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Localized rain events have been found to follow power-law distributions over several decades, suggesting par-
allels between precipitation and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power laws
can be generated by treating raindrops as passive tracers advected by the velocity field of a two-dimensional
system of point vortices [R. Dickman, PRL 90, 108701 (2003)]. Here I review observational and theoretical
aspects of fractal rain distributions and chaotic advection, and present new results on tracer distributions in the
vortex model.

1 Introduction

Complex systems often exhibit fractal or power-law scaling;
Earth’s atmosphere is no exception. Fractal rain distribu-
tions have been known for at least two decades [1, 2, 3],
while recent analyses indicate that durations of dry intervals,
and the size of rain events, follow power laws [4, 5]. The
similarity between the latter observations and scaling laws in
seismic activity suggests a parallel between rain and earth-
quakes, and a possible connection with the phenomenon of
self-organized criticality [5, 6].

Atmospheric motion is turbulent, particularly in the
vicinity of storms, and various aspects of turbulent flow fol-
low power laws over many orders of magnitude [7, 8, 9].
Even in the absence of fully developed turbulence, un-
steady flow may stretch and fold an initially compact region,
leading to a highly convoluted, nonuniform density of sus-
pended particles or droplets [10, 11, 12] via chaotic advec-
tion [13, 14]. In light of these observations, it is interesting
to develop a model in which rain is an ideal passive tracer
[15, 16]. In [17] it was shown that such a model is capable of
producing power-law-distributed event sizes and durations.

In this paper I review some of the evidence for fractal
rain distributions, and present new results on the spatial dis-
tribution of tracers in the vortex model. Progress in fluid me-
chanics depends heavily on numerical solution of the equa-
tions of motion, which in turn represents one of the most
challenging areas in computational physics, the theme of the
present number.

In Sec. II, I survey observations of fractal rain distri-
butions. Sec. III contains a brief discussion of SOC-like
approaches, while Sec. IV reviews results on tracer-particle
dynamics in a fluid undergoing chaotic advection. I define
the vortex model in Sec. V, which also includes a summary
of previous findings and some recent extensions. Sec. VI
presents new results on spatial distributions of tracers in the
vortex model. The paper closes in Sec. VII with a summary
and discussion of open questions.

2 Fractal rain distributions

Discussions of fractal rain distributions go back at least to
the work of Lovejoy and Mandelbrot [1] who presented a
model with a single fractal dimension. The distribution in
question involves a time series of duration T and a fixed ob-
servation point or station. The observation interval is parti-
tioned into N = T/τ subintervals of duration τ , each char-
acterized as rainy (a nonzero amount of rain is detected at
the station in this interval) or dry. The function r(τ) is then
defined as the number of rainy subintervals at scale τ . Ols-
son et al. found that this distribution follows a power law,
r ∼ τ−γ , with γ � 0.8, over a certain range of durations
[2]. Note that for τ ≈ T , r → N (all subintervals are
rainy), while for τ much shorter than the characteristic time
between raindrops, r saturates at a valueM equal to the total
number of raindrops incident on the station during the inter-
val T . Between these simple limits, r(τ) may exhibit non-
trivial behavior reflecting correlations in the generation or
dynamics of raindrops. Now, if the arrival times of the rain-
drops were mutually independent (so that the time interval
between successive drops at the detector were exponentially
distributed), the number of drops n(τ) in a given subinterval
would be Poisson-distributed with mean 〈n(τ)〉 = mτ , with
m = M/T , and we would have r(τ) = (T/τ)(1 − e−mτ ).
Thus a power law distribution with γ < 1 rules out a sim-
ple “independent event” model, suggesting some nonlinear
mechanism behind the observed rainfall statistics.

The observations of Olsson et al. (from Sweden) were
later corroborated by Lavergnat and Golé [3] in an experi-
ment performed near Paris. The latter study generated data
on raindrop arrival times and sizes over a 14-month period,
and confirmed the scaling r ∼ τ−0.82 over six orders of
magnitude (from 0.01 to 104 minutes). Other important
conclusions from this study are: (1) the raindrop diameter
distribution decays roughly exponentially (or perhaps as a
stretched exponential) for diameters greater than about 0.5
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mm; (2) the distribution of time intervals between raindrops
can be fit to a so-called bi-Pareto distribution over about nine
orders of magnitude. This distribution involves two power
law regimes, one for short times (drops associated with a
given storm) another for long times (intervals between suc-
cessive storms). On the basis of their analysis Lavergnat and
Golé conclude that the waiting time D between successive
rain events is power-law distributed: Pd(D) ∼ D−τD with
τD = 1.68. (For D ≈ one day the probability density Pd

decays rapidly; droughts longer than a week or so were not
seen in their experiment.)

Convincing evidence for a multifractal spatial distribu-
tion of raindrops in storms, on scale from 1 cm up to meters,
was very recently reported by Lovejoy et al. [18]. An impor-
tant conclusion of these authors is that there is no meaning-
ful way to describe rain content in the atmosphere in terms
of a smoothly varying density, since large fluctuations are
present at all scales. The authors suggest turbulence as the
reason for the fluctuations in raindrop distribution.

Recently a large time-series (six months) from radar ob-
servations on the Baltic coast became available under the
BALTEX project [19]. The radar station determines the
quantity of rain falling in a 1 m2 column of the atmosphere.
Arrival times of individual raindrops are not resolved, but
the total amount of rain above the station at each 1 min.
interval is registered. The threshold for detection is 0.005
mm/h; intervals with a precipitation rate above this thresh-
old have a nonzero rate q(t), otherwise q(t) = 0 for that
interval. In their analysis of the BALTEX data, Peters et al.
focus on rain events, defined as sequences of consecutive
intervals with nonzero rainfall [4, 5]. A series of consec-
utive intervals having zero rain defines a drought. The in-
tensity I =

∑
t q(t) of a rain event is the rainfall integrated

over its duration. Peters, Hertlein and Christensen found that
the distribution of rain-event sizes at the Baltic coast station
follows a power law over at least three decades. Drought
durations are also power-law distributed over the range of
several minutes to about a week, with a significant perturba-
tion apparently reflecting diurnal variation. The power laws
identified by Peters et al. may be expressed in the form

Pi(I) ∼ I−τI (1)

and
Pd(D) ∼ D−τD , (2)

where Pi and Pd are the probability distributions for rain
event intensities, and for drought durations, and the expo-
nents are found to take the values

τI = 1.36 τD = 1.42 (3)

These authors emphasize the similarities between these dis-
tributions and those found for earthquakes, suggesting a par-
allel with self-organized criticality to be discussed in the fol-
lowing section.

Taken as a whole, the observations of Olsson et al.,
Lavergnat and Golé, Lovejoy and co-workers, and Peters
et al. present a very strong case for fractal or multifractal
distributions of rain at a given position over time, and in

space, at a given instant [20]. The universality of the ob-
served distributions is less clear. First, the time series all
come from the north of Western Europe, where prolonged
dry periods are evidently rare. The central region of Minas
Gerais, Brazil (to cite one example) experiences a dry spell
of several months each year, and might therefore exhibit a
different distribution of droughts. The Paris and Sweden
experiments yielded similar values (γ = 0.82) for the expo-
nent characterizing the fractal distribution in time, while the
BALTEX data yield γ � 0.55 [5]. On the other hand, the
Paris results suggest τD = 1.68, considerably larger than the
Baltic observations. Observations from other sites (in partic-
ular, from other regions of the world, including continental
sites, and oceans), are needed to confirm the generality of
power laws, and the range of exponent values.

3 Rain and Self-organized criticality

Peters, Hertlein and Christensen noted a striking similar-
ity between the scaling laws they found in the rain data
and those known for earthquakes. Specifically, earthquake
magnitudes M (defined in terms of energy released) follow
the Gutenberg-Richter law Pm(M) ∼ M−τM [21], while
the waiting time between earthquakes in a given region fol-
lows a power-law known as Omori’s law [22, 23]. This
suggests a parallel between precipitation in the atmosphere
and relaxation of the Earth’s crust at stressed tectonic-plate
boundaries [5]. In the context of seismology, cooperative
relaxation due to elastic interactions and nonlinear friction
is captured by block-spring models [24, 25] or, in much-
reduced fashion, by sandpile models [6]. The latter have
attracted much attention as the principal example of the self-
organized criticality paradigm for scale-invariance in natu-
ral, far-from-equilibrium systems [6, 26, 27].

Indeed, sandpile-like models of rainfall have been stud-
ied [28, 29]. They involve the directed motion of raindrops
such that when a given cell contains more than a certain
number of drops, the latter move to cells at the level be-
low. That such a model yields power-law distributions for
sizes of certain kinds of events is not surprising, as this is an
intrinsic feature of sandpile models [26, 30]. (It is less clear
how to define the duration of a rain event, since sandpiles
represent a singular limit in which event durations cannot be
measured on the same time scale as intervals between events
[31, 32].)

But if certain aspects of rain distributions resemble
those of avalanches in sandpile-like models, the underlying
physics remains obscure. While it may yet prove possible to
explain the observed power laws in terms of an open, driven
dissipative system [28, 29, 33], there is no obvious reason
for the formation or precipitation of one raindrop to provoke
similar events nearby. Given the attendant release of latent
heat, one might instead expect a self-limiting tendency in
condensation.

In fact, condensation and precipitation of rain is a com-
plex process, involving the interplay between atmospheric
motion, including turbulent convection, thermodynamics
and nucleation processes [34]. Evaporation, condensation
and vertical fluid motion are strongly coupled via buoyancy.
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While it is hard to see how direct interactions between rain-
drops over a mean interparticle distance of 10 cm [18] could
lead to clustering, the drops are of course highly influenced
by the motion of the surrounding air. The latter is gener-
ically turbulent [9], and as such is characterized by scale-
invariant velocity and energy distributions. Thus it appears
more promising to seek the explanation for power-law dis-
tributions in atmospheric fluid dynamics.

4 Chaotic Advection

In this and the following sections we will be interested in
the dynamics of passive tracer particles in a fluid. Such
a particle follows the local velocity of the fluid at each mo-
ment, so that its trajectory is that of a fluid particle. The fluid
velocity is not affected by the tracers. As such, a tracer rep-
resents an idealized limiting case of a very small, neutrally
buoyant particle immersed in the fluid. (Tracers are small in
the sense that (1) their inertia is negligible and (2) the fluid
velocity varies little over the diameter of the tracer.) The
idea of the model to be developed below is that raindrops
can be treated, to a first approximation, as passive tracers,
even though they are much denser than air, and not always
“small.” This study should nevertheless provide a prelimi-
nary indication of how atmospheric motion can affect the
distribution of the raindrops.

Now, if the fluid motion is turbulent, the distribution of
passive tracer particles should also exhibit scale-invariant
properties [12, 15, 16]. An important example is Richard-
son’s law, the empirical result that in turbulent flow, the
mean-square separation �t between a pair of tracers at time
t, given an initial separation of �0, grows ∼ �

4/3
0 . If two

or more tracers are released at nearby points, we can study
how their trajectories separate over time, leading to the no-
tion of chaotic tracer motion: trajectories that separate ex-
ponentially rapidly with time. A flow need not be turbulent
to exhibit chaos in this sense. Relatively simple flows, such
as the van Karman vortex street or flows generated by sys-
tems of point vortices exhibit this property. Aref showed
that this phenomenon, known as chaotic advection or La-
grangian chaos, appears in systems of as few as four mutu-
ally interacting vortices [13, 14]. (The vortex system, which
is central to the model developed here, will be described in
detail below.)

Some aspects of chaotic advection can be understood in
a general way using elementary notions from dynamical sys-
tems theory. Consider an incompressible fluid restricted to
a finite volume. A stagnation point in such a flow is a hy-
perbolic fixed point: due to volume conservation, the fluid is
attracted to this point along one direction, and repelled along
another. As a result, a fluid element that passes near the hy-
perbolic point is stretched along one direction, compressed
along the other. As stretching continues, the element must
double back on itself since it is confined to a finite region.
Repeated encounters with hyperbolic points lead to iterated
distortions of the kind described above. Thus a fluid element
undergoes repeated stretching and folding similar to the dis-
tortions leading to chaos in simple model systems such as

the baker’s transformation [35].
Flow fields with chaotic advection may also exhibit un-

stable periodic orbits with fractal structure[11]; tracers (as
well as particles with non-negligible inertia) may spend long
periods of time in the vicinity of these orbits [36]. The ef-
fect, once again, is that an initially compact region becomes
highly extended along one direction, and contracted in the
other, and repeatedly folded, yielding a self-similar struc-
ture of bands reminiscent of a strange attractor in a chaotic
dynamical system.

Summarizing, the motion of tracer particles in even
moderately complex flows can yield chaotic trajectories and
scale-invariant spatial distributions. This suggests treating
rain as a collection of passive tracers moving in a chaotic
or turbulent velocity field. The raindrops are released in a
localized condensation event, and then advected by the air
before being detected at or above a given point on Earth’s
surface.

What would a reasonably complete model of this process
look like? Even ignoring thermodynamic aspects (evap-
oration and re-condensation of rain, with attendant latent-
heat and buoyancy effects), we would need to treat a three-
dimensional atmosphere whose density falls off exponen-
tially with height, and integrate the Navier-Stokes equation
for an incompressible fluid subject to suitable boundary and
initial conditions, (including a driving term at large scales
to compensate small-scale dissipation, if we wish to study
a stationary state), at a Reynolds number characteristic of
turbulent motion [37]. To include the possibility of convec-
tion we would need to implement (at least) the Boussinesq
approximation, allowing the density to vary linearly with
temperature, and including heat transfer in the description
[38, 39]. Such a study poses a great challenge to presently
avaliable computational tools. In particular, faithful repre-
sentation of fully developed turbulence appears (due to the
number of degrees of freedom involved) computationally
nonviable, so that reduced descriptions such as large-eddy
simulation or a shell model are required [7, 8].

While semi-realistic simulation seems a worthy objec-
tive for future study, in this work I consider a radically sim-
plified model, which can serve as a proof of principle of the
idea that fractal rain distributions derive from chaotic advec-
tion. The model eliminates nearly all atmospheric processes
and takes advantage of a physical system (point vortices)
affording a vast reduction in computational complexity, as
explained in the next section.

5 Computational Model

On the planetary scale, Earth’s atmosphere is two-
dimensional. At high Reynolds numbers, effects of viscosity
are limited to small scales and to boundary layers. These ob-
servations may be seen as possible motivations for what is
in the final analysis a simplification based on computational
necessity, namely, the study of ideal two-dimensional flow.
In potential flow, i.e., for which the fluid velocity u(x, t)
can be written as the gradient of a scalar function φ(x, t)
[40, 41, 42], the incompressibility condition ∇ · u = 0 im-
plies that φ satisfies Laplace’s equation; such flows are irro-
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tational, i.e., ∇× u = 0. Potential flow solutions of Euler’s
equation satisfy the principle of linear superposition.

The velocity field is built up out of complex potentials
of the form

φ = −i
K

2π
ln(x + iy) (4)

corresponding to the velocity field (in polar coordinates)

uθ =
K

2πr
, ur = 0 . (5)

(The circulation K is the line integral of the velocity over
any circuit including the origin; ∇×u = 0 except at the ori-
gin, where the velocity is evidently singular.) We construct
more complicated flows by superposing vortices at different
points rj . (The vortex is an extended object; rj denotes the
position of the singularity.) In a system of NV point vor-
tices, each vortex j moves in the velocity field defined by
the superposition of all vortices except vortex j itself [41].
(For NV ≤ 3 the system is integrable [14].) Thus, in this
rather special case we can construct a complex fluid motion
without solving the Euler equation, by integrating the mo-
tion of a system of N point particles. This makes the vortex
system particularly attractive for simulating incompressible,
inviscid flow.

Point-vortex systems have been used for some time in
studies of two-dimensional turbulence [7, 43, 44] and of
chaotic advection [13, 14], and appear to be relevant to at-
mospheric dynamics on various scales [45]. Two interesting
scaling properties of tracers in systems of four or more point
vortices are worth noting [14]: (1) the tracers exhibit anoma-
lous difusion, with the mean-square displacement growing
∼ t1.8; (2) the lifetime s of vortex pairs follows a power-
law distribution, P (s) ∼ s−2.7. (Tracers are typically ex-
cluded from the immediate vicinity of a vortex, but may on
the other hand become trapped at the periphery of a vor-
tex pair.) Compared with direct integration of the Euler or
Navier-Stokes equations, the computational demands are or-
ders of magnitude smaller. Of course, one is restricted to
a two-dimensional, inviscid fluid. (In the three-dimensional
case the vortices become vortex lines, which stretch and fold
under the flow. But such a system may still offer computa-
tional advantages.)

In Ref. [17] I study a system of interacting point vortices
on the unit square with periodic boundaries. The velocity of
vortex i is given by

vi =
∑

j �=i

Kj

2πr2
ij

k̂ × rij , (6)

where Kj represents the circulation of vortex j (equal num-
bers of clockwise and anticlockwise vortices are used), and
rij = ri − rj , under periodic boundaries, using the nearest-
image criterion. The velocity u(x,t) at an arbitrary point x
in the plane (not occupied by a vortex) is given by a similar
sum including contributions from all vortices. The number
of vortices NV ranges from 10 to 126.

Several types of vortex-strength distributions are stud-
ied; the simplest assigns all vortices the same strength |K|.
Other studies employ a hierarchical vortex distribution, de-
fined as follows. The zeroth “generation” consists of a pair

of vortices with K = ±K0. Subsequent generations, n =
1, ..., g have 2n+1 vortices, with circulation |K| = K0/α

n.
I study α = 2, 3, and 4, using g+1 = 5 or 6 generations. The
purpose of the hierarchical distribution is to provide struc-
ture on a variety of length scales, without trying to repro-
duce any specific energy spectrum E(k). The vortices are
assigned random initial positions, but their subsequent evo-
lution is deterministic [46].

Being point objects, the vortices possess no intrinsic
length scale. (Note however that in the presence of other
vortices, the ‘sphere of influence’ of vortex i is proportional
to Ki.) A characteristic length scale is the mean separation
∼ 1/

√
NV between vortices. The vortex system defines a

mean speed u = 〈|u(x, t)|〉 ∝ K0

√
NV ; an important time

scale is τC ∼ 1/u, the typical time for a fluid particle to
traverse the system. A typical velocity field in a system of
ten vortices (all of equal intensity) is shown in Fig. 1.

Figure 1. Velocity field in a system of ten vortices of equal strength.

A large number of tracers, Np = 10 000, are thrown at
random into a small region (a square of side 0.05), repre-
senting a localized condensation event. (Alternatively, the
tracer-laden region may be interpretated as a parcel of atmo-
sphere of high humidity, destined to generate precipitation.)
In the analysis of rain and drought events, the observation
interval T plays an important role. At time zero the vortices
begin their motion, and the tracers are inserted. The dynam-
ics is followed up to time T , when the simulation ends.

In the model, ‘rain’ corresponds to the presence of one
or more tracers in a very small predefined region or ‘weather
station’, of linear dimension 0.01. At each step of the inte-
gration, the number of particles ni(t) at each station i is
monitored. A sequence of nonzero occupation numbers at a
given station constitutes a rain event, just as in the radar ob-
servations [4]; the intensity of a rain event is I =

∑
t ni(t)

where the sum is over the set of consecutive time steps for
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which ni(t) > 0. In case ni = 0, station i is said to experi-
ence a drought. The durations of droughts and of rain events
are likewise monitored over a time interval T .

Figure 2. Positions of 104 tracers (small points) and 10 vortices
(open circles, clockwise circulation, filled, anticlockwise), at times
0.46 (a), 0.48 (b) and 0.50 (c).

Fig. 2 shows successive configurations of a system of
104 particles and 10 vortices of equal intensity, at times 0.46,
0.48 and 0.50, under conditions such that 〈|u(x, t)|〉 = 4.

(Thus T = 0.5 corresponds to 2τC .) In this example the
tracer-bearing region has become wrapped around a vor-
tex pair, and becomes increasingly stretched. The tracers
are widely scattered, but their distribution remains highly
nonuniform, characterized by bands of high particle con-
centration. (The tracer-free regions centered on the vortex
pair arise because the fluid trajectories circulate about the
vortices, so that tracers cannot penetrate this region from
outside.) At later times (see Fig. 3, for T = 8τC) tracers are
more uniformly distributed, but there are again empty re-
gions centered on vortices or vortex pairs. (In these studies
the tracers were released from a region of size 0.01 × 0.01
to provide enhanced spatial resolution.)

Figure 3. Positions of 5 × 104 tracers at time 8τC , for the same
conditions as Fig. 2.

Varying the vortex distribution and observation interval
T , the following trends emerge. For T/τC in the range 0.1
- 2, power-law rain-intensity and drought duration distribu-
tions are found, as in Eqs. (1) and (2). The rain-intensity dis-
tribution follows a power law over 4 - 5 1/2 decades, with an
exponent τI in the range 0.93 - 1.02. The drought-duration
distribution decays with a somewhat larger exponent, 1.12 -
1.16, and follows a power law over 3 - 4 decades. Larger ex-
ponent values are associated with higher values of α; these
yield somewhat smaller ranges for the power laws. Con-
versely, the largest power-law range, and smallest exponent
values, are observed when all vortices are of equal strength.
There is no significant difference between the distributions
obtained initially and those found after the vortices have had
some time to evolve, suggesting that the equilibration pro-
cess expected in two-dimensional turbulence [43, 44] is not
important as regards rain and drought statistics.

Systems with varying numbers of vortices yield similar
distributions, if we scale the intensity K ∼ 1/

√
NV . This

is seen from the data collapse in Fig. 4, in which results for
systems of 10, 20, 50 and 100 vortices (with Np = 104,
T � 0.85τc, and K = 0.3 for NV = 10), are shown.
Even systems with as few as ten vortices yield good power
laws, indicating that chaotic advection is the essential fea-
ture leading to scale invariance, rather than well developed
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turbulence.

Figure 4. Rain-size (main graph) and drought-duration (inset) dis-
tributions in systems of vortices of equal strength, T � 0.85τc . ◦:
NV = 10; ×: NV = 20; ✷: NV = 50; +: NV = 100. The vor-
tex intensity K is scaled ∼ 1/

√
NV in these studies. The straight

lines have slopes of -1.01 (rain size) and -1.13 (drought).

For larger values of T/τC the particles are more dis-
persed, and the rain size and drought duration follow a
stretched-exponential form Pi(I) ∝ exp(−CIβ) with C a
constant and β � 0.5. Even for large values of T/τC (up
to 200 in the present study), the distributions decay more
slowly than an exponential, showing that the tracer density
is non-Poissonian.

The results of [17] may be summarized as showing
scale-invariant rain-size and drought-duration distributions
for intervals such that the tracers remain highly clustered.
Although the decay exponents are somewhat smaller than
those obtained from observational data (1.36 and 1.42 for
rain size and drought duration, resp. [4]), the simulations
also show the drought duration decaying more rapidly than
that for rain event sizes. For conditions under which the rain
is more thoroughly dispersed, simulations yield stretched-
exponential distributions. It is worth noting that the finding
of non-power-law distributions at longer times does not sig-
nal an inability of the model to reproduce the observational
results. Rain, after all, does not remain in the air indefi-
nitely. (It would, of course, be interesting to have some way
of comparing the model timescale τC with the typical res-
idence time of rain in the atmosphere.) The tendency to-
ward a more uniform tracer distribution at times � τC is
in fact exagerated by the periodic boundaries of the model,
and might occur more slowly under a corresponding vortex
dynamics in the atmosphere.

Even in a system as simple as that considered here, there
is a large parameter space to be explored: number, circula-
tion, and intensity of vortices, size and shape of the initial
particle-bearing region, observation time T . To close this
section I report some preliminary results on situations not
considered in [17]. In all cases there are ten vortices, all of
intensity 0.3, yielding 〈|u(x, t)|〉 = 4. A study in which

the tracers are released from a circular, rather than a square
region yields the same exponents τI and τD as found pre-
viously. Thus the shape of the initial region appears not to
influence the event statistics.

It is natural to ask how relaxing the “neutrality condi-
tion” (equal numbers of vortices with clockwise and anti-
clockwise circulation) affects the event distributions, since
there is no obvious reason to assume such neutrality. A study
using all vortices with the same circulation again yields
power-law distributions, but with somewhat different expo-
nent values, depending on the observation time. Specifi-
cally, for T = 0.8τC I find τI = 1.01(1) and τD = 1.10(2),
similar to the results for the neutral system, while for T =
1.2τC , τI = 1.21(1) and τD = 1.06(1). Thus, allowing a
net circulation results in a larger rain intensity exponent at
longer times, while the drought exponent is slightly smaller.

There is also evidence that releasing the tracers from a
smaller region (of linear size 0.01 instead of 0.05) yields a
larger τI and smaller τD. A study using T = 0.5 (and equal
numbers of clockwise and anticlockwise vortices), yielded
τI = 1.10(2), while τD � 1.02. Although it is difficult to
draw firm conclusions from these preliminary results, they
demonstrate the generality of power-law distributions at in-
termediate times, while suggesting that exponent values may
change depending on the flow regime.

6 Spatial Distribution of Tracers

As discussed in the preceding section, a very simple model
of passive tracers in a velocity field defined by a system
of point vortices is capable of yielding power-law rain-
intensity and drought-duration distributions [17]. These re-
sults for events at a fixed observation site suggest that the
spatial arrangement of the tracers is somehow related to the
event distributions. One might even hope to understand the
scale-invariant event distributions as arising from a fractal
tracer pattern as it sweeps over the observation site. In this
section I present results on the spatial distribution of the
tracer particles, which can be thought of as analogous to the
distribution of rain over a region experiencing storms. The
results are for systems with equal numbers of clockwise and
anticlockwise vortices, all of equal intensity K .

As a first step, I consider the occupancy histogram N(n)
upon partitioning the system into a fine mesh; N(n) denotes
the number of elements with tracer occupancy n. The sim-
ulation cell is divided into 104 square regions or boxes of
side 0.01, and the box-occupancy histogram determined af-
ter allowing the particle configuration evolve for a time T .
Recall that initially, a small number of boxes (25 or so) will
have high occupancies, while the rest are empty. If the parti-
cles tend toward a uniform distribution, we should expect the
histogram to approach a Poisson distribution, with parame-
ter 1 (there are 104 particles) for large T . The simulation
results instead indicate a tendency to form a power-law dis-
tribution at short times, followed by a stretched-exponential
form at longer times. Fig. 5 shows histograms at various
observation times for a system of 10 vortices of equal in-
tensity, |K| = 0.3. At times T/τc = 0.2 and 0.4, a peak
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near occupancy n = 400 is evident, a remnant of the ini-
tially compact distribution. The histogram follows a power
law N(n) ∼ n−ε, for n ≤ 200 or so, with ε = 0.54(1)
for T = 0.2τC . As T increases, the exponent ε becomes
larger, and the histogram (on log scales) begins to curve
downward, signaling a faster than power-law decay. For
T = 0.5 the histogram is well described by a stretched ex-
ponential, N(n) ∝ exp[−const. × xβ ] with β � 1/7. Thus
the histogram remains non-Poissonian even for rather long
times. For a system of 100 vortices (with K scaled to main-
tain the mean velocity constant as discussed in Sec. V), the
histogram is power law (with ε = 0.67) for T = 0.2τC , and
tends to a stretched exponential (with β � 1/5) for longer
times.

Figure 5. Instantaneous occupancy histogram N(n) for boxes of
side 0.01 in a system with 10 vortices, |K| = 0.3. Observation
times: T = 0.2τc (filled squares); T = 0.4τc (✷); T = 0.8τc (•);
◦: T = 2τc (◦).

In principle, the fractal dimension of the instantaneous
particle distribution may be determined in a manner analo-
gous to the fractal time distribution described in Sec. III.
That is, we divide the system into ever-finer partitions (for
example, squares of side � = 2−n for n = 1, 2, 3, ...) and
determine the number r(�) of occupied squares at scale �.
For uncorrelated positions we expect r(�) ∝ �−2 away from
the limits of very large or very small boxes. Applying this
analysis to tracer configurations in the vortex system yields
r(�) ∝ �−γ with γ = 1.8 - 1.9, depending on the ob-
servation time T and number of vortices. This may sig-
nal an incipient fractal distribution, but a glance at a typi-
cal configuration (Fig. 2) shows that at the times of inter-
est, the particle-filled region is not a fully developed fractal
structure, but rather is essentially linear, becoming increas-
ingly stretched (and wound about one or more vortices), and
folded as times goes on.

The observation of a stretched, linear tracer-bearing re-
gion suggests that we distinguish two directions, locally par-
allel and perpendicular to the elongated region. Observe

that the particle velocity is approximately parallel to the
elongated direction. Thus it is of interest to define coordi-
nates η and ξ at any instant, representing the distance from
a given particle i in directions parallel and perpendicular to
(respectively) its velocity vi. We study the tracer density
as a function of distance from a randomly chosen particle,
along these directions, effectively defining two-point corre-
lation functions C||(x) and C⊥(x). Fig. 6 shows that at
time 2τC these functions are strongly peaked near the origin,
demonstrating a high degree of clustering, and that C||(x)
is generally greater than C⊥(x), corresponding to the elon-
gated linear regions typical of the particle configuration at
intermediate times. The correlation functions at time 8τC

(shown in the inset of Fig. 6) are much more uniform, away
from the central peak, and appear to be isotropic.

Figure 6. Correlation functions (unnormalized) C||(x) (◦) and
C⊥(x) (•) on semi-log scales, in a system with ten vortices, ob-
servation time T = 2τC . Inset: a similar plot on linear scales for
T = 8τC .

The configurations depicted in Fig. 2 suggest that the re-
peated bands of particles (due to folding and/or wrapping
around a vortex) possess a nested structure. We look for ev-
idence of fractal structure along the perpendicular direction
ξ by dividing this axis (along a narrow swath, |η| ≤ 0.005)
into segments of length � = 2−n, and determining the num-
ber of occupied segments r(�) at scale �. This function is
shown for various observation times in Fig. 7. At the short-
est times r(�) is constant for larger �, indicating that only a
single box is occupied at the larger scales, due to the small
insertion region (of length 0.01 here). At intermediate times
there is evidence of fractal scaling (for example, at T = 2τC ,
r ∼ �−0.72 for � ≤ 0.05). The slope γ (away from the satu-
ration region at small �) appears to approach unity at larger
times, again signaling a more uniform tracer distribution.
(For T = 2τC the distribution r(�) in the parallel direction
is very similar to that for the perpendicular direction shown
in Fig. 7.)
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Figure 7. Distribution r(�) along a line perpendicular to the lo-
cal velocity in a system of 10 vortices. Observation times (bottom
to top) T/τC = 0.8, 1.2, 2.0, 4.0, and 8.0. (The data have been
shifted vertically for visibility.)

Figure 8. Distribution r(�) as in Fig. 7, but in a single realization
with 105 tracers released from a region of size 0.005. Observation
times (bottom to top) T/τC = 2.4, 3.2, 4.0, 4.8, 5.6, 6.4 and 8.0.
(The data have been shifted vertically for visibility.) The slopes of
the straight lines are -1 and -0.47.

The results for r(�) cited above represent averages over
5 - 10 configurations. High-resolution studies of single con-
figurations (involving 105 tracers released from a region of
linear size 0.005), yield power-law distributions in some
cases, and stretched exponentials in others, for the same pa-
rameter values. For example, in a system with ten vortices
(|K| = 1.2, T = 4τC ), one realization yielded a stretched-
exponential distribution with β � 0.1, while in other cases
power laws (with γ = 0.45 − 0.55, over three or more

decades), were found. The stretched-exponential appears
to be associated with an overall scattering of tracers (as in
Fig. 3) while in the power-law case multi-band configura-
tions predominate. Similar results are found in a system
of 20 vortices. Fig. 8 shows how the distribution evolves
over time in a typical high-resolution study. At short times,
r(�) ∼ 1/� for small �, indicating uncorrelated positions,
while at intermediate times and length scales there is evi-
dence of power-law scaling with γ ≈ 0.5, and at longer
times the distribution can be fit to a stretched exponential
with β � 0.3.

Summarizing the results described in this section, there
is preliminary evidence for a fractal tracer distribution at in-
termediate times (on the order of τC ) associated with the
nested filamentary structures generated by stretching and
folding of the particle-bearing region. The timescale for ob-
servation of a fractal tracer density corresponds roughly to
that associated with fractal rain and drought distributions.
(One should recall, however, that the latter are accumulated
from the time the tracers are released until time T , whereas
the tracer distributions discussed here are instantaneous.) It
is easy to see that a fractal tracer distribution, swept past
a fixed observation point, will generate power-law rain and
drought distributions. It remains to make this connection
more precise, a task complicated by the fact that the charac-
teristics of the tracer distribution vary significantly over the
observation period, and may also vary in space, as a glance
at Fig. 2 suggests. This raises the possibility that the power-
law distributions found in simulations and in actual mea-
surements represent a superposition of distributions associ-
ated with different kinds of regions or events. It would there-
fore be of interest to identify simpler advection processes
whose fractal properties can be determined with higher pre-
cision.

7 Discussion

I have reviewed observational evidence for fractal rain distri-
butions, and discussed a highly simplified model that points
to chaotic advection as the underlying reason. The detailed
properties (e.g., the exponents associated with the power-
law distributions) furnished by the model differ from those
found in observations. (In truth, the present “toy” model ig-
nores so many important atmospheric processes that quan-
titative agreement, if obtained, might well be regarded as
fortuitous. The observational data, moreover, leave doubt
as to the universality of the power laws.) Simulation of the
model nevertheless leads to the significant conclusion that
neither interactions between tracers (i.e., between raindrops
or rain-bearing parcels of air), nor fully developed turbu-
lence are needed to generate power-law rain and drought
distributions. The model also yields stretched-exponential
event distributions for longer observation times. While the
latter have not been reported, it is well to recall that the ob-
servational data remain rather limited. Observations from
other sites are needed to confirm the generality of power
laws and the possibility of other (non-scale-invariant) forms.

Studying the occupancy statistics of boxes of various
sizes, I find evidence that the tracer density evolves, under
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the vortex-system flow, to a fractal distribution at intermedi-
ate times. The nature of this distribution, and its relation to
the power laws found for rain and drought events, needs to
be studied in greater detail.

Clearly, the model employed in this proof-of-principle
study contains a minimum of atmospheric physics. A three-
dimensional description, allowing for stratification, convec-
tion, and vortex stretching would be desirable, as would
inclusion of condensation, evaporation, and inertial effects
[47]. These improvements, all of which involve significant
computational complexity and expense, can be expected to
alter detailed properties such as exponent values. The vortex
model may readily be adapted to include some of these ef-
fects, while others will require a full analysis of the coupled
Navier-Stokes and heat equations.

Since chaotic advection is an intrinsic feature of atmo-
spheric flow, one should expect scale-invariant distributions
to appear quite generally. In this regard it is interesting
to note that simulations of turbulent magnetohydrodynamic
processes reproduce power-law burst distributions for solar
flares [48, 49], and that tracer patterns similar to those re-
ported here are also found in simulations of two-dimensional
barotropic turbulence [50]. Although (in the interest of sim-
plicity) a closed model is analyzed in this work, we should
expect the same phenomenon to appear in an open model
with driving and dissipation [43], due once again to the
chaotic nature of tracer motion.

In summary, I find that tracer distributions in two-
dimensional flow, represented by a system of point vortices,
exhibit scale invariance during the early stage of the dis-
persal process. The event distributions are associated with
fractal tracer distributions in space, produced by repeated
stretching and folding of fluid elemnts. It therefore seems
worthwhile to develop more realistic models, to understand
the observations in greater detail. Theoretical prediction of
the rain and drought distributions from a model velocity field
remains as a formidable challenge.
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