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We calculate theJ/ΨD∗D∗ form factor and coupling constant from QCD Sum Rules in the cases whereJ/Ψ
andD∗ mesons are off-shell. The results show that this method is consistent and allows to extract the same
coupling constant for the vertex.

1 Introduction

Recent data fromPb + Pb collisions in theNA50 experi-
ment at CERN-SPS have shown an anomalously largeJ/Ψ
suppression [1]. This kind of suppression is still considered
one of the promising signatures for the quark-gluon plasma
(QGP) formation[2], although the conventional mechanism
based onJ/Ψ absorption by comoving hadrons has also
been shown to contribute significantly to the observed sup-
pression [3]. Since there is no empirical information on the
cross sections for charmonium absorption by light hadrons,
theoretical models are needed to determine their values. In
the meson-exchange model, the cross sections between char-
monia and hadrons are evaluated using effective hadronic
Lagrangians derived from theSU(4) flavor symmetry [4, 5].
In these calculations, the cross sections depends sensitively
on the form factors and their cut-offs. These form factors
are not phenomenologically known.

In this work we report on the use of the QCD Sum Rules
(QCDSR) method [6], based on the three-point function, to
evaluate theJ/ΨD∗D∗ hadronic form factor and coupling
constant, used by meson exchange models in the calculation
of theJ/Ψ–π(ρ) cross section.

2 The QCD Sum Rule Calculation

Following the QCDSR formalism described in our previous
works [7, 8, 9], we write the three-point function associated
with aJ/ΨD∗D∗ vertex, which is given by

ΓD∗
ναµ(p, p′) =

∫
d4x d4y eip′·x e−i(p′−p)·y (1)

×〈0|T{jD∗
ν (x)jD∗

α (y)jΨ†
µ (0)}|0〉

for theD∗ meson off-shell, and by

ΓJ/Ψ
ναµ(p, p′) =

∫
d4x d4y eip′·x e−i(p′−p)·y (2)

×〈0|T{jD∗
ν (x)jΨ†

µ (y)jD∗
α (0)}|0〉 ,

for theJ/Ψ meson off-shell, wherejD∗
ν (x) = c(x)γνq(x),

jD∗
α (y) = c(y)γαq(y) andjΨ†

µ (0) = c(0)γµc(0) are theD∗

andJ/Ψ interpolating fields, written in terms of the quark
content and with the same quantum number of these mesons.
Hereq andc are the up/down and charm quark field respec-
tively.

The general expressions for the vertex (1) and (2) have
fourteen independent Dirac structures. We can writeΓναµ

in terms of the invariant amplitudes associated with each one
of these structures in the following form:

Γµνα(p, p′) = Γ1(p2, p′2, q2)gµνpα

+Γ2(p2, p′2, q2)gµαpν + Γ3(p2, p′2, q2)gναpµ

+Γ4(p2, p′2, q2)gµνp′α + Γ5(p2, p′2, q2)gµαp′ν
+Γ6(p2, p′2, q2)gναp′µ + Γ7(p2, p′2, q2)pµpνpα

+Γ8(p2, p′2, q2)p′µp′νpα + Γ9(p2, p′2, q2)pµp′νpα

+Γ10(p2, p′2, q2)pµpνp′α + Γ11(p2, p′2, q2)p′µp′νpα

+Γ12(p2, p′2, q2)p′µpνp′α + Γ13(p2, p′2, q2)pµp′νp′α

+Γ14(p2, p′2, q2)p′µp′νp′α (3)

The correlation function, Eqs. (1) and (2), can be calculated
in two different ways. One using quark degrees of freedom
-the theoretical or QCD side- and other using hadronic de-
grees of freedom -the phenomenological side.

An adequate framework for the calculation of the corre-
lators in the QCD side is the Wilson operator product expan-
sion (OPE). The OPE incorporates the effects of the QCD
vacuum through an infinite series of increasing dimension
condensate operators. On the other hand, the representation
in terms of hadronic degrees of freedom is the place where
appears the form factor, decay constants and masses. Both
representations are matched using the universality principle,
and doing a Borel transformation on both sides, the QCD
Sum Rule is complete.
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For each one of the structures in Eq. (3) we can write
a double dispersion relation of the invariant amplitudes
Γi(p2, p′2, Q2), i = 1, . . . , 14, over the virtualitiesp2 and
p′2, holdingQ2 = −q2 fixed:

Γi(p2, p′2, Q2) = − 1
4π2

∫ ∞

smin

ds

∫ ∞

m2
c

du

× ρi(s, u, Q2)
(s− p2)(u− p′2)

, (4)

whereρi(s, u, Q2) equals the double discontinuity of the
amplitudeΓi(p2, p′2, Q2), calculated using the Cutkosky
rule, and wheresmin = 4m2

c in the case ofD∗ off-shell,
andsmin = m2

c in the case ofJ/Ψ off-shell. Note that,a
priori , the invariant amplitudes receive contributions from
all terms in the OPE. The first one of those contributions
comes from the perturbative term and it is shown in Figs. 1
and 2 in the case of the correlators (1) and (2) respectively.
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Figure 2. Perturbative diagram forg
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2).

In this paper, we work with the structurepµpνpα in
Eq. (3), namelyi = 7. The corresponding spectral densi-
ties, which enter in Eq. (4), are

ρ
(D∗)
7 (s, u, Q2) =

6
π
√

λ
(A−H) (5)

for D∗ off-shell and

ρ
(J/Ψ)
7 (s, u, Q2) =

6
π
√

λ
(B − J) (6)

for J/Ψ off-shell, whereλ = λ(s, u, t) = s2 + t2 + u2 −
2st−2su−2tu, t = −Q2 andA, B, H andJ are functions
of (s, t, u). For the structure chosen here, the quark conden-
sate doesn’t contribute. We also expect that the perturbative
contribution is the dominant one in the OPE, because we are
dealing with heavy quarks. For this reason we do not include
the gluon and quark-gluon condensates.

The phenomenological side of the vertex function is ob-
tained considering the contribution of theJ/Ψ and oneD∗

meson in Eq. (1) and the twoD∗ mesons in Eq. (2). Here
we introduced the decay constantsfD∗ andfJ/Ψ, which are
defined by the matrix elements

〈D∗|jD∗
µ |0〉 = mD∗fD∗ε∗µ (7)

and

〈J/Ψ|jJ/Ψ
ν |0〉 = mJ/ΨfJ/Ψε∗ν (8)

respectively. The resulting phenomenological invariant am-
plitude associated with the structurepµpνpα (i = 7 in
Eq. (3)) for theD∗ meson off-shell is:

Γ(D∗)ph
7 (p2, p′2, Q2) = g

(D∗)
J/ΨD∗D∗(Q

2)
fJ/Ψ

(p2 −m2
J/Ψ)

× fD∗

(Q2 + m2
D∗)

fD∗

(p′2 −m2
D∗)

×
(
p′2 −m2

D∗ −m2
J/Ψ

)
(9)

In the case of theJ/Ψ meson off-shell, the phenomenolog-
ical invariant amplitude associated with the same structure
(i = 7 in Eq. (3)) is:

Γ(J/Ψ)ph
7 (p2, p′2, Q2) = g

(J/Ψ)
J/ΨD∗D∗(Q

2)
fD∗

(p2 −m2
D∗)

× fJ/Ψ

(Q2 + m2
J/Ψ)

fD∗

(p′2 −m2
D∗)

×
(
m2

D∗ + m2
J/Ψ − p2

)
(10)

Now we perform a double Borel transformation [10] in
both variablesP 2 = −p2 → M2 and P ′2 = −p′2 →
M ′2 on both invariant amplitudesΓ7 and Γph

7 . Equating
the results we get the final expressions for the sum rules
which allow us to obtain the expressions for the form fac-
torsg

(M)
J/ΨD∗D∗(Q

2) appearing in Eqs. (9)–(10). The values

for the Borel massesM2 andM ′2 are

M2

M ′2 =
m2

J/Ψ

m2
D∗

(11)

for theD∗ off-shell case andM2 = M ′2 for theJ/Ψ off-
shell case.

For consistency we use in our analysis the QCDSR ex-
pressions for the decay constants appearing in Eq. (7) and
(8), up to dimension four, coming from the two-point func-
tions in QCDSR. In that calculation the contribution of
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the gluon condensate was omitted and the Borel parame-
ters used in the two and three point function are related by
2M2

m = M2, which is a crucial constraint for the incorpo-
ration of the HQET symmetries.

The values of the parameters used in this calculation are
the following: mq = 7 MeV, mc = 1.3 GeV, mD∗ =
2.01 GeV, mJ/Ψ = 3.1 GeV and〈qq〉 = −(0.23)3 GeV3.
The thresholds are given bys0 = (mM + ∆s)2, wheremM

is the mass of the incoming meson, andu0 = (mD∗+∆u)2.
Using∆s = ∆u ≈ 0.7 GeV for the continuum thresh-

olds and fixingQ2, we found a good stability of the sum
rule for g

(D∗)
J/ΨD∗D∗ as a function ofM2 in the interval

1 < M2 < 5 GeV2. In the case ofg(J/Ψ)
J/ΨD∗D∗ the interval

for M2 is 4 < M2 < 10 GeV2. Fixing nowM2 = 5 GeV2

we calculated the momentum dependence of the form factor.
In Fig. 2, the circles correspond to theg

(D∗)
J/ΨD∗D∗(Q

2) form
factor in the interval where the sum rule is valid. The tri-
angles are the result of the sum rule for theg

(J/Ψ)
J/ΨD∗D∗(Q

2)
form factor.

In the case of theD∗ meson off-shell, our numerical re-
sults can be reproduced by a Gaussian parametrization, the
solid curve in Fig. 2, in the following way:

g
(D∗)
J/ΨD∗D∗(Q2) = 2.35 e−

Q2

4.24 (12)

As in Ref.[9], we define the coupling constant as the value
of the form factor atQ2 = −m2

M , wheremM is the mass of
the off-shell meson. For theD∗ meson off-shell the coupling
constant is:

g
(D∗)
J/ΨD∗D∗ = 6.01 (13)

In the case of theJ/Ψ meson off-shell, our sum rule result
can be fitted by a monopole parametrization, which corre-
sponds to the dashed line in Fig. 2:

g
(J/Ψ)
J/ΨD∗D∗(Q2) =

23.16
Q2 + 13.98

(14)

giving the following coupling constant, obtained at theJ/Ψ
pole:

g
(J/Ψ)
J/ΨD∗D∗ = 5.85 (15)

Concluding, the method used to extrapolate the QCDSR
results withJ/Ψ and D∗ mesons off-shell permits to ex-
tract the same value for the coupling constant (Eqs. (13) and
(15)). We can see that the form factor is harder, in the case
of the monopole extrapolation, if the off-shell meson is the
heavy one, implying that the size of the vertex depends on
the exchanged meson, which is consistent with our previous
results [9]. In a future work, we intend to analyze the form
factor for all the structures appearing in Eq.(3), and the con-
sequences of taking into account increasing dimension OPE

operators for each one. Also, more contributions in the de-
cay constant ofJ/Ψ (two point function QCD Sum Rule)
will be considered.
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Figure 3. Momentum dependence of theJ/ΨD∗D∗ form fac-
tor. The solid line gives the parametrization of the QCDSR re-
sults trough Eq.(12), and the dashed line is the parametrization of
Eq. (14).
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