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Spinodal Instability in the Quark-Gluon Plasma
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We investigate the onset of spinodal decomposition in a relativistic fluid of quarks coupled to a nonequilibrium
chiral condensate. Studying small fluctuations around equilibrium, we identify the role played by sound and
chiral waves in the generation of unstable modes.

The hadronization of the quark-gluon plasma (QGP)
possibly produced in the early universe or in high-energy
heavy-ion collisions may proceed in a number of differ-
ent ways, depending on the nature of the QCD phase tran-
sition. In the heavy-ion case, some results from CERN-
SPS and BNL-RHIC suggest what has been calledsudden
hadronization[1] or explosive behavior[2, 3]. From the
theoretical side, this phenomenon has been associated as-
sociated with deep supercooling of the QGP followed by
spinodal decomposition, and also to rapid changes in the ef-
fective potential of QCD near the critical temperature, such
as predicted, for instance, by the Polyakov loop model [4].
Clearly, an understanding of the interplay between the typi-
cal space and time scales of the expanding plasma is wel-
come. Some attempts in this direction can be found in
Refs. [5, 6, 7, 8, 9, 10, 11, 12, 13].

In this paper, we discuss the onset of spinodal instability
in an expanding plasma. As a phenomenological model to
mimic the case of the QGP, we use a relativistic plasma of
quarks coupled to a chiral field. The later is not necessarily
in thermal equilibrium with the quark fluid. Although we
derive a phenomenologicalnonequilibrium chiral hydrody-
namicsfrom a variational principle, we do not focus on the
numerical solution of the resulting hydrodynamic transport
equations.

To model the mechanism of chiral symmetry breaking
present in QCD, we adopt a simple low-energy effective chi-
ral model: the linearσ-model coupled to quarks [14], which
in turn comprise the hydrodynamic degrees of freedom of
the system. Similar approaches, relying on low-energy ef-
fective models for QCD and making use of a number of tech-
niques to treat the expanding plasma, can be found in the lit-
erature [5, 6, 7, 8, 9]. The gas of quarks provides a thermal
bath in which the long-wavelength modes of the chiral field
evolve. The latter plays the role of an order parameter in a
Landau-Ginzburg description of the chiral phase transition
[8, 9].

Let us consider a chiral fieldφ = (σ, ~π), whereσ is a
scalar field andπi are pseudoscalar fields playing the role of
the pions, coupled to two flavors of quarks according to the

Lagrangian:

L = q[iγµ∂µ +µqγ
0−W (φ)]q +

1
2
∂µφ∂µφ−V (φ) . (1)

Hereq = (u, d) is the constituent-quark field andµq = µ/3
is the quark chemical potential. The interaction between
the quarks and the chiral field is given byW (φ) = g(σ +
iγ5~τ · ~π), andV (φ) = (λ2/4)(σ2 + ~π2 − v2)2 − hqσ is
the self-interaction potential forφ. The parameters above
are chosen such that chiralSUL(2) ⊗ SUR(2) symmetry is
spontaneously broken in the vacuum. The vacuum expecta-
tion values of the condensates are〈σ〉 = fπ and〈~π〉 = 0,
wherefπ = 93 MeV is the pion decay constant. The ex-
plicit symmetry breaking term is due to the finite current-
quark masses and is determined by the PCAC relation, giv-
ing hq = fπm2

π, wheremπ = 138 MeV is the pion mass.
This yieldsv2 = f2

π −m2
π/λ2. The value ofλ2 = 20 leads

to a σ-mass,m2
σ = 2λ2f2

π + m2
π, equal to 600 MeV. The

quark-chiral field coupling constant is taken to beg = 3.3,
for which the constituent quark mass is307 MeV, about 1/3
of the nucleon mass.

In what follows, we treat the gas of quarks as a heat bath
for the chiral field, with temperatureT and baryon-chemical
potentialµ. Integrating over the fermionic degrees of free-
dom and using a classical approximation for the chiral field,
we can write the thermodynamic potential as

Ω(T, µ, φ) = V (φ)− T

V ln det{[G−1
E + W (φ)]/T} , (2)

whereGE is the fermionic Euclidean propagator andV is
the (infinite) volume of the system. The determinant that
results from the functional integration over the quark and
anti-quark fields can be calculated to one-loop order in the
standard fashion [15, 16]. As already mentioned, the chiral
field φ plays the role of an order parameter, its equilibrium
value corresponding to the minimum of the grand canonical
potential (2) for given(T, µ).

The collective modes of the quark heat bath will be
treated within the framework of ideal relativistic hydrody-
namics. To obtain the equations of motion we generalize the
variational principle of Ref. [17], including the coupling of
the hydrodynamical degrees of freedom to the chiral field
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dynamics. This approach provides a natural way of merging
chiral and fluid dynamics in a unified Lagrangian system.
For a different treatment of the hydrodynamics of nuclear
matter in the chiral limit, see [18].

We describe the state of the fluid in terms of the four-
velocityuµ(x) = (γ, γ~v), where~v(~r, t) is the flow velocity
of matter, the proper baryon density,n(x), and the proper
entropy density,s(x). The action of the fluid-chiral field
system is then defined as

S ≡
∫

d4x

[
1
2
∂µφ∂µφ− ε(n, s, φ)

]
, (3)

whereε = Ω + Ts + µn is the energy density, from which
the temperature and chemical potential are obtained by the
usual thermodynamic relations:T = ∂ε(n, s, φ)/∂s and
µ = ∂ε(n, s, φ)/∂n. The variation ofn, s anduµ in the
action principle is performed under constraints arising from
baryon number conservation,∂µ(nuµ) = 0, entropy conser-
vation, ∂µ(suµ) = 0, and normalization of the 4-velocity,
uµuµ = 1. With these conditions the variational principle,
δS = 0, leads to the equations of motion:

2φ = −R , (4)

uµ∂µ(wuν) = −(∂µuµ)wuν + ∂νp + R∂νφ , (5)

wherep = −Ω is the pressure,w = ε + p = Ts + µn is the
enthalpy density, and

R = ∂Ω(T, µ, φ)/∂φ = ∂ε(n, s, φ)/∂φ (6)

gives the dynamical coupling between the fluid and the chi-
ral field. Note thatR has four components, and can be writ-
ten as

R =
∂V (φ)

∂φ
+ gρ(T, µ, φ) , (7)

where the (scalar/pseudoscalar) densityρ is

ρ = gφνq

∫
d3k

(2π)3
1/Ek(φ)

e[Ek(φ)−µq ]/T + 1
+ (µq → −µq) .

(8)
Hereνq = 12 stands for the color-spin-isospin degeneracy
of the quarks,Ek(φ) = (~k2 + m2

q(φ))1/2, andmq(φ) =
(g2φ2)1/2 = g(σ2 + ~π2)1/2 plays the role of an effective
mass for the quarks.

Equation (5) is the relativistic Euler equation for the
quark fluid in the presence of the chiral field. Introducing
the energy-momentum tensor of the fluid in the usual way,
Tµν = wuµuν − pgµν , we can write the Euler equation as

∂µTµν = R∂νφ . (9)

The total energy-momentum tensor of the fluid-field sys-
tem,T µν = Tµν − 1

2∂αφ∂αφgµν + ∂µφ∂νφ, is, of course,
conserved. Different derivations and equivalent forms of
Eqs. (4)–(9) can be found in [5, 6, 9].

Numerical studies of the system above have been done
extensively in Refs. [6, 9]. Here, we refrain from this ap-
proach and, instead, analyze the behavior of small perturba-
tions around equilibrium. We writeψ(x) = ψeq +ψ1e

−iKx,

whereψ stands forn, s, ~v or φ, andKµ = (ω,~k). ψeq cor-
responds to a situation of stable or metastable equilibrium,
given by the equationR = 0. Keeping terms up to first
order in the perturbationψ1, the field and hydrodynamical
equations become

(ω2 − ~k2 −m2
π)~π1 = 0 , (10)

(ω2 − ~k2 −m2
σ)σ1 =

k

ω
weqR

′v1 , (11)

(ω2 − p′~k2)v1 = ωkR′σ1 , (12)

where the masses of theσ and ~π fields are m2
σ =

(∂2ε(n, s, φ)/∂σ2)eq andm2
π = (∂2ε(n, s, φ)/∂π2)eq. We

have also definedp′ ≡ [∂p/∂ε]eq andR′ ≡ [∂Rσ/∂ε]eq,
evaluated at constant(s/n) andφ. The flow velocity~v1 is
parallel to the wave vector~k (sound waves are longitudi-
nal), and its magnitude determines the baryon number and
entropy amplitudes:

n1 = (k/ω)neqv1 , (13)

s1 = (k/ω)seqv1 . (14)

We see from the linearized equations (10)–(12) that, to
first order, only theσ field is coupled to the hydrodynamic
degrees of freedom. The dispersion relation for the coupled
modes reads

(ω2 − p′~k2)(ω2 − ~k2 −m2
σ) = weqR

′2~k2 . (15)

For long wavelength fluctuations we can approximate the
roots of (15) by

ω2
s/~k2 = p′ − M2

m2
σ

+O(~k2) , (16)

ω2
σ = m2

σ +O(~k2) , (17)

whereM2 ≡ weqR
′2. These modes can be identified as

sound waves (frequencyωs) and chiral waves (frequency
ωσ).

The onset of instabilities takes place whenω2 < 0, i.e.,
either for(p′−M2/m2

σ) < 0 or form2
σ < 0. From Eq. (16),

however, we see that sound waves become unstable before
chiral waves do.

Let us now discuss the onset of this spinodal instabil-
ity in different portions of the phase diagram of the linear
σ-model coupled to quarks.
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Figure 1. Phase diagram for the effective model in the(µ, T )-
plane. The coexistence curve ending at the critical pointE is rep-
resented by the solid line. The spinodal curves are shown as dashed
lines.

In Fig. 1 we plot the phase diagram in the(µ, T )-plane.
The coexistence curve is represented by the solid line. It
ends at a critical point,E, located atTE = 98 MeV and
µE = 630 MeV. The spinodal lines (p′ − M2/m2

σ = 0)
corresponding to supercooling and superheating are shown
as dashed lines.

A more illuminating picture of the unstable region is
given by the phase diagram in the(n, T )-plane, as shown in
Fig. 2. As before, the phase coexisting border is represented
by the solid line and dashed lines stand for the spinodals.
The sector on the right of the critical pointE corresponds
to supercooled states in the chirally symmetric phase. The
domain inside the dashed lines corresponds to the spinodal
unstable states.
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Figure 2. Phase diagram for the effective model in the(n, T )-
plane. Line conventions are the same as in Fig. 1.

To summarize, we have shown that spinodal decompo-
sition in the QGP proceeds by the exponential increase of
hydrodynamical sound-like modes. We have mapped the

boundaries of the unstable region, determining how much
supercooling (or superheating) is necessary to trigger spin-
odal instability. In the case of relativistic heavy ion reac-
tions, the rapid time scale of expansion and effects due to
the finite size of the system could change significantly these
results. In order to investigate these effects in a realistic and
quantitative way, one should perform numerical simulations
of the evolution of the instability in different scenarios. In
particular, one should study the limits of the linear approx-
imation at large times. Results in this direction will be pre-
sented elsewhere.
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