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We employ QCD sum rules to calculate thgy D D* form factors and coupling constant by studying the three-
point J/¢D* D correlation function. We find that the momentum dependence of the form factor depends on
the off-shell meson. We get a value for the coupling which is in agreement with estimates based on constituent
quark model.

Hadrons are composites of the underlying quarks whose
effective fields describe point-like physics only when all the D
interacting particles are on mass-shell. When at least one
of the particles in a vertex is off-shell, the finite size effects
of the hadrons become important. Therefore, the knowledge @ |
of the form factors in hadronic vertices is of crucial impor-
tance to estimate any hadronic amplitude using hadronic de-
grees of freedom. This work is devoted to the study of the
J/vD*D form factor, which is important, for instance, in
the evaluation of the dissociation cross section/pf) by d
pions andp mesons using effective Lagrangians [1, 2, 3].
Since a decrease df/y) production in heavy ions collisions
might signal the formation of a quark-gluon plasma (QGP)
[4], a precise evaluation of the background, i.e., conven-
tional J/v absorption by co-moving pions andmesons,
is of fundamental importance. Tw(p,p) = /d4:c diy e’ @ eiP' =Py

The J/¢¥D*D coupling has been studied by some au-
thors using different approaches: vector meson dominance
model plus relativistic potential model [1] and constituent
guark meson model [5]. Unfortunately, the numerical re- ) e '
sults from these calculations may differ by almost a factor P mesons the interpolating fields are respectivgly) =
two. The relevance of this difference can not be underesti-c¢vy,c¢, jﬁD ) = gvve and;jP) = igysc with ¢ ande being a
mated since the cross section is proportional to the square ofight quark and the charm quark fields.
the coupling constants. In ref. [3] it was shown that the use ~ The phenomenological side of the vertex function,
of different coupling constants and form factors can lead to I'(p, p’), is obtained by the consideration 8 andH; state
cross sections that differ by more than one order of magni- contribution to the matrix element in Eq. (1):
tude, and that can even have a different behavior as a func- 1 1
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Figure 1. Diagram representing th& (p) Hz(q) Hs (p') vertex.

meson, is given by

(OIT{ja(x) 73 ()1 () }0) , (1)
wherej; is the interpolating field fo#;. For.J/v, D* and

X

In previous works we have used the QCD sum rules
(QCDSR) to study thé)" D [6, 71, DDp 8] and J /v DD % (Hs(p) 34 H: (p) (L () 5110) +hor, ()
[9] form factors, considering two different mesons off mass-
shell. In these works the QCDSR results for the form fac-
tors were parametrized by analytical forms such that the
respective extrapolations to the off-shell meson poles pro-

where h. r. means higher resonances.
The matrix element of the currepd defines the vertex
functionVyx (p, p’):

vided consistent values for the corresponding coupling con- Mot 1 Van (p,0)

stant. In this work we use the QCDSR approach to evaluate  (13(2")[72[H1(p)) = <H2(q)\]2|0>m S C))
the J/4 D* D form factors and use the same procedure de- . 2

scribed above to estimate tHgD* D coupling constant. ~ Whereg = p’—p. Callingp;, p; andps the four momentum

. . . ) of J/vy, D* andD respectively one has
The three-point function associated witlla H, H5 ver-

tex (see Fig. 1), wher#l, andH are the incoming and out- V' (p1, pa, p3) = gypp«(g?)e? %) (pl)eﬁ (p2)p3spas -
going external mesons respectively add is the off-shell 4)
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The vacuum to meson transition amplitudes appearing inexpansion (OPE) of the operator in Eq. (1). Writiig, in
Egs. (2) and (3) are given in terms of the corresponding me-terms of the invariant amplitude:
son decay constanys;, by

2 Lo (p,p') = A% 0% ) easuwpr®p’” 9)
(0lj”|p) = 210 © ' '
¢ we can write a double dispersion relation féy over the
and virtualitiesp? andp’? holding Q? = —¢? fixed:
(V(p,e)liL10) = my fves, (6)
for the vector mesoV = J/¢ or V. = D*. Therefore, A(p? 2 0?) = 1 dsdu p(s,u, Q%)
using Egs. (3), (4), (5) and (6) in Eq. (2) we get e A2 (s —p2)(u—p?)’
(10)
Then)(p ) — Gy D+ (0%)€apw pop'? where p(s,u, Q%) equals the double discontinuity of the
v ’ (42 — m2)(p? — m2)(p'? — m2) amplitude A(p2, p’%, Q2) on the CutSspin < s < oo,
+ h.r., (7 m?2 < u < oo, With 8,,;,, = 4m? in the case of off-shell
D* or D and s,,;,, = m? in the case of off-shell//«.
where ) We consider diagrams up to dimension three which include
o mpmp=my [ fp+fy ) 8) the perturbative diagram and the quark condensate. To im-
Me prove the matching between the two sides of the sum rules,
The contribution of higher resonances and continuum in we perform a double Borel transformation in both variables
Eq. (7) will be taken into account as usual in the standard P2 = —p?> — M2 and P> = —p/? — M'* We get
form of ref. [10]. one sum rule for each meson considered off-shell. Calling

The QCD side, or theoretical side, of the vertex func- g{YDD*(qQ) they D D* form factor for the off-shell meson
tion is evaluated by performing Wilson’s operator product M, we get the following sum rules:

]
99D (B) _mbe
e M7e M2 / / dsdup™®) (u, s, t)e” 7% € 372 O (Upmqe — 1), (11)
(t - mD) m?2 Jupmin
9upp-(t) _nh —
C ——5—~e m7e” W = —/ dsdup(D (u,s,t)e” MZe” M2 O(Umaz — ), (12)
(t - mD*) A4m2 Jumin
and
gV () w3y ma
C %6_ e MT = / dsdup/") (u, s, t)e” 12 e 7177 O (Umaz — ), (13)
(t - m1p) 47T m2 JUmin
|
with t = ¢2, A= (u+s—1)?—4us, \a =u+t—s+2m?and
3m SA
(D) (u, s, (P9 (u, s,t C(l—l—z), 14
P s, t) = p (w8 t) = 2 (14)
]
1
wpts = 5 [ st mE(s 4 20) £ V/5(s — Am2)(t — m2)?] (15)
m,

c

in the case of off-shelD or D*. In the case of an off-shell/y) we get:

3me =
P (s 0) = S [(u— )7 = tlu+ s = 2m3)] — dn® < Gg > 8(s = m)d(u —m3), (16)
and 1
up = o [=st o m2(2s + ) £ Vi~ Am2)(s — m2)?) - (17)
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In the Egs. (11), (12) and (13) we have transferred to the form factorngp%)D*, gff[’;[))* and gfp‘%%)* through the cir-

QCD side the higher resonances contributions through thecles, squares and triangles respectively. Since the presen

introduction of the continuum thresholds andu. approach cannot be used@t << 0, to extract they, pp-
* * * * * coupling from the form factors we need to extrapolate the
curve toQ? = —m3: the mass of the off-shell meson.
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Figure 2. M? dependence ofgf,%DD*(QQ) for Q> =
—0.21 GeV? andQ? = 5.0 GeV2. 1 ‘

The parameter values used in all calculationsrage= w8 6 4 Qz((;ezvz) 0 2 4 6
1.3 GeV, mp = 1.87 GeV, mp- = 2.01 GeV, my =
3.1 GeV, fp = (1704+10) MeV, fp- = (240 £20) MeV, Figure 4. Momentum dependence of tfig) D D" form factors.
fJ/w = (405 + 15)MeV, (gq) = _(0.23)3 Ge\B. The The dotted, dasheq and solid lines give thfe parameterization of the
continuum thresholds for the sum rules age= (m; +A )2 QCDSR results (trlan_gles, squares and circles) through Eqgs. (18),

. s (19) and (20) respectively.

andug = (m3 + A,)? with A, = A, = 0.5GeV.

We first discuss the//yD D" form factor with an off- In order to do this extrapolation we fit the QCDSR re-
shell D meson. In Fig. 2 we show the behavior of the gyits with an analytical expression. We tried to fit our re-

form faCtOfgﬁ/),DD*(QQ) at@Q? = 5.0 GeV? andQ? = sults with a mono-pole form, since this is very often used
—0.21 GeV?, as a function of the Borel mas¥? using for form factors, but the fit was only good fgl%%)*. For

2 *
M'"? = M? ”:n% . We can see that the QCDSR results are gfﬁ}D* andgfp%g* we obtained good fits using a Gaussian

rather stable in the interval < M2 < 11 GeV?. In Fig. 3 form. We get:
we ShOWgS%}DD* (Q* = —0.21 GeV?) as a function ofi/2 /)

199.2
andM’?. 9500 (@)

T Q¥+568 (18)

* 2 2
i@ =199exp| - EEEEL g

(D)

(Q* + 25.8)2] . (20)

450

These fits are also shown in Fig. 4 through the dotted, dashec
and solid lines respectively. From Fig. 4 we see that all three
form factors lead to compatible values for the coupling con-
stant when the form factors are extrapolated to the off-shell
meson mass (shown as open circles in Fig. 4). Considering
the uncertainties in the continuum threshold, and the differ-
Figure 3. M? and M'® dependence ofgffgm Q* = ence in the values of the coupling constants extracted when
—0.21GeV?) . the D, D* or J/¢ mesons are off-shell, our result for the

From Fig. 3 we see that the stability is still good even J{%DD* coupling constant s:
considering the two independent Borel parameters. The

same kind of stability is obtained for other valuegpfand gypp+ = (3.48 & 0.76)GeV . (22)
for the other two form factors.
Fixing M2 = m2 and M’> = m2 we show, in Fig. 4, In Table | we show the results obtained for the same cou-

the momentum dependence of the QCDSR results for thepling constant using different approaches.in refs. [1] and [5].
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Table I: Values of the coupling constagitpp+ in GeV—! References
evaluated using different approaches.

[1] Y.Oh, T. Song and S.H. Lee, Phys. Re%3034901 (2001);

. Y. Oh, T. Song, S.H. Lee and C.-Y. Wong, nucl-th/0205065.
this work ref. [1] ref. [5] g 9

[2] F.S. Navarra, M. Nielsen, and M.R. Robilotta, Phys. Rev.
] 3.48+ 0.76 \ 8.02+ 0.62 \ 4.05+ 0.25 \ C64, 021901 (R) (2001).

While our result is compatible with the coupling ob-  [3] K.L. Haglin and C. Gale, hep-ph/0305174.
tained using constituent quark meson model [5], it is half of )
the value ogtained with tﬂe vector meson dor&iLance model [4] T. Matsui and H. Satz, Phys. Lett12§ 416 (1986).
plus relativistic potential model [1]. [5] A. Deandrea, G. Nardulli and D. Polosa, hep-ph0302273.
To summarize: we have used the method of QCD sum (6]
rules to compute form factors and coupling constant in the
J/¥DD* vertex. Our results for the coupling show once
more that this method is robust, yielding numbers which [7] F.S. Navarra, M. Nielsen, and M.E. Bracco, Phys. Re85D
are approximately the same regardless of which particle we 037502 (2002).
choose to _be off-shell and depending weakly on the choice [8] R.D.Matheus, F.S. Navarra, M. Nielsen, and R. Rodrigues da
of_the continuum threshold. As for the form fact_ors,_we ob- Silva, Phys. Lett. B41, 265 (2002).
tain a harder form factor when the off-shell particle/igp,
when compared with the form factors obtained when the off- [9] M.E. Bracco, M. Chiapparini, A. Lozea, F.S. Navarra, and M.
shell particles aré or D*. Nielsen, Phys. Lett. B21, 1 (2001).
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