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A New Approach to Monte Carlo Simulations in Statistical Physics

D. P. Landau1 and F. Wang2

1 Center for Simulational Physics, The University of Georgia, Athens, GA 30602, USA
2 Paracer Inc., 1371 Shorebird Way Mountain View, CA 94043, USA

Received on 5 September, 2003

We describe a new algorithm that approaches Monte Carlo simulation in statistical physics in a different way.
Instead of sampling the probability distribution at a fixed temperature, a random walk is performed in energy
space to directly extract an estimate for the density of states. The canonical probability can then be found
at any temperature by weighting by the appropriate Boltzmann factor, and thermodynamic properties can be
determined from suitable derivatives of the partition function.

1 Introduction

During the last half of the 20th century great strides were
made in the theoretical and experimental investigation of
condensed matter systems, and consequently our under-
standing of phase transitions was dramatically enhanced.
Certain problems remained, however,in part because imper-
fections in physical systems limited the resolution of exper-
iment and in part because analytical solutions of all but the
simplest theoretical models proved elusive. Computer sim-
ulation now plays a significant role in statistical physics [1],
particularly for the study of phase transitions and critical
phenomena. The “standard” Monte Carlo method, which
is flexible and easy to implement, has been the Metropolis
importance sampling algorithm [2], but near phase transi-
tions this method becomes inefficient because of the long
time scales that develop. A number of more efficient algo-
rithms have now been introduced to circumvent this prob-
lem, but these are somewhat limited in applicability. Begin-
ning with the seminal work of Swendsen and Wang [3] and
extended by Wolff [4], cluster flipping algorithms have been
used to reduce critical slowing down near 2nd order tran-
sitions. An approach which is quite different in spirit, the
multicanonical ensemble method [5-8], was introduced to
overcome the tunneling barrier between coexisting phases at
1st order transitions and has general utility for systems with
a rough energy landscape [7-17]. In all cases, histogram
reweighting techniques [18] can be applied in the analysis
to increase the amount of information that can be gleaned
from simulational data, but the applicability of reweighting
is severely limited in large systems by the statistical qual-
ity of the “wings” of the histogram. This latter effect is
quite limiting in systems with frustration that produces a
very complicated energy landscape and limits the efficiency
of “standard” methods.

The partition function of any model can be expressed
in terms of a density of states g(E), i.e. the number of
all possible states(or configurations) for an energy level E
of the system, but direct estimation of this quantity has not

been the goal of simulations. Instead, most conventional
Monte Carlo algorithms [1], such as Metropolis importance
sampling, Swendsen-Wang cluster flipping, etc. generate a
canonical distribution g(E)e−E/kBT at a given temperature.
Such distributions are so narrow that multiple runs are usu-
ally needed to describe thermodynamic quantities over a sig-
nificant range of temperature. In the canonical distribution,
g(E) does not depend on the temperature and knowledge of
g(E) permits construction of canonical distributions at any
temperature. (Once g(E) is known the partition function Z
can be calculated:

Z =
∑

{configurations}
e−βE =

∑
E

g(E)e−βE , (1)

where β = 1/(kBT ), and the model is essentially “solved”
since most thermodynamic quantities can be extracted from
it.)

Even though Monte Carlo methods are already very
powerful [1], there was no efficient algorithm to calculate
g(E) very accurately for large systems. Even for exactly
solvable models such as the 2-dim Ising model, g(E) can-
not be calculated exactly for a large system [19]. All meth-
ods based on accumulation of histogram entries, such as
the histogram method of Ferrenberg and Swendsen [18] ,
Lee’s version of the multicanonical method(entropic sam-
pling) [20], the broad histogram method [21-24] and flat
histogram method [25] have the problem of scalability for
large systems. Thus, an algorithm is still needed to calculate
the density of states for large systems.

We now describe a simple new, general, and efficient
Monte Carlo algorithm (generally known as “Wang-Landau
sampling”) that offers substantial advantages over existing
approaches [29-31]. Unlike conventional Monte Carlo
methods that generate a canonical distribution at a given
temperature g(E)e−E/kBT , this approach estimates g(E)
directly and accurately via a random walk that produces a
“flat” histogram in energy space. The estimate for g(E) is
improved at each step of the random walk, using a carefully
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controlled modification factor, to produce a result that con-
verges to the correct value very quickly. The thermodynamic
quantities can then be extracted by applying canonical aver-
age formulas in statistical physics.

2 The “Wang-Landau” algorithm

“Wang-Landau sampling” is based on the observation that if
we perform a random walk in energy space by flipping spins
randomly for a spin system, and the probability to visit a
given energy level E is proportional to the reciprocal of the
density of states 1

g(E) , then a flat histogram is generated for
the energy distribution. This is accomplished by modify-
ing the estimated density of states in a systematic way to
produce a “flat” histogram over the allowed range of energy
and simultaneously making g(E) converge to the true value.
g(E) is modified constantly during each step of the random
walk and use the updated density of states to perform a fur-
ther random walk in energy space. The modification factor f
is controlled carefully, and at the end of simulation it should
be very close to 1 which is the ideal case of the random walk
with the true density of states.

Initially, g(E) is a priori unknown, so the simplest ap-
proach is to set all entries to g(E) = 1 for all possible en-
ergies E. Then a random walk in energy space is begun by
flipping spins randomly with the probability at a given en-
ergy level proportional to 1

g(E) . If E1 and E2 are energies
before and after a spin is flipped, the transition probability
from energy level E1 to E2 is:

p(E1 → E2) = min(
g(E1)
g(E2)

, 1). (2)

Each time an energy level E is visited, the existing value is
multiplied by the modification factor f > 1, i.e. g(E) →
g(E) ∗ f . (It is preferable to work with the logarithm
i.e.ln(g(E)) → ln(g(E)) + ln(f) so that all possible g(E)
will fit into double precision numbers.) If the random walk
rejects a trial move, g(E) is also modified with the same
modification factor. A reasonable, although not necessarily
optimal, choice of the initial modification factor is f = f0 =
e1 � 2.71828... which allows g(E) to develop rapidly. If f0

is too small, the random walk will take too long to reach all
possible energies; however, large statistical errors result if f0

is too large. During the random walk, the histogram H(E)
(the number of visits at each energy level E) is accumulated;
and when it is approximately flat, the density of states will
have converged to the true value with an accuracy propor-
tional to that modification factor ln(f). The modification
factor is then reduced e.g. f1 =

√
f0, the histogram is re-

zeroed, and a new random walk is begun. This iterative pro-
cedure continues until the modification factor is smaller than
a predefined value (e.g. ffinal = exp(10−8) � 1.00000001).
The modification factor acts as a control parameter for the
accuracy of g(E) during the simulation and also determines
how many MC sweeps are necessary for the entire simula-
tion. It is impossible to obtain a perfectly flat histogram and
the phrase “flat histogram” that all histogram entries are not
less than x% of the average histogram 〈H(E)〉, where x% is

chosen according to the size and complexity of system and
the desired accuracy of g(E).

Clearly, one essential constraint is that g(E) should con-
verge to the true value. The accuracy of the estimate for
g(E) is proportional to ln(f) at that iteration; however,
ln(ffinal) can not be chosen arbitrarily small or the modified
ln(g(E)) will not differ from the unmodified one to within
the number of digits in the double precision numbers used
in the calculation. If this happens, the algorithm no longer
converges to the true value, and the program may run for-
ever. Even ffinal is within range, but too small, the calcula-
tion might take excessively long.

The method can be further enhanced by performing mul-
tiple random walks, each for a different range of energy, ei-
ther serially or in parallel fashion, with the random walk re-
stricted to remain in the desired range. The resultant pieces
of g(E) can then be joined together and used to produce
canonical averages for the calculation of thermodynamic
quantities at any temperature.

Note that the algorithm does not satisfy the detailed bal-
ance condition exactly (especially for early stages of itera-
tion) since g(E) is modified constantly during the random
walk. However, after many iterations it quickly converges
to the true value as f → 1. If p(E1 → E2) is the transition
probability from energy level E1 to level E2, from Eqn. (2),
the ratio of the transition probabilities from E1 to E2 and
from E2 to E1 is:

p(E1 → E2)
p(E2 → E1)

=
g(E1)
g(E2)

(3)

where g(E) is the density of states. In another words, the
random walk algorithm satisfies detailed balance:

1
g(E1)

p(E1 → E2) =
1

g(E2)
p(E2 → E1) (4)

where 1
g(E1) is the probability at the energy level E1 and

p(E1 → E2) is the transition probability from E1 to E2

for the random walk. We conclude that the detailed balance
condition is satisfied with accuracy proportional to the mod-
ification factor ln(f).

Almost all recursive methods update g(E) by using the
histogram data directly only after enough histogram entries
are accumulated [5, 8, 11, 13, 14, 15, 16, 27, 32, 33, 34].
Because of the exponential growth of g(E) in energy space,
this process is inefficient because the histogram is accumu-
lated linearly. Instead, we modify g(E) at each step of the
random walk, and this allows us the approach to the true
distribution to be much faster than conventional methods,
especially for large systems. (Although histogram entries
are accumulated during the random walk, they are only used
to check if the histogram is flat enough to go to the next level
iteration.)

Although the total number of configurations increases
exponentially with the size of the system, the total number
of possible energy levels increases linearly with the size of
system so it is easy to calculate g(E) with a random walk in
energy space for a large system. For example, for a q-state
Potts model on a L × L lattice with nearest-neighbor inter-
actions [35] the number of possible energy levels for q ≥ 3
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is about 2N , where N = L2 is the total number of lattice
sites. In contrast, the average number of possible states for

each energy level is as large as qN

2N , where qN is the total
number of possible configurations of the system. Clearly,
current computers are unable to realize all possible states to
calculate any thermodynamic quantities even though most
models in statistical physics are well defined. This is also
why efficient and fast simulational algorithms are required
in the numerical investigations.

With the density of states, we not only can calculate most
of thermodynamic quantities in all temperature region with-
out multiple simulations but can also access some quantities,
such as the free energy and entropy, which are not directly
available from conventional Monte Carlo simulations. The
free energy is calculated using

F = −kT log(Z) (5)

All other thermodynamic properties can also be calculated
from the density of states, e.g. the internal energy is given
by:

U(T ) =

∑
E

Eg(E)e−βE

∑
E

g(E)e−βE
≡ 〈E〉T (6)

and the specific heat can be estimated from the fluctuations
in the internal energy:

C(T ) =
∂U(T )

∂T
=

〈E2〉T − 〈E〉T 2

T 2
. (7)

Thus, a single simulation should be sufficient to provide all
interesting information about a system.

3 How well does the method work?

3.1 Application to the Ising square lattice

As a test of the accuracy and convergence of the method, we
apply it first to L×L Ising square lattices with nearest neigh-
bor coupling. Not only is the Ising model the “fruit fly” of
statistical mechanics but so many of its properties can be de-
termined exactly so a truly quantitative check of the method
is possible (see e.g. Ref. [37]). The exact solution for
the partition function for finite-size systems [38] provides
information about thermodynamic properties. Using Math-
ematica the exact density of states can be obtained for small
systems [19], and we extended the calculation up to L = 50
with the Mathematica program provided by Beale. With the
algorithm described here, g(E) was estimated for the Ising
model for L = 50, with the final modification factor be-
ing 1.000000001, and these results are compared with exact
values in Fig. 3.1. To within the resolution of the figure,
simulational data and the exact solution overlap perfectly,
so in the inset we show the relative error:

ε(X) ≡ |Xsim − Xexact|
Xexact

(8)

Over most of the region ε(log(g)) is smaller than 0.01%.
Such errors for low energy levels are directly related to the
errors for the thermodynamic quantities calculated from the
density of states. The average relative error is 0.019% for
L = 50. In comparison, a recent broad histogram study of a
2D Ising model on a 32× 32 lattice [24] yielded an average
deviation of the microcanonical entropy that was substan-
tially larger than that from this random walk algorithm.
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Figure 1. Density of states for the L = 50 Ising square lattice with
periodic boundary conditions (pbc).

The normalized density of states in Fig. 1 is obtained
by normalizing to the condition that the number of ground
states is 2 (i.e. all up or all down).

For very large values of L we can divide the desired
energy region [-2, 0.2] into multiple energy segments and
estimate the density of states on each segment with an in-
dependent random walk. The resultant density of states
can be joined from adjacent energy segments. A compari-
son of thermodynamic properties determined in overlapping
ranges of energy showed that data are actually only needed
over restricted ranges, e.g. results for three independent ran-
dom walks performed in the ranges E/N = [−1.7,−1.2],
E/N = [−1.8,−1.1] and E/N = [−1.9,−1.0] showed no
discernable difference to the temperature dependence near
the phase transition. Boundary effects at the edges of the en-
ergy ranges can be eliminated by simply treating spin flips
that are rejected because the new energy would be out of
range in the same manner as any rejected spin-flip.

Since the exact g(E) is only available for small
systems(L ≤ 50), it is also important to test the accuracy
of estimates for thermodynamic quantities of large systems.
Using canonical average formulas to calculate internal en-
ergy, specific heat, Gibbs free energy and entropy. Ferdi-
nand and Fisher [38] the exact solutions of above quantities
for 2D Ising model on finite-size lattices can be compared
with simulational results.

In Fig. 2(a), we show the entropy as a function of tem-
perature as determined from the density of states. The exact
and simulational data overlap almost perfectly over a wide
temperature region from T = 0 to T = 8. Since no dif-
ference is visible with the scale used in Fig. 2(a), a more
stringent test of the accuracy is provided by the inset which
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shows the relative errors ε(S) For L = 256 the relative er-
ror is smaller than 0.1% over almost the entire temperature
range.
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Figure 2. Thermodynamic properties of the Ising square lattice
with pbc: (a)Entropy; (b)Specific heat.

g(E) can also be used to calculate the specific heat as a
function of temperature. Both simulational data and exact
results near Tc are shown in Fig. 2(b) for L = 64, 128 and
256 Ising model. To within the error bars there is no differ-
ence between the simulational data and exact solutions. In
the inset of Fig. 2(b), we show relative errors as a function
of temperature for L = 256. The errors for specific heat
for a 256 × 256 lattice are smaller than 4.5% for all tem-
peratures. Recently, Wang et al. [36] estimated the specific
heat of the same model on a 64 × 64 lattice by the transi-
tion matrix Monte Carlo re-weighting method [39], and for
a simulation with 2.5×107 MC sweeps, the maximum error
in temperature region T ∈ [0, 8] was about 1%. When we
apply this algorithm to the same model on the 64 × 64 lat-
tice, with a final modification factor of 1.000000001 and a
total of 2×107 MC sweeps on single processor, the errors in
the specific heat are reduced below 0.7% for all temperature.
The relatively large errors at low T reflect the small values
for the specific heat.

The behavior of the free energy near Tc cannot be ex-
tracted from “standard” Monte Carlo simulations but can
be straightforwardly found from g(E) using Eqn.(5). In
Fig. 3(a), the simulational data and exact results are pre-

sented in the same figure. To within the resolution of the
figure, no difference is visible, and the relative errors are
smaller than 0.001% for all temperatures.
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Figure 3. (a)Free energy of the Ising square lattice; (b)Free energy
of the q = 10 Potts model.

3.2 Application to the q = 10 Potts model: A
first order phase transition

In this section, we show how the algorithm is well suited to
the study of a model with a strong first-order phase transi-
tion [40, 41]. In such cases, the internal energy, entropy, etc.
have discontinuities at the transition and both ordered and
disordered states coexist at the transition. We choose the
two-dimensional, ten state Potts model since it has a strong
temperature-driven first-order phase transitions and a great
deal is know about its behavior. We consider the Potts model
on L × L square lattices with nearest-neighbor interactions
and periodic boundary conditions. The Hamiltonian for this
model can be written as:

H = −
∑
<ij>

δ(qi, qj) (9)

and q = 1, 2, ...q. During the simulation, we select lattice
sites randomly and choose integers between [1 : q] ran-
domly for new Potts spin values. The modification factor
fi changes from f0 = e1 = 2.71828 at the beginning to
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ffinal = exp(10−8) � 1.00000001 by the end of the random
walk. At the end of the simulations, g(E) is normalized us-
ing the fact that the total number of possible states is qN or
that the number of ground states is q, where N = L2 is the
total number of lattice sites. (Actually one of these two con-
ditions can be used to get the absolute density of states and
the other condition to check the accuracy of the result.) To
guarantee the accuracy of thermodynamic quantities at low
temperatures, we use the condition that the number of the
ground states is q to normalize the density of states.

Conventional Monte Carlo simulation (e.g. Metropo-
lis sampling [1, 2]) determines the canonical distribution
P (E, T ) by generating a random walk Markov chain at a
given temperature:

P (E, T ) = g(E)e−E/kBT (10)

From the simulational result for g(E), we can calculate the
canonical distribution by the above formula at essentially
any temperature without performing multiple simulations.
In Fig. 4 we show the resultant double peaked canonical dis-
tribution [41], at the transition temperature Tc for the first-
order transition of the q = 10 Potts model. The “transi-
tion temperatures” Tc(L) are determined by the tempera-
tures where the double peaks are of the same height. (Note
that the peaks of the distributions are normalized to 1 in this
figure.) The valley between two peaks is quite deep. e.g.
is 10−9 for L = 100. The latent heat for this temperature
driven first-order phase transition can be estimated from the
energy difference between the double peaks. Our results for
the locations of the peaks are consistent with the results ob-
tained by multicanonical method [6] and multibondic clus-
ter algorithm [7] for those lattice sizes for which these other
methods are able to generate estimates. Wang-Landau sam-
pling also produces results for substantially larger systems
than have been studied by these other approaches.
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Figure 4. Canonical probability for the q = 10 Potts square lattice
with periodic boundary conditions.

Because of the double peak structure at a first-order
phase transition, conventional Monte Carlo simulations are
not efficient since an extremely long time is required for
the system to travel from one peak to the other in energy
space. With “Wang-Landau sampling” all possible energy

levels are visited with equal probability, so it overcomes the
tunneling barrier between the coexisting phases in the con-
ventional Monte Carlo simulations.

If we are only interested in a specific temperature range,
e.g. near Tc, we could first perform a low precision unre-
stricted random walk, i.e. over all energies, to estimate the
required energy range, and then carry out a very accurate
random walk for the corresponding energy region. The in-
set of Fig. 4 only shows the histograms for the extensive
random walks in the energy range between E/N = −1.90
and −0.6. If we need to know the density of states more
accurately for some energies, we also can perform separate
simulations, one for low energy levels, one for high energy
levels, the other for middle energy which includes double
peaks of the canonical distribution at Tc. This scheme not
only speeds up the simulation, but also increases the prob-
ability of accessing the energy levels for which both maxi-
mum and minimum values of the distributions occur by per-
forming the random walk in a relatively small energy range.
If we perform single random walk over all possible energies,
it will take a long time to generate rare spin configurations.
Such rare energy levels include the ground energy level or
low energy levels with only few spins with different values
and high energy levels where all, or most, adjacent Potts
spins have different values.

If the system is not larger than 100 × 100, the random
walk in important energy regions (i.e. that which includes
the two peaks of the canonical distribution at Tc) can be car-
ried out efficiently with a single processor. However, for
a larger system it is advisable to accelerate the calculation
by performing random walks in different energy regions,
each using a different processor. The densities of states for
150 × 150 and 200 × 200, shown in Fig. 4, were obtained
by joining together the estimates obtained from 21 indepen-
dent random walks, each constrained within a different re-
gions of energy. The histograms from the individual random
walks are shown in the inset of Fig. 4 both for 150 × 150
and 200 × 200 lattices. In this case, we only require that
the histogram of the random walk in the corresponding en-
ergy segment is sufficiently flat without regard to the relative
flatness over the entire energy range. The probability distri-
butions for large lattices show pronounced double peaks for
the canonical distributions at temperatures Tc(L) = 0.70127
for L = 150 and Tc(L) = 0.701243 for L = 200. The exact
result is Tc = 0.701232.... for the infinite system. Consid-
ering the minimum for L = 200 is as deep as 10−9, we can
understand why is impossible for conventional Monte Carlo
algorithms to overcome the tunneling barrier with available
computational resources.

To check the accuracy of the results we can estimate the
transition temperature of the q = 10 Potts model for L = ∞
since the exact solution is known. According to finite-size
scaling theory, the “effective” transition temperature for fi-
nite systems behaves as:

Tc(L) = Tc(∞) +
c

Ld
(11)

where Tc(L) and Tc(∞) are the transition temperatures for
finite- and infinite-size systems, respectively, L is the linear
size of the system and d is dimension of the lattice.
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The transition temperature varies as L−d and the tran-
sition temperature extrapolated from our simulational data
is consistent with the exact solution for the infinite system.
We also compared our results with the existing numerical
data such as estimates of transition temperatures and dou-
ble peak locations obtained with the multicanonical simula-
tional method by Berg and Neuhaus [5] and the Multibondic
cluster algorithm by Janke and Kappler [7]. With the ran-
dom walk simulational algorithm, we can calculate the den-
sity of states up to 200 × 200 within 107 visits per energy
level to obtain a good estimate of the transition temperature
and locations of the double peaks. Using the multicanonical
method and a finite scaling guess for the density of states,
Berg et. al. only obtained results for lattices as large as
100 × 100 [5], and multibondic cluster algorithm data [7]
were not given for systems larger than 50 × 50.

When we calculate the internal energy near the transi-
tion, we find that a very sharp “jump” appears in the internal
energy at Tc. The magnitude of this jump equals the latent
heat for the (first-order) phase transition and is related to the
double peak distribution of the first-order phase transition.
When T is slightly different than Tc, one of the double peaks
increases dramatically in magnitude and the other decreases.
Since we only perform simulations on finite lattices, and use
a continuous function to calculate thermodynamic quanti-
ties, all our quantities for finite-size systems will appear to
be continuous if we use a very small scale. The same density
of states can be used to calculate the internal energy for tem-
peratures very close to Tc. On this scale the “discontinuity”
at the first-order phase transition disappears and a smooth
curve can be seen instead of a sharp “jump”. When the sys-
tem size goes to infinity, the discontinuity will be real.

The specific heat in the vicinity of the transition temper-
ature Tc shows pronounced finite size behavior. We find it
has a finite maximum value for a given lattice size L that,
according to finite-size scaling theory for first-order transi-
tions, should vary as:

c(L, T )L−d ∝ f((T − Tc(∞)Ld) (12)

where c(L, T ) = C(L, T )/N is the specific heat per lattice
site, L is the linear lattice size, d = 2 is the dimension of the
lattice. T (L = ∞) = 0.70123.... is the exact solution for
the Q = 10 Potts model [35]. Indeed, the simulational data
for systems with L = 60, 100 and 200 can be well fitted
by a single scaling function, moreover this function is com-
pletely consistent with the one obtained from lattice sizes
from L = 18 to L = 50 by standard Monte Carlo [41].

The results for the free energy per lattice site are shown
in Fig. 3(b) as a function of temperature. Since the transition
is first-order the free energy appears to have a “discontinu-
ity” in the first derivative at Tc. This is typical behavior for a
first-order phase transition, and even with the fine scale used
in the inset of Fig. 3(b), this property is still apparent even
though the system is finite. The transition temperature Tc is
determined by the point where the first derivative appears to
be discontinuous. With a coarse temperature scale we can
not distinguish the finite-size behavior of our model; how-
ever, we can see a very clear size dependence when we view
the free energy on a very fine scale as in the inset.

The entropy is another very important thermodynamic
quantity that cannot be calculated directly in conventional
Monte Carlo simulations. It can be estimated by integrating
over other thermodynamic quantities, such as specific heat,
but the result is not always reliable since the specific heat
itself is not easy to determine accurately, particularly con-
sidering the “divergence” at the first-order transition. With
an accurate density of states estimated by our method, we
already know the Gibbs free energy and internal energy for
the system, so the entropy can be calculated easily:

S(T ) =
U(T ) − F (T )

T
(13)

It is very clear that the entropy is very small at low temper-
ature and at T = 0 is given by the density of states for the
ground states. The entropy has a very sharp “jump” at Tc,
just as does the internal energy, and this is easily visible in a
plot of the entropy near Tc. The change of the entropy at Tc

can be obtained by the latent heat divided by the transition
temperature, and the latent heat can be obtained by the jump
in internal energy at Tc.

With the histogram reweighting method [18], it is possi-
ble to use simulational data at specific temperatures to ob-
tain complete thermodynamic information near, or between,
those temperatures. Unfortunately it is usually quite hard
to get accurate information in the region far away from the
simulated temperature due to difficulties in obtaining good
statistics, especially for large systems where the canonical
distributions are very narrow. With “Wang-Landau” sam-
pling, the histogram is “flat” for the random walk and we
have essentially the same statistics for all energy levels.
Since the output of the simulation is the density of states,
which does not depend on the temperature at all, we can
then calculate most thermodynamic quantities at any tem-
perature without repeating the simulation. We also believe
the algorithm is especially useful for obtaining thermody-
namic information at low temperature or at the transition
temperature for the systems where the conventional Monte
Carlo algorithm is not so efficient.

4 Systems with a Complex Energy
Landscape: The 3-dim EA model

It is straightforward to apply Wang-Landau sampling to sys-
tems with a rough energy landscape, i.e. with many min-
ima and maxima in the probability distribution. Examples
are spin glasses [42] in which the interactions between the
magnetic moments produce frustration which in turn pro-
duces a complex energy landscape. One of the simplest
spin-glass models is the Edwards-Anderson model [43] (EA
model); however, because of the rough energy landscape of
such disordered systems, the relaxation times of the conven-
tional Monte Carlo simulations are very long [44, 45, 46].
Consequently, simulations can only be performed on rather
small systems, and many properties of spin glasses are still
unclarified [47-54]. Here, too, Wang-Landau sampling is
efficient in estimating the density of states and also very ag-
gressive in finding the ground states. From a random walk
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in energy space, we can estimate the ground state energy
and the density of states very easily. The absolute density of
states by the condition that total number of states is 2N . The
entropy at zero temperature can be calculated from either
S0 = ln(g(E0)) or limT→0

U−F
T , where E0 is the energy in

a ground state. Estimates for s0 = S0/N and e0 = E0/N
per lattice site agree with the corresponding estimates made
with the multicanonical method.

If we are only interested in the quantities directly related
to the energy, such as free energy, entropy, internal energy
and specific heat, one dimensional random walks in energy
space will suffice. However for spin glass systems, one of
the most important quantities is the order parameter [43]

qEA(T ) ≡ lim
t→∞ lim

N→∞
q(T, t), q(T, t) ≡ 〈

N∑
i=1

Si(0)Si(t)/N〉.
(14)

Here, N = L3 is the total number of the spins in the sys-
tem, L is the linear size of the system, q(T, t) is the auto-
correlation function, which depends on the temperature T
and the evolution time t, and q(T, 0) = 1. When t → ∞,
q(T, t) becomes the order parameter of the spin glass and

qEA(T )




= 1 if T = 0
= 0 if T ≥ Tg

�= 0 if 0 < T < T g

, (15)

The value at T = 0 can differ from 1 because of the de-
generate ground state. There is no temperature introduced
during the random walk and it is more efficient to perform
a random walk in a single system than two replicas. So the
order-parameter can be defined

q ≡ 〈
N∑

i=1

S0
i Si/N〉. (16)

where {S0
i } is one of spin configurations at ground states

and {Si} is any configuration during the random walk. q as
defined above is similar to the order-parameter defined by
the Edwards and Anderson [43] and was used in the early
numerical simulations by Binder et al.[55, 56].

First a bond configuration is generated and a one-
dimensional random walk in energy space is used to find
a spin configuration {S0

i } for the ground states. Since the
order-parameter is not directly related to the energy, a two-
dimensional random walk is needed to get a good estimate
of this quantity, i.e. to obtain the density of states g(E, q)
with a flat histogram in E-q space. This also allows us to
overcome the barriers in parameter space (or configuration
space) for such a complex system. The rule for the 2D ran-
dom walk is the same as for the 1D random walk in energy
space.

The canonical distribution as a function of the order-
parameter is given by:

P (q, T ) =
∑
E

G(E, q)e−E/kBT (17)

In Fig. 5, we show a plot of the canonical distribution
at different temperatures for one bond configuration of the

L = 8 EA model. At low temperatures, there are multi-
ple peaks, and the depth of the valleys between peaks de-
pends upon temperature. When the temperature is high a
single central peak is all that can be seen. At low temper-
ature the relative depth of the minima is as great as 10−30,
and there are several local minima even at higher temper-
atures. With conventional Monte Carlo simulations, it is
impossible to overcome the barriers at the lower tempera-
tures, so the simulation will get trapped in one of the lo-
cal minima. Therefore, even two decades after the model
was proposed, there are disagreements about the existence
of a finite phase transition between a glass phase and a
disordered phase. For example, using Monte Carlo sim-
ulations on systems as large as (642 × 128), Marinari et
al. [57] expressed doubt about the existence of the “well-
established” finite-temperature phase transition of the 3D
Ising spin glass [44, 47]. Their simulational data could be
described either by a finite-temperature transition or by an
unusual T = 0 singularity. Kawashima and Young could
also not rule out the possibility of Tg = 0 [48]. Thus even
the existence of the finite-temperature phase transition is still
controversial, and thus the nature of the spin glass state is
uncertain. Although the best available simulational results
[13, 52, 58] have been interpreted as a mean-field like behav-
ior with replica-symmetry breaking(RSB) [59], Moore et al.
found evidence for the droplet picture [60] of spin glasses
within the Migdal-Kadanoff approximation. They argued
that the failure to see droplet model behavior was because all
existing Monte Carlo simulations were done at temperatures
so close to the transition that system sizes larger than the cor-
relation length were not used. It is possible to heat the sys-
tem to increase the possibility of escape from local minima
by simulated annealing and the more recent simulated tem-
pering method [61] and parallel tempering method [62, 63],
but it is still very difficult to reach equilibrium at low tem-
peratures. Recently Hatano and Gubernatis proposed a bi-
variate multicanonical Monte Carlo method for the 3D ±J
spin glass model, and their result also favors the droplet pic-
ture [16, 64]. Marinari et al. argued, however, that the data
were not thermalized [58]. The nature of spin glasses thus
remains controversial [51].

5 Summary and Outlook

We have described an efficient algorithm that allows the cal-
culation of the density of states directly for large systems.
By modifying the estimate at each step of the random walk
in energy space and carefully controlling the modification
factor, we can determine g(E) very accurately and then cal-
culate thermodynamic quantities at essentially any temper-
ature . It is also noteworthy that Wang-Landau sampling
allows the direct calculation of the Gibbs free energy and
entropy, quantities that can only be obtained with thermo-
dynamic integration using conventional Monte Carlo simu-
lations. The method is applicable to a wide range of sys-
tems and is easy to implement. Although we have described
its implementation in terms of single spin-flip sampling, it
is straightforward to use other types of sampling for those
cases in which it will further accelerate the sampling.
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Figure 5. Canonical probability distributions for the 3-dim EA
model with one bond distribution.

The application to the Ising model and the q = 10 Potts
model on square lattices shows that the method is effec-
tive for systems that show first order or second-order phase
transitions. Although the presentation concentrated on the
random walk in energy space the idea is very general and
can be applied to any parameters [11]. The energy levels
of the models treated here are discrete and the total number
of possible energy levels is known before simulation, but
in a general model such information is not available. Since
the histogram of the random walk with our algorithm tends
to be flat, it is very easy to probe all possible energies and
monitor the histogram entry at each energy level. For some
models where all possible energy levels can not be fitted in
the computer memory or the energy is continuous, e.g. the
Heisenberg model, a discretization of the energy can be im-
plemented.

In this paper, we only applied the Wang-Landau algo-
rithm to simple models; but since the algorithm is very effi-
cient even for large systems it should be very useful in the
studies of general, complex systems with rough landscapes.
There have already been a significant number of other appli-
cations of Wang-Landau sampling including efforts to im-
prove sampling [65], to simulate proteins [66] and poly-
mer films [67], studies of fluids [68], to study antiferro-
magnetic Potts models [69], reaction coordinates [70], for
quantum Monte Carlo [71], for the Kondo problem [72],
for the study of biological circuits [73], and for combina-
torial number theory [74]. Some understanding of the con-
vergence and performance limitations of the method have
already been provided [75]; however, more investigation is
needed to better determine under which circumstances the
method offers substantial advantage over other approaches
and how the method can be further improved.
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