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The Effects of Conserved Charges in a Nuclear Equation of State
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We report the present status on the construction of an equation of state (EoS) for the strongly interacting mat-
ter which is to be used in the hydrodynamical calculations for the ultra-relativistic heavy ion collisions. In
the present version, the conservation of isospin, baryon number and strangeness are taken into account. A
preliminary hydrodynamical result for our EoS, using the hydro code SPHERIO, is also shown.

1 Introduction

If the local thermal equilibrium is attained in relativistic
heavy ion reactions, hydrodynamical description may be
most adequate for the space-time evolution of the system.
It is a very powerful method [1]. Once the initial condition
(spatial distribution of 4-velocity field and conserved cur-
rents) of the system is specified, the subsequent dynamics
is determined uniquely by the EoS of the matter composing
the system. Therefore, we expect that a systematic analy-
sis of the experimental observables related to the collective
dynamics of the system in terms of the hydrodynamical de-
scription will offer the important information on the EoS,
namely, the thermal properties of the QGP and hadronic
matter. For such purposes, it is essential to provide the equa-
tion of state in terms of an efficient computational procedure
which supplies all the thermodynamical quantities, temper-
ature, chemical potentials, pressure, etc., as functions of the
two independent variables of the hydrodynamical calcula-
tion, for example, the baryon number density and entropy
density. It is also desirable to establish a method to adapt
the EoS easily to the changes of various physical model pa-
rameters in order to study the effects of these changes in
the hydrodynamical evolution of the system. In this work, a
method of construction of the EoS is developped and some
results are reported.

2 The equation of state

In the NEXUS+SPHERIO program [2], the initial condition
is provided by the event generator NEXUS, based on the
Gribov-Regge model[3] of hadronic collisions. This pro-
gram generates, in event-by-event basis, the spatial distri-
bution of the energy-momentum tensorTµν and the baryon
number densitynB on the hypersurfaceτ = const. As-
suming that the system reaches the local thermal equilib-
rium, we then obtain the initial energy and temperature dis-
tribution using the EoS for QGP and relativistic hadronic
gas. The subsequent dynamical evolution is followed by the

SPHERIO1 code.
Following the works in ref. [5, 6, 7], the present EoS

assumes the plasma and hadronic phases as a gas of ideal
relativistic quantum particles. It exhibits a first order phase
transition between the two states as shown below.

2.1 Relativistic ideal gas, particle mixture
and conserved charges

For a grand-canonical ensemble of ideal-quantum particles
the pressure is given by

P =
θg

(2π)3

∫
d3k ln(1 + θeβ(µ−εk)) (1)

wereθ =1 for fermions (and -1 for bosons),β is the inverse
of temperature,µ is the chemical potential,g is the degener-
acy factor andεk =

√
k2 + m2 is the dispersion relation for

the particle wherem is the mass of the particle.
The densityn and the energy densitye can be obtained

by the usual thermodynamical relations,n =
(

∂P
∂µ

)
V,T

,

e =
(

∂P
∂β

)
λ
, whereλ is the fugacity. The entropy density of

the gas can be calculated ass = β(P + e− µn).
When we include conserved charges such as isospin (3rd

component), baryon number and strangeness, the chemical
potential [8] must be written asµ = BµB + SµS + T3µ3

whereB, S, T3 are baryon, strangeness and isospin quantum
numbers, respectively andµB , µS , µ3 are the corresponding
chemical potentials.

2.1.1 Gas of Quarks and Gluons

For simplicity, in our EoS we treat the plasma phase as an
ideal gas of relativistic quarks and gluons plus the vacuum
pressureB.

Considering the mixture of flavors, the total pressure is
given by the expression

PQGP (T, {µi}) = PQuarks(T, {µi}) + PGluons(T )−B
(2)

1SPHERIO (Smoothed Particle Hydrodynamical Evolution of Relativistic HEavy IOn collisions) is a code based in the SPH procedure [4].
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HerePQuarks is already a sum of individual (u,d,s) quark
pressures (each one given by eq.(1)), B is the bag constant
to simulate confinement properties andµi = BiµB+SiµS+
T3,iµ3; i=(u,d,s). For gluons we have used eq.(1) withµ =
0. Analogously energy density is given by:

eQGP (T, {µi}) = eQuarks(T, {µi})+eGluons(T )+B (3)

And entropy density for the Plasma is

sQGP (T, {µi}) = sQuarks(T, {µi}) + sGluons(T ) (4)

For the total densities we have only

nQGP
k (T, {µi}) = nQuarks

k (T, {µi}) ; k = B,S, 3 (5)

because gluon density is zero.

2.1.2 Gas of Hadrons

Basically we treat the hadronic phase as a mixture of gases
of quantum relativistic particles, except for the excluded vol-
ume effect, like a Van der Waalls hard core correction [6, 7],
to fit the densities to the data. In this case, we have:

P excl =
h∑

t=1

P id
t (T, µ̃t) ; µ̃t ≡ µt − vtP

excl (6)

whereµt = BtµB + StµS + T3,tµ3 is the chemical poten-
tial of the t-th hadron specie ,h is the maximum number of
hadrons considered andvt is the excluded volume of the t-th
hadronic species.P excl is determined iteratively. Fornk,e
ands of the t-th hadronic species (k=B,S,3 as before) we
have:

Qexcl
t =

Qid
t

1 +
∑h

i=1 vinid
i (T, µ̃i)

(7)

whereQ = nk,e or s. The superscriptid means ideal, so
it should be calculated as in the section 2.1. To get the to-
tal nk,e or s of the hadron gas (HG), we must sum over the
hadrons. In the present calculation, we took the bag constant
B = 380MeV/fm3 and excluded volumev0 = 4πR3

0/3
for baryons (withR0 = 0.7fm) and v0 =0 for mesons,
as done in [6]. Other possibilities for excluded volume
(e.g ref.[5]) will be explored in future works. All known
mesons with mass under 2 GeV and baryons with mass un-
der 2.5 GeV were included in calculations [9]. We took
quark massesmu =1.5 MeV,md =3.0 MeV andms=120.0
MeV, although the light quark masses are irrelevant in our
EoS.

2.2 The phase transition

To construct our phase diagram, we determine the phase
boundary using Gibbs equilibrium condition[10] between
the QGP and HG phases, i.e. we require thermal, mechani-
cal and chemical equilibrium (forµB only) during the phase
transition. In the present work, we only consider the case
where strangeness and isospin vanishes, thus, the chemical

potentialsµS andµ3 are determined by(T, µB). Some ex-
amples of our numerical phase diagrams can be found in
Figs. 1 and 2.

Figure 1. Phase diagrams for T andµB .

Figure 2. A phase diagram in (s, nB) plane.

Recent lattice calculations [11] indicate that there is a
second order “end point” at non zeroµB , and between this
point andµB = 0 the transition should be a smooth cross
over[12]. Our simple treatment does not have this feature.
It maybe interesting to find a simple parametrization of the
equation of state, for instance, in terms of the variation of the
bag constant as a function of the temperature and chemical
potencial, to simulate the appearance of the critical point.

3 Numerical procedure and Results

In order to permit a hydro code to give reliable outputs
within a reasonable time of calculation, the numerical EoS
must furnish the thermodynamical quantities in a precise
and fast way. Specifically in our hydro code SPHERIO, for
a given (e, nB) at the initial condition or (s, nB) during the
dynamical evolution of the system, the EoS need to supply
T, P, s or T, P, e respectively. We need alsoµB , µS , µ3 at
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the freeze-out time, in order to compute single particle dis-
tributions using the Cooper-Frye procedure.

To achieve these purposes, we adopted the following
procedure. First, we constructed a set of large numerical
tables for the thermal quantities as functions ofT, µB . This
has been done evaluating numerically thermal integrals im-
posing conservation of strangeness and isospin. That is,
µS , µ3 are determined as functions ofT, µB . These tables
are too large to be used directly in the hydro code. Thus, the
values of these tables are fitted by domain-wise quadratic
functions in (T, µB) and the coefficients of these quadratic
functions are stored. In the routine used in hydro code, any
output quantity can be obtained by a quadratic interpola-
tion for a giveninput(e, nB) or (s, nB). The total number
of domains in the present version is around 16000 (6000
for hadronic region and 10000 for QGP). For each thermo-
dynamical quantity, we need to store 6 coefficients per do-
main. We have done a landmark check for these functions,
and it took approximately 2 minutes for 500000 points in
a rather modest PC (pentium-pro 800Mhz, with 512 MB
RAM) which we consider satisfactory.

The quadratic interpolation applied here is very precise
and effective, provided that the size of interpolation domain,
in the (T, µB) plane, is small enough. In degenerated re-
gion, the convergence condition becomes more severe so
that some special care should be taken. In the final form
of the subroutines we constructed, the error between a given
Q and recalculatedQc (whereQ = e, s or nB ) using the
original thermal integrals is less than 0.01%. In low tem-
perature regions, where the validity of our procedure is not
guaranteed, the error can achieve 30%. But we know hy-
drodynamics rarely achieve these regions, where the hydro
procedure becomes to fail. Otherwise a more precise table
can easily be constructed.

In the mixed phase we use a linear interpolation between
the two points on the phase boundaries of QGP and hadronic
gas with the sameT, µB , P . Writing α, the fraction of the
hadronic component in the mixed phase, any thermal quan-
tity is given asQint = αQHG + (1 − α)QQGP (where
Q = (e, nB , s)). The error in these phase is less than 0.01%
everywhere.

To compute numerically the thermal integrals we have
used theGauss-Laguerrequadrature method [8] which
works quite well in most ofT, µ values. However, in ex-
tremely degenerate domain, both for fermions and bosons,
the method is not adequate. There, the asymptotic formula
for the fermions are used instead. For bosons, to avoid the
singularity at (µ → m) we modified the singular denomina-
tor by an exponentially increasing, but still regular function.

The phase boundaries of the system, necessary for phase
judgement of the input point, was computed numerically us-
ing Newton method for solving the phase equilibrium equa-
tions. Our calculation is good for the temperature higher
than 25 MeV. Below this temperature, the hadronic gas inte-
grals are not accurate enough to solve the phase equilibrium
conditions numerically. Thus, our equation of state is ap-
plicable only forT ≥ 26MeV . This will not be a problem
since the hydrodynamical procedure is not valid for such low
temperatures, as mentioned before.

Analyzing Fig. 1 we note that inclusion of isospin and
strangeness conservation enlarges the hadronic domain in
(T, µB) plane compared to the equation of state which does
not account for these quantum numbers. The inclusion of
quark masses does not affect much the form of the phase
diagram (only a little inTc(µB = 0)). Change of the bag
constantB directly affects the critical temperature at the
µB = 0. In Fig. 3 we show the behavior of temperature
as function of entropy density for variousnB = const, and
we can see that it is a continuous function as should be.

Figure 3. Temperature versus entropy density for various baryon
densities.

4 Conclusions and Perspectives

In this report, we presented the method of construction of
the equation of state used in the hydrodynamical code and a
preliminary version of the EoS with strangeness and charge
conservation. There are still some points to be improved, but
the overall properties are satisfactory. To show how works
the present routine of the equation of state, we incorporated
it to the SPHERIO code and calculated an example of rel-
ativistic nuclear collision. In Fig. 4 we show the result for
a rapidity distribution of negative charged hadrons, gener-
ated from SPHERIO code, for a single event. The initial
condition was given by the NEXUS event generator, corre-
sponding to a 5% most central Pb+Pb collision at energy of√

s = 17.3 AMeV. The freeze-out temperature was taken to
be 140 MeV.

Although only one event has been shown, one can see
that our result (full line) agrees quite well with the experi-
mental data (dots) from the NA49 collaboration [13] for a
Pb+Pb collision. Further calculations are in progress, also
for BNL-RHIC energies.
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Figure 4. Rapidity distribution for charged hadrons at SPS ener-
gies. The dots are experimental data, and the full line is the numer-
ical result.
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Grassi and Dr. O. Scolowski. The author expresses his
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