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Charged Polytropic Compact Stars
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In this work, we analyze the effect of charge in compact stars considering the limit of the maximum amount of
charge they can hold. We find that the global balance of the forces allows a huge charge (∼ 1020 Coulomb) to be
present in a neutron star producing a very high electric field (∼ 1021 V/m). We have studied the particular case
of a polytropic equation of state and assumed that the charge distribution is proportional to the mass density.
The charged stars have large mass and radius as we should expect due to the effect of the repulsive Coulomb
force with the M/R ratio increasing with charge. In the limit of the maximum charge the mass goes up to∼ 10
M¯ which is much higher than the maximum mass allowed for a neutral compact star. However, the local effect
of the forces experienced by a single charged particle, makes it to discharge quickly. This creates a global force
imbalance and the system collapses to a charged black hole.

1 Introduction

In 1924, Rosseland[1] studied the possibility of a self grav-
itating star on Eddington’s theory to contain a net charge
where the star is modeled by a ball of hot ionized gas (see
also Eddington [2]). In such a system the electrons (lighter
particles) tend to rise to the top because of the difference
in the partial pressure of electrons compared to that of ions
(heavier particles). The motion of electrons to the top and
further escape from the star is stopped by the electric field
created by the charge separation. The equilibrium is attained
after some amount of electrons escaped leaving behind an
electrified star whose net positive charge is of about 100
Coulomb per solar mass, and building an interstellar gas
with a net negative charge. As shown by Bally and Harri-
son [3], this result applies to any bound system whose size
is smaller than the Debye length of the surrounding media.
The conclusion is that a star formed by an initially neutral
gas cannot acquire a net electric charge larger than about
100C per solar mass. It is expected that the sun holds some
amount of net charge due to the much more frequent es-
cape of electrons than that of protons. Moreover, it is also
expected that the escape would stop when the electrostatic
energy of an electroneΦ is of the order of its thermal energy
kT . This gives for a ball of hot matter with the sun radius,
a net chargeQ ∼ 6.7 × 10−6T (in Coulomb). Hence, the
escape effect cannot lead to a net electric charge much larger
than a few hundred Coulomb for most of the gaseous stars.

For Newtonian stars, the net charge of 100 C per so-

lar mass is obtained by the balance between the electro-
static energyeQ/r and the gravitational energymM/r
(Glendenning[4]). However, for very compact stars, the
high density and the relativistic effects must be taken into
account [5]. In a strong gravitational field, the general rela-
tivistic effects are felt and the star needs more charge to be in
equilibrium. Moreover, for very compact stars, the induced
electric field can be substantially higher than in the case of
the sun. For instance, the same amount of charge yields an
electric field approximately109 times larger at the surface
of a neutron star than at the surface of the sun. So, even a
relatively small amount of net charge on compact stars can
induce intense electric fields whose effects may become im-
portant to the structure of the star. This fact deserves further
investigation.

The general relativistic analog for charged dust stars was
discovered by Majumdar [6] and by Papapetrou [7], and fur-
ther discussed by Bonnor [8] and several other authors[9].
Study for the stability of charged fluid spheres have been
done by Bekenstein[5], Zhang et al.[10], de Felice & Yu[11],
Yu & Liu[12], de Felice et al.[13], Anninos & Rothman[14]
and others. This was indirectly verified by Zhang et al.[10]
who found that the structure of a neutron star, for a degen-
erate relativistic fermi gas, is significantly affected by the
electric charge just when the charge density is close to the
mass density (in geometric units). In the investigations by
de Felice et al., and by Anninos & Rothman, they assumed
that the charge distribution followed particular functions of
the radial coordinate, and they were mostly interested in the
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extremeQ = M case.
Our basic consideration to incorporate charge into the

system is in the form of trapped charged particles where the
charge goes with the positive value. The effect of charge
does not depend on its sign by our formulation. The en-
ergy density which appears from the electrostatic field will
add upto the total energy density of the system, which in
turn will help in thegaining of the total mass of the sys-
tem. The modified Tolman-Oppenheimer-Volkoff (TOV)
equation now has extra terms due to the presence of the
Maxwell-Einstein stress tensor. We solve the modified TOV
equation for polytropic equation of state (EOS) assuming
that the charge density goes with the matter density and dis-
cuss the results. The formation of this extra charge inside the
star is however left open. A mechanism to generate charge
asymmetry for charged black holes has been suggested re-
cently by Mosquera Cuesta et al. [15] and the same may be
applied for compact stars too.

This article is arranged in the following way. In Section
2, we show the basic formalism for the modified TOV. In
Section 3, we used this modified TOV on a polytropic EOS,
discuss the results and the stability of the charged stars. Fi-
nally we make our conclusions in Section 4.

2 The modified Hydrostatic Equilib-
rium Equation

We take the metric for our static spherical star as

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2θdφ2). (1)

The stress tensorTµ
ν will include the terms from the

Maxwell’s equation and the complete form of the Einstein-
Maxwell stress tensor will be :

Tµ
ν = (P+ε)uµuν+Pδµ

ν +
1
4π

(
FµαFαν − 1

4
δµ
ν FαβFαβ

)

(2)
where P is the pressure,ε is the energy density (=ρc2) and
u-s are the 4-velocity vectors. For the time component, one
easily sees thatut = e−ν/2 and henceutut = −1. Conse-
quently, the other components (radial and spherical) of the
four vector are absent.

Now, the electromagnetic field is taken from the
Maxwell’s field equations and hence they will follow the re-
lation [√−gFµν

]
,ν

= 4πjµ√−g (3)

where jµ is the four-current density. Since the present
choice of the electromagnetic field is only due to charge, we
have onlyF 01 = −F 10, and the other terms are absent. In
general, we can derive the electromagnetic field tensorFµν

from the four-potentialAµ. So, for non vanishing field ten-
sor, the surviving potential isA0 = φ. We also considered
that the potential has a spherical symmetry, i.e.,φ = φ(r).

The nonvanishing term in Eq.(3) is whenν=r. This gives
the electric field for both thet andr components as :

1
4π

(
FµαFαν − 1

4
δµ
ν FαβFαβ

)
=
−U2

8π

where,

U(r) =
1
r2

∫ r

0

4πr2ρcheλ/2dr. (4)

is the electric field. So, the total charge of the system is

Q =
∫ R

0

4πr2ρcheλ/2dr (5)

where R is the radius of the star.
The mass of the star is now due to the total contribution

of the energy density of the matter and the electric energy
(U

2

8π ) density. The mass takes the new form as

Mtot(r) =
∫ r

0

4πr2

(
ε

c2
+

U2

8πc2

)
dr (6)

and the metric coefficient is given by

e−λ = 1− 2GMtot(r)
c2r

. (7)

The stress tensor is conserved (Tµ
ν ,µ = 0). Hence, one

gets the form of the hydrostatic equation from it as:

dP

dr
= −

G
[
Mtot(r) + 4πr3

(
P
c2 − U2

8πc2

)]
(ε + P )

c2r2
(
1− 2GMtot

c2r

)

+ρchUe
λ
2 . (8)

We solve the Eqns. (6, 7 & 8) simultaneously to get our
results for the charged compact stars.

3 Effect of charge on polytropic stars

We study here the effect of charge on a model independent
polytropic EOS. We assume the charge is proportional to the
mass density (ε) like

ρch = f × ε (9)

whereε = ρc2 is in [MeV/fm3]. In geometrical units, this
can be writen as

ρch = α× ρ (10)

where charge is expressed in units of mass and charge den-
sity in units of mass density. Thisα is related to our charge
fractionf as

α = f × 0.224536√
G

= f × 0.86924× 103. (11)

Our choice of charge distribution is a reasonable assumption
in the sense that large mass can hold large amount of charge.

The polytropic EOS is given by

P = κρ1+1/n (12)

wheren is the polytropic index and is related to the expo-
nentΓ asΓ = 1 + 1

n . In the relativistic regime, the allowed
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value ofΓ is 4
3 to 5

3 . We have considered the adiabatic case
of Γ = 5

3 and the corresponding value ofn is 1.5. Primar-
ily, our units of matter density and pressure are in MeV/fm3.
We chose a value ofκ as 0.05 [fm]8/3 for our polytrope that
reproduces quite well realistic EOS for neutron stars [16]. It
should be noted that the amount of charge we find implies a
very small ratioZ/A ' 10−18 which justifies to use an EOS
which is calculated for neutral matter.
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Figure 1. Central density against mass for different values of the
factorf .

In Fig.(1), we plot the mass as function of the central
density, for different values of the charge fractionf . For
the charge fractionf = 0.0001, we do not see any depar-
ture on the stellar structure from that of the chargeless case.
This value off is critical because any increase in the value
beyond this, shows enormous effect on the structure. The
increase of the maximum mass of the star is very much non-
linear, as can be seen from the Fig. (1).
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FIgure 2. Mass as a function of radius, for different values of the
factorf .

In Fig.(2) we plotted the mass-radius relation. Due to
the effect of the repulsive force, the charged stars have large
radius and larger mass as we should expect. Even if the
radius is increasing with the mass, the M/R ratio is also in-
creasing, but much slower. For the lower charge fractions,
this increase in the radius is very small, but a look at the
structure for the fractionf = 0.001 reveals that for a mass
of 4.3 M¯, the radius goes as high as 35 kms. Though

the compactness of the stars are retained, they are now
better to be called ascharged compact stars rather than
charged neutron stars. The charge fraction in the limit-
ing case of maximally allowed value goes uptof = 0.0011,
for which the maximum mass stable star forms at a lower
central density even smaller than the nuclear matter den-
sity. This extreme case is not shown in Fig.(2) because the
radius of the star and its mass is very high (68 km & 9.7
M¯ respectively) which suppresses the curves of the lower
charge fractions due to scaling. For this star, the mass con-
tribution from the electric energy density is 10% than that
from the mass density. It can be checked by using relation
(11) that this charge fractionf = 0.0011 corresponds to
ρch = 0.95616× ρ in geometrical units.
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Figure 3. The variation of the charge with mass for differentf .

The Q× M diagram of Fig.(3) shows the mass of the
stars against their surface charge. We have made the charge
density proportional to the energy density and so it was ex-
pected that the charge, which is a volume integral of the
charge density, will go in the same way as the mass, which
is also a volume integral over the mass density. The slope of
the curves comes from the different charge fractions.The na-
ture of the curves in fact reflects that charge varies with mass
(with the turning back of the curves all falling in the ‘unsta-
ble zone’ and is not taken into consideration). If we consider
that the maximum allowed charge estimated by the condi-
tion (U ' √

8πP <
√

8πε) for dP
dr to be negative (Eq. (8)),

we see that the curve for the maximum charge in Fig.(3)
has a slope of 1:1 (in a charge scale of 1020 Coulombs1).
This scale can easily be understood if we write the charge as
Q =

√
GM¯ M

M¯
' 1020 M

M¯
Coulombs. This charge Q is

the charge at the surface of the star where the pressure and
alsodP

dr are zero. So, at the surface, the Coulomb force is es-
sentially balanced by the gravitational force and the relation
of the charge and mass distribution we found is exactly the
same for the case of charged dust sphere discussed earlier
by Papapetrou[7] and Bonnor[8].

The total mass of the systemMtot increases with in-
creasing charge because the electric energy densityadds on
to the mass energy density. This change in the mass is low
for smaller charge fraction and going upto 7 times the value
of chargeless case for maximum allowed charge fraction

1As electric energy density and pressure needs to be of the same order, so from the fine structure constantα = e2

~c
= 1

137
, we get a relation for the charge

and MeV/fm3 which comes out as1C ' 0.75× 1019[MeV fm]1/2.
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f = 0.0011. The most effective term in Eq.(8) is the fac-
tor (Mtot + 4πr3P∗). P ∗ = P − U2

8π is the effective pres-
sure of the system because the effect of charge decreases the
outward fluid pressure, negative in sign to the inward grav-
itational pressure. With the increase of charge, the value
of P∗ decreases, and hence the gravitational negative part
of Eq.(8) decreases. So, with the softening of the pressure
gradient, the system allows more radius for the star until
it reaches the surface where the pressure (anddP

dr ) goes to

zero. We should stress that becauseU2

8π cannot be too much
larger than the pressure in order to maintaindP

dr negative as
discussed before, so we have a limit on the charge, which
comes from the relativistic effects of the gravitational force
and not just only from the repulsive Coulombian part.
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Figure 4. The positive Coulomb part and the gravitational nega-
tive part of the pressure gradient together with the total (dP

dr
) are

shown here for two different values of the charge factorf . For
f = 0.0005 and 0.0008 coming from thematter part are de-
noted as dPg5 and dPg8 respectively, those fromCoulomb part
are dPc5 and dPc8 respectively. The corresponding totals are dP5
and dP8.

This effect is shown in Fig.(4) where we have plotted
both the positive Coulomb part and the negative matter part
of the pressure gradient. The plots are for two values of the
charge fractionf = 0.0005 andf = 0.0008. The positive
part of dP

dr maintains its almost constant value because the
charge fractionf is the controller of the same, and in our
case, they differ by a very small percentage. In the negative
part, the changes are drastic and are mainly brought by the
effective pressure as we already discussed.

In our high density system, the gravitational and the
Coulomb forces are highly coupled. Although it is difficult
to disentangle the forces, but to a common belief, it can be
considered that the charged particles, due to their self cre-
ated huge field, will leave the star very soon. This process
will however lead to an imbalance of the global forces acting
on the star, which were previously balanced by the Gravita-
tional and the Coulomb forces. This process will help in the
star to further collapse to a charged black hole. We say it
charged because, by the time the system collapses, all the
charge has not left the star, and they get trapped inside the
black hole [17].

4 Conclusions

In our study, we have shown that a high density system like
a neutron star can hold huge charge of the order of 1020

Coulomb considering the global balance of forces. With the
increase of charge, the maximum mass of the star recedes
back to a lower density regime. The stellar mass also in-
creases rapidly in the critical limit of the maximum charge
content, the systems can hold. The radius also increases ac-
cordingly, however keeping the M/R ratio increasing with
charge. The increase in mass is primarily brought in by the
softening of the pressure gradient due to the presence of a
Coulombian term coupled with the Gravitational matter part.
Another intrinsic increase in the mass term comes through
the addition of the electric energy density to the mass den-
sity of the system.

The inside electric field of the charged stars are very high
and crosses the critical field limit for pair creation (Beken-
stein [5]). However, this issue is debatable because the crit-
ical field has been calculated for vacuum and one does not
really know what the value will be in a high density system.
The stability of the charged stars are however ruled out from
the consideration of forces acting on individual charged par-
ticles. They face enormous radial repulsive force and leave
the star in a very short time. This creates an imbalance of
forces and the gravitational force overwhelms the repulsive
Coulomb and fluid pressure forces and the star collapses to
a charged black hole.

Finally, these charged stars are supposed to be very short
lived, and are the intermediate state between a supernova
collapse and charged black holes.
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