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We discuss finite-size effects on homogeneous nucleation in first-order phase transitions. We study their im-
plications for cosmological phase transitions and to the hadronization of a quark-gluon plasma generated in
high-energy heavy ion collisions.

Finite-size scaling has achieved an immense success in
the study of equilibrium critical phenomena. On the other
hand, systematic studies of finite size effects in the case of
metastable decays and other nonequilibrium processes are
rare [1, 2]. In this paper, we discuss finite size effects on
the dynamics of homogeneous nucleation in a first-order
temperature-driven transition (For more details, see [3]). In
particular, we consider the case of cosmological phase tran-
sitions in the early universe [4], and that of a quark-gluon
plasma (QGP) decay into hadronic matter in a high-energy
heavy ion collision [5, 6]. The former might provide sensi-
ble mechanisms to explain the baryon number asymmetry in
the universe and primordial nucleosynthesis [7, 8], whereas
the latter is expected to be observed [9] at BNL Relativis-
tic Heavy Ion Collider (RHIC). The length and time scales
involved in each of these cases differ by several orders of
magnitude.

In the usual description of homogeneous nucleation [1],
there are two ways in which the finite size of the system
can affect the formation and evolution of bubbles and, con-
sequently, the dynamics of phase conversion. Firstly, one
has to consider the effects on the nucleation rate and the
early stage growth of the bubbles. As will be shown below,
this correction comes about through an intrinsic uncertainty
in the determination of the supercooling undergone by the
system. For the cases considered here, it brings only minor
modifications to a description which assumes an infinite sys-
tem. The second and, in general, most important finite-size
effect is its influence on the domain coarsening process, or
late-stage growth of the bubbles. The relevant length scales
here are the typical size of the system, the radius of the crit-
ical bubble and the correlation length.

In a continuum description of a first-order phase tran-
sition, it is common to consider a coarse-grained free en-
ergy, F , of the Landau-Ginzburg form with temperature-
dependent coefficients [1]. (In the case of QCD, such a

free energy can be obtained, for instance, from the one-
loop effective potential of a linear sigma model coupled to
quarks [10, 11].) The nucleation rate can be expressed as
Γ = P e−Fb/T , whereFb is the free energy of a critical
bubble, with radiusRc, and the prefactorP measures sta-
tistical and dynamical fluctuations about the saddle point of
the Euclidean action in functional space. It is convenient to
write the prefactorP as a product of the bubble’s growth rate
and a factor proportional to the ratio of the determinant of
the fluctuation operator around the bubble configuration rel-
ative to that around the homogeneous metastable state [12].
For the relativistic case, in the thin-wall limit, we have [13]:
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Here,η and ξ are respectively the shear viscosity and the
correlation length in the symmetric phase and∆ω is the
enthalpy density difference between the two phases.σ is
the surface tension of the interface, which is related to the
critical radius and the difference in pressure between the
metastable phase and the true vacuum,∆p, asRc = 2σ/∆p.
The thin-wall limit is a good approximation in the limit of
small supercooling,θ = 1 − T/Tc ¿ 1. In this limit, the
decay rate can be written as
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(2)
where ` is the latent heat density. For increasing values
of the supercooling,θ, the argument of the exponential de-
creases and the decay rate increases. Equivalently, the crit-
ical radius becomes smaller, so that it is easier to nucleate
supercritical bubbles. The only way in which the finite size
of the system can affect the decay rate is through its influ-
ence on the supercooling.

Before considering the effects of the finite size of the
system on the nucleation process, let’s briefly examine the
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definition of metastable states in equilibrium statistical me-
chanics. This requires a coarse graining procedure which
needs be implemented as follows [14]. The system of size
L is divided into cells centered at positions~x. The cell
size, or the “coarse graining length”λcg, should be apprecia-
bly larger than the underlying lattice spacinga. Moreover,
within each cell, the relevant order parameter,φ, should vary
smoothly in space and the equilibration time of the system
should be much faster than the processes under considera-
tion. By construction, the coarse-grained free energy will
depend on the scaleλcg. If λcg is small enough as compared
to the correlation length,ξ, phase separation within a cell
cannot occur and one can define a coarse-grained free en-
ergy,F [φ], such as the one we considered before. The condi-
tion λcg << ξ therefore represents the physically motivated
restriction to the partition function that allows for a well-
defined coarse-grained description of metastable states. As a
corollary, increasing the value of the coarse-graining length
relative to the correlation length would incorporate more and
more fluctuation modes, which were excluded by this ul-
traviolet cut-off. The free energyF would then flatten out
completely in the limitλcg/ξ → ∞ approaching the equi-
librium description with no metastable branch. In summary,
for a system to be characterized by a well-defined Landau-
Ginzburg coarse-grained free energy one requires the fol-
lowing clean separation of scales:a << λcg << ξ << L.

We now return to finite size effects on nucleation. The
only effect that might be relevant to the nucleation rate,Γ,
is the rounding of singularities, since they will affect the de-
gree of supercooling. The relevant physical quantity can be
calculated in a finite-size scaling framework, resulting in the
following expression [15]:

∆Tround

Tc
≈ 2Tc

`Ld
, (3)

whereL is the typical length scale of the system andd is the
number of dimensions. The quantity∆Tround is a measure
of the smoothening of singularities due to the finite size of
the system. (A similar result is obtained in model studies
of the equation of state of a finite quark gluon plasma [16].)
It corresponds to the (now non-vanishing) width in tempera-
ture of the region where the energy density of the system suf-
fers an abrupt jump, aroundT = Tc, which is itself shifted.
This phenomenon enters the decay rate as a minimum value
for θ which reflects the uncertainty in the supercooling due
to the finite size of the system.

The procedure to derive (3) assumes the co-existence of
two phases+ and− at and near a first order phase transi-
tion and Eq. (3) follows from expanding the free energies
of the two phases aroundTc. (Implicit in the derivation is
the requirement that the free energies of the two phases are
very close to each other –i.e., the system is minimally su-
percooled.) In fact, it is the requirement that the two states
contribute to the average energy with equal weight that de-
terminesTc(L) – the effective critical temperature for a sys-
tem of sizeL. ∆T = Tc(L) − Tc(∞) refers to the fact
that the critical temperature cannot be resolved on a scale
smaller than∆T relative toTc(∞). The supercooling pa-
rameter that appears in the nucleation rate is defined to be

θ = (Tc−T )/Tc (with Tc = Tc(∞)). For a finite system,T
could not be closer toTc(∞) thanTc(L). It therefore makes
little sense to talk about supercooling for temperatures less
than this difference. On the contrary, there is no problem
resolving differences larger than∆T – hence its identifica-
tion as a lower bound on cooling. This conclusion should be
contrasted with the arguments presented in Ref. [17].

Although our discussion is restricted to finite size effects
on first order transitions, we note that the case of a second
order transition is also discussed in Ref. [15]. The effect of
finite sizes in a second order phase transition is qualitatively
different from that in a first order phase transition. The rea-
son is likely that in a second order transition, the rounding is
due to the correlation length being limited by the lattice size.
In Ref. [15], for instance, one defines a quantityVL (which
is related to physical quantities) and demonstrates that this
quantity has a minimum in first order transitions for a range
of lattice sizes. The same quantity, in a system with a second
order transition, has a minimum that disappears very rapidly
with change in lattice size. Thus a simple extrapolation of
Eq. (3) to a second order transition would not be correct.

For phase transitions in the early universe,L is given
by the radius of the universe at a given time (or temper-
ature). Going back to very early times,t ∼ 10−4 s and
T ∼ 1012 K ∼ 10−1 GeV, we can use the elementary par-
ticle model [18] to obtain an approximate equation of state:
3p ≈ ε ≈ π2N(T )T 4/30, whereN(T ) = Nbosons(T ) +
(7/8)Nfermions(T ) is the total number of degrees of free-
dom,ε is the energy density andp is the pressure. From Ein-
stein’s field equations, one can derive the relation between
time and energy density in the early universe, which links
the age of the universe and its temperature in the following
way

t ≈
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≈ 1
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whereMPl is the Planck mass andG is Newton’s grav-
itational constant. The radius of the universe, as given
by the particle horizon in a Robertson-Walker spacetime
[19], dh(t) = t/(1 − n), where the scale factor grows as
a(t) ∼ t2/3(1+w) = tn andp = wε, has the following form:

Luniv(T ) ≈ 1
4π

(
1

1− n

)(
45

πN(T )

)1/2
MPl

T 2
. (5)

For the assumed equation of state,w = 1/3 andn = 1/2.
If we enter temperature in GeV, the typical length scale of
the early universe is given, in fermi units, byLuniv(T ) ≈
A/T 2

√
N(T ), whereA = 1.45× 1018.

It is clear that, due to the large factor∼ 1018 (com-
ing from MPl), Luniv will be of importance for super-
cooling only for extremely high values of the temperature.
SinceN(T ) ≈ 50 for the cases of the QCD and the elec-
troweak phase transitions, one would needT ∼ 108 GeV
to be subject to appreciable finite-size effects on the nu-
cleation rate. Therefore, sinceTQCD

c ∼ O(10−1) GeV
and TEW

c ∼ O(102) GeV, these effects are negligible in
such cases. They might prove to be relevant in the case



Brazilian Journal of Physics, vol. 34, no. 1A, March, 2004 317

of GUT’s transitions, where the critical temperature will be
much higher.

For the first order transition of a quark-gluon plasma into
a hadronic gas in a high-energy heavy ion collision, one can
easily estimate the role of finite-size effects on the nucle-
ation rate. The parameters entering Eq. (3) are approxi-
mately given byTc ≈ 150 MeV [20], ` ≈ 4B ≈ 4× (150
MeV)4, whereB is the bag constant, andL ≈ 10 fm. The
minimal amount of supercooling undergone by the plasma
is then negligible, of the order of10−3. (For more conserva-
tive, smaller values ofL, the minimum value ofθ is still very
small.) The system can in principle probe the entire domain
in θ, and there are no constraints on homogeneous nucle-
ation from this side. The question of how fast the system
probes the nucleation region, before reaching the spinodal
regime, as compared to the nucleation rate was discussed
in Ref. [11, 21, 22]. Recently, it has been speculated that
the RHIC data suggest anexplosivehadron production due
to a rapid variation of the effective potential for QCD close
to Tc. The theoretical reasoning is based on the results of
the Polyakov Loop Model [23] for the deconfining phase
transition, which lead to a very fast spinodal decomposition
regime [24].

After the nucleation of a given supercritical bubble, it
will grow with a certain velocity. The set of all supercritical
bubbles created integrated over time will eventually drive
the complete phase conversion in a finite system. The scales
that determine the importance of finite-size effects are the
typical linear size of the system, the radius of the critical
bubble and the correlation length. For the reasons discussed
above, the case of cosmological phase transitions is to an ex-
cellent approximation free from finite-size corrections. The
enormous numerical value of the Planck mass washes out
every other scale. Therefore, in what follows we will ad-
dress the quark-gluon–hadron phase transition in heavy ion
collisions.

For definiteness, let us assume our system is character-
ized by a coarse-grained free energy of the form

F (φ, T ) =
∫

ddx

[
1
2
(∇φ)2 + U(φ, T )

]
, (6)

whereU(φ, T ) is some Landau-Ginzburg potential whose
coefficients depend on the temperature, andφ(~x, t) is a
scalar field. For the cases to be considered in this paper,
the order parameter,φ, is not a conserved quantity, and its
evolution is given by the time-dependent Landau-Ginzburg
equation [1]

∂φ

∂t
= −γ

δF

δφ
= γ

[∇2φ− U ′(φ, T )
]

, (7)

whereγ is the response coefficient which defines a time
scale for the system. Eq. (7) is a standard reaction-diffusion
equation, and describes the approach to equilibrium [25].

If U(φ, T ) is such that it allows for the existence of bub-
ble solutions (taken to be spherical for simplicity), then su-
percritical (subcritical) bubbles expand (shrink), in the thin-
wall limit, with the following velocity:

dR

dt
= γ(d− 1)

[
1

Rc
− 1

R(t)

]
, (8)

whereRc = (d− 1)σ/∆F and∆F is the difference in free
energy between the two phases. Eq. (8) is an example of the
Allen-Cahn equation [1], which relates the velocity of a do-
main wall to the local curvature. The response coefficient,
γ, can be related to some characteristic collision time as will
be done later.

The description of the late-stage domain coarsening is
given by the Kolmogorov-Avrami theory [1], which con-
tains the following assumptions: (i) bubbles grow without
substantial deformation and are uncorrelated; (ii) the nucle-
ation rate is a constant; (iii) the bubble growth velocity is
constant,v = dR/dt = γ(d − 1)/Rc (limit R → ∞). The
quantity which is usually computed is the volume fraction
of the stable phase.

However, one can measure the importance of finite-size
effects for the case of heavy-ion collisions by comparing,
for instance, the asymptotic growth velocity (R >> Rc) for
nucleated hadronic bubbles to the expansion velocity of the
plasma. In the Bjorken picture, one assumes that the cen-
tral rapidity region exhibits longitudinal expansion, so that
z(t) = vzt, wherevz is the collective fluid velocity. Conser-
vation of total entropy leads to adiabatic expansion and the
following cooling behavior:(t/ti) = (Ti/T )3. The typical
length scale of the expanding system is then

L(T ) ≈ (vztc)
(

Tc

T

)3

= L0

(
Tc

T

)3

, (9)

whereL0 ≡ L(Tc) is the initial linear scale of the system
for the nucleation process which starts atT ≤ Tc.

The relation between time and temperature provided by
the cooling law that emerges from the Bjorken picture sug-
gests the comparison between the following “velocities”:

vb ≡ dR

dT
= −

(
3b`L0

2vzσT 2
c

)(
Tc

T

)5 (
1− T

Tc

)
, (10)

the asymptotic bubble growth “velocity”, and the plasma ex-
pansion “velocity”

vL ≡ dL

dT
= −3L0

Tc

(
Tc

T

)4

. (11)

The quantityb is a number of order one to first approxi-
mation, and comes about in the estimate of the phenomeno-
logical response coefficientγ(T ) ≈ b/2T (see Ref. [26] for
details).

Using the numerical values adopted previously and
σ/T 3

c ∼ 0.1, we obtain

vb

vL
≈ 20

vz

(
Tc

T
− 1

)
. (12)

One thus observes that the bubble growth velocity becomes
larger than the expansion velocity for a supercooling of or-
derθ ≈ vz/20 ≤ 5%. A simple estimate points to a critical
radius larger than1 fm at such values of supercooling (see
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also [11]). Therefore, finite-size effects appear to be an im-
portant ingredient in the phase conversion process right from
the start in the case of high-energy heavy-ion collisions.

Although the arguments presented here are based solely
on analytic considerations and simple estimates, one can
draw several conclusions. It is clear that the nucleation
process in both the electroweak and the QCD cosmologi-
cal phase transitions is almost insensitive to effects coming
from the finite size of the universe in its early stages of evo-
lution. On the other hand, in the case of heavy ion collisions
the decay rate is just slightly affected by finite-size effects,
whereas in the late-stage growth the separation of length
scales seems to become small very early in the hadronization
process. In order to address the question of hadronization
after a first-order transition in a heavy ion collision picture,
one should then perform finite-size real-time lattice simu-
lations. In fact, lattice methods have been successfully ap-
plied to the study of homogeneous nucleation in different
contexts [2, 27, 28]. One can thereby avoid the drawbacks
implied by analytical approximations, such as the thin-wall
hypothesis. Moreover, one could be able to control the be-
havior of domains and study, for instance, scaling properties.
Results in this direction will be reported in a future publica-
tion [29]. It is also interesting to study the hydrodynamics
of nuclear matter at chiral limit as a phenomenological de-
scription of the chiral transition in an expanding quark-gluon
plasma [30-33]. In fact, the coupling between chiral and hy-
drodynamical modes seem to play a very non-trivial role in
the dynamics of hadronization [33]
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