
plex partition function zeros whose analysis was introduced
by us recently to protein studies [17].
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In Fig. 1 we display qH =< nH(T ) > /(N − 2), which
is a natural order parameter for the helix-coil transition.
Here, < nH > is the average number of helical residues.
The normalization factor N − 2 is chosen instead of N , the
number of residues because the terminal residues are flexi-
ble and are usually not part of an α-helix. A clear separa-
tion is observed between a high-temperature phase with few
helical residues and a low-temperature phase that is charac-
terized by a single α-helix. The transition temperature can
be determined from the corresponding plots in the specific
heat CN (T ) that are shown in Fig. 2. As already observed
in Ref. [20], the transition temperatures are for simulations
in an implicit solvent lower than in gas phase. However,
the differences decrease with chain length. If we extrap-
olate the listed temperatures to the infinite chain limit by
Tc(L) = Tc(∞) − a e−bN , we find for ASA simulations as
the critical temperature Tc(∞) = 480 K, which is only 30
K lower than the corresponding value for gas-phase simula-
tions: Tc(∞) = 514 K. We note that the transition temper-
atures are outside of the range of physiologically relevant
temperatures indicating limitations of our energy functions.
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Figure 1. Temperature dependence of the helicity order parameter
qH =< nH > /(N−2) as calculated from simulations of polyala-
nine of chain length N = 10, 15, 20, 30 in an implicit solvent.

In order to research the strength of the observed helix-
coil transition for solvated polyalanine, we analyze its parti-
tion function zeros using the approach by Janke and Kenna
[25]. Our data (see Ref. [21] for details) lead to an estimate
for the specific heat exponent,α = 0.10(9), that is small and
within the errorbars compatible with zero. Hence, our analy-
sis indicates that the helix-coil transition in solvated polyala-
nine is second order with exponents that are consistent with
α = 0, and by means of the hyperscaling relationα = 2−dν
with dν = 2. These exponents are fundamentally different
from the one in gas phase (α = 0.86(14), γ = 1.06(10) and
dν = 0.93(7) [17]that indicate a (weak) first order transition
or a strong second order transition.

Our results are not unexpected. A large part of the en-
ergy gain through helix formation comes from the formation
of hydrogen bonds between a residue and the forth follow-
ing one that characterizes an α-helix. Within water this pro-
cess competes with the entropicly more favorable formation

of hydrogen bonds with the surrounding water. Hence, one
can expect that helix-formation is more favored in gas-phase
than in solvent.
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Figure 2. Specific heat C(T ) as a function of temperature T .

3.2 Helix vs. Sheet Formation

It has become clear over the last years that mis-folding of
proteins, often involving formation of β-sheets instead of
α-helices and subsequent aggregation, is the cause of vari-
ous illnesses including Alzheimer’s disease, BSE and other
Prion diseases. In order to research the α → β we have
chosen a peptide, whose sequence of amino acids in one let-
ter code is EKAYLRT and that appears in natural occurring
proteins with significant frequency at positions of both α-
helices and β-sheets. As in our previously described work,
our results rely on multicanonical simulations of peptides in
a detailed representation where the interactions between all
atoms are taken into account. EKAYLRT is simulated both
in gas phase and with our implicit solvent. We needed be-
tween 100,000 and 200,000 sweeps for the weight factor cal-
culations. All thermodynamic quantities are then estimated
from one production run of 2, 000, 000 Monte Carlo sweeps
that followed 10, 000 sweeps for “thermalization”. A more
detailed account of our results is published in Ref. [26].

We start with presenting our results for an EKAYLRT
peptide that is not interacting with other molecules and dis-
play in Fig. 3 its average helicity < nH > as a function of
temperature. Shown are data obtained in gas-phase (GP) and
for the soluted peptide (ASA). We observe in both cases a
steep helix-coil transition that separates a high-temperature
region with little helicity from a low-temperature region
where most of the residues are part of an α-helix. An ex-
ample for these helical configurations is shown in Fig. 4.
The location of this helix-coil transition can be determined
from the corresponding peaks in the specific heat C(T ) that
are drawn in the inlet of Fig. 3. The more pronounced peak
for the solvated molecule indicates a temperature TASA

hc =
340 ± 10 K that is considerably lower than the one in gas
phase: TGP

hc = 445 ± 15 K.
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Figure 3. The average number < nH > of helical residues as a
function of temperature T for EKAYLRT in gas phase (GP) and
simulated with an implicit solvent term (ASA). The specific heat
C(T ) as function of temperature T is displayed in the inlet.

Figure 4. Lowest energy configuration of EKAYLRT.

Our results indicate that the peptide EKAYLRT has a
intrinsic tendency to form helices. Strands have of order
≈ 30 kcal/mol higher free energies and are rarely observed
(data not shown). This result is independent on whether the
molecule is in gas phase or simulated with an implicit sol-
vent. Since EKAYLRT appears within proteins both in he-
lices and β-sheets it follows that sheet formation is due to
the interaction of the peptide with its surrounding. We con-
jecture that EKAYLRT forms a β-sheet if it is in the prox-
imity of another strand, for instance if it is close to another
EKAYLRT peptide that is already in a strand configuration.
Unfortunately, the present version of SMMP does not allow
the simulation of two interacting proteins. Hence, in order
to test our conjecture, we have studied instead the peptide
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Figure 5. The average helicity < nH > and sheetness < nB > at
T = 300 K of the N-Terminal EKAYLRT residues as a function of
the end-to-end distance de−e.

Figure 6. Low-energy configurations of molecule ‘A’. The one
in (a) is the lowest-energy configuration where the N-terminal
EKAYLRT-residues form an α-helix; the one in (b) where they
form a β-sheet.

EKAYLRT-GGGG-EKAYLRT with the C-terminal
EKAYLRT residues kept as β-strand. The four glycine
residues form a flexible chain that holds the two EKAYLRT-
units together but allows their relative positions to vary. We
refer to the so constructed peptide as molecule ‘A‘.

In Fig. 5, we display the helicity and sheetness of the
N-Terminal EKAYLRT at T = 300K as calculated from
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the multicanonical simulation of molecule ‘A‘. Both quanti-
ties are shown as functions of the end-to-end distance de−e

which is a measure for the separation of the two EKAYLRT
chains. Two regions are observed. For de−e >∼ 16
Å the N-terminal EKAYLRT chain forms a complete he-
lix and strands are rarely observed. Hence, for these dis-
tances the N-terminal chain has a similar behavior as the
isolated EKAYLRT-peptide. However, for decreasing end-
to-end distance, the helicity also decreases and vanishes for
de−e <∼ 10 Å. At the same time, the sheetness increases
and the peptide forms a β-sheet for de−e ≈ 5 − 6 Å. Exam-
ples of configurations that correspond to the two minima are
shown in Fig. 6. Both minima have comparable free energies
and are separated by barriers of only 2 kcal/mol allowing an
easy interchange between the two forms.

Our results [26] suggest auto-catalytic properties for
EKAYLRT: if the peptide forms a strand, in becomes fa-
vorable for other nearby EKAYLRT molecules to transform
themselves into a sheet (instead of the normally preferred
helix), and eventually to aggregate with the first one. We
find that this behavior is due to more favorable Lennard-
Jones and electrostatic interactions (data not shown) [26].

The behavior of EKAYLRT is similar to the mecha-
nism thought to be responsible for the outbreak of neuro-
degenerative illnesses such as Alzheimer’s or the Prion dis-
eases. Outbreak of theses illnesses is associated with the
appearance of a mis-folded structure that differs from the
correctly folded one by a β-sheet instead of an α-helix. The
mis-folded structure is thought to be auto-catalytic, that is
its presence leads to a structural transition by which the
correctly folded (helical) structure changes into the harm-
ful β-sheet form. Hence, peptides based on the sequence of
amino acids EKAYLRT can serve as simple models to study
α → β-transitions and the mechanism of Prion diseases.
For instance, our investigation suggests that the formation
of β-sheets can be minimized by shielding the surface area
of already existing β-sheet forms, minimizing in this way
the van der Waals interaction. Another possibility may be to
introduce metal ions that alter the electrostatic interaction,
decreasing in this way the energy bias toward β-sheets.

4 Conclusion

We gave a brief introduction into generalized-ensemble
techniques and their applications to the protein folding
problem. Using one of these techniques we have probed
the influence of water on the characteristics of the helix-
coil transition in polyalanine and investigated the α → β
transition in the peptide EKAYLRT. Our results underline
that generalized-ensemble algorithms are well-suited for re-
searching the thermodynamics of proteins and may lead to
a deeper understanding of the protein-folding problem.
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