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We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show
how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate
from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The
treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization
at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for
experimental glueball searches are discussed.

1 Introduction

The gluonium sector of QCD has remained complex and
intriguing for almost four decades [1]. Its “exotic” na-
ture partially reflects itself in several longstanding prob-
lems which the QCD sum rule approach faces in the spin-
0 glueball channels [2]. In the scalar (0++) glueball cor-
relator, in particular, the departure from asymptotic free-
dom sets in at surprisingly small distances [3]. Unusually
strong, nonperturbative contributions to the Wilson coef-
ficients are then required to provide stability for the0++

glueball sum rules (mainly the one including a large sub-
traction constant) and to reconcile them with an underlying
low-energy theorem (see below) [4]. While instantons [5]
seemed to be a likely candidate for such contributions early
on [6], their implementation into the short-distance expan-
sion (i.e. the OPE) had to await better knowledge of the in-
stanton size distribution [5, 7]. The instanton-improved OPE
(IOPE) and the analysis of the corresponding Borel sum
rules [4] then showed that direct (i.e. small-scale) instan-
tons solve two key problems in the scalar glueball channel:
they render for the first time all Borel-moment sum rules
individually and mutually consistent. A subsequent analy-
sis of the related Gaussian sum rules [8] confirmed some
of these findings and investigated alternative parametriza-
tions of the phenomenological side. However, the previous
implementations of direct instanton contributions, including
those in the0++ glueball channel, relied on approximations
which may cause artefacts in the sum-rule results. We will
therefore outline a more thorough and systematic treatment
here. Moreover, while direct-instanton contributions resolve
longstanding shortcomings in the scalar glueball sum rules,
their straightforward implementation into the0−+ sum rules
seems, at first, to create new problems [9]. These prob-
lems have an appealing solution, however, due to topolog-
ical charge screening [10], as we will discuss below.

2 Correlators and sum rules

Our discussion will be based on the correlations functions of
the scalar(0++) and pseudoscalar(0−+) glueball channels,

defined as

ΠG (x) = 〈0|T OG (x) OG (0) |0〉 (1)

whereOG with G ∈ {S, P} are the standard gluonic inter-
polating fields (with lowest mass dimension)

OS (x) = αsG
a
µν (x)Gaµν (x) , (2)

OP (x) = αsG
a
µν (x) G̃aµν (x) . (3)

The correponding Fourier transforms are

ΠG(−q2) = i

∫
d4x eiqx 〈0|T OG (x)OG (0) |0〉 . (4)

The zero-momentum limits of these correlators are governed
by low-energy theorems:

ΠS

(
q2 = 0

)
=

32π

b0

〈
αG2

〉
(5)

in the scalar channel [11] and (with three light flavors and
mu,d ¿ ms)

ΠP

(
q2 = 0

)
= (8π)2

mumd

mu + md
〈q̄q〉 (6)

(which vanishes in the chiral limit) in the pseudoscalar one
[12]. Consistency with the low-energy theorems is a strin-
gent requirement for the sum rules which can be met only by
nonperturbative short-distance physics in the IOPE [4, 10].

The direct-instanton contributions to the glueball corre-
lators show a pronounced and robust channel dependence
pattern which originates from the (Minkowski) (anti-) self-
duality of the (anti-) instanton’s field strength,

G
(I,Ī)
µν = ±iG̃

(I,Ī)
µν ≡ i

2
εµνρσG

(I,Ī)
ρσ . (7)

Self-duality implies that the direct-instanton contributions
to the0−+ glueball correlator are equal in size and opposite
in sign to those in the0++ glueball correlator. Moreover,
the energy-momentum tensor of self-dual fields vanishes,
and consequently their contributions to the tensor glueball
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correlator (based on the interpolatorOT (x) = Θa
µν (x)).

Since the instanton contributions to the scalar glueball cor-
relator turn out to be strongly attractive, they must be equally
strongly repulsive in the pseudoscalar channel.

In order to make contact with the hadronic information
contained in the glueball correlators, we now turn to the dis-
persive representation

ΠG

(
Q2

)
=

1
π

∫ ∞

0

ds
ImΠG (−s)

s + Q2
(8)

where the necessary number of subtractions is implied but
not written explicitly. The standard sum-rule description of
the spectral functions contains one or two resonance poles
(in zero-width approximation) and the local-duality contin-
uum, i.e.

ImΠ(ph)
G (s) = ImΠ(pole)

G (s) + Im Π(cont)
G (s) (9)

with

ImΠ(pole) (s) = π

2∑

i=1

f2
Gim

4
Giδ

(
s−m2

Gi

)
, (10)

ImΠ(cont)
G (s) = θ (s− s0) Im Π(IOPE)

G (s) . (11)

The continuum representation is obtained from the discon-
tinuities of the IOPE and covers the invariant-mass region
”dual” to higher-lying resonances and multi-hadron contin-
uum, starting at an effective thresholds0.

In order to write down QCD sum rules, the correlators -
weighted with powers of−Q2 - are Borel-transformed,

L(X)
G,k (τ) = B̂

[(−Q2
)k

Π(X)
G (Q2)

]
(τ) , k ≥ −1.

(12)
The hadronic parametersmGi, fGi, s0 are then determined
by matching the momentsL(ph)

G,k (τ ; mGi, fGi, s0) in the

fiducial τ -region to their counterpartsL(IOPE)
G,k which will

be determined below. The ensuing IOPE sum rules are con-
veniently written in terms of the continuum-subtracted Borel
momentsRG,k as

RG,k (τ ; s0) ≡ 1
π

∫ s0

0

dssk ImΠ(IOPE)
G (s) e−sτ (13)

=
2∑

i=1

f2
Gim

4+2k
Gi e−m2

Giτ − δk,−1Π
(ph)
G (0)

which isolates the pole contributions of interest (and the im-
portant subtraction term fork = −1) on the RHS.

3 IOPE

Our theoretical framework for calculating the correlator am-
plitudes at short distances is the instanton-improved oper-
ator product expansion (IOPE). The general IOPE expres-
sion for the glueball correlators at large, spacelike momenta
Q2 ≡ −q2 À ΛQCD,

ΠG(Q2) =
∑

D=0,4,...

C̃
(G)
D

(
Q2;µ

) 〈
ÔD

〉
µ

, (14)

exhibits the characteristic factorization into contributions
from “hard” field modes (with momenta|k| > µ) in the
Wilson coefficientsC̃D

(
Q2

)
and contributions from “soft”

field modes (with|k| ≤ µ) in the vacuum expectation values
(condensates”) of the operatorŝOD of dimensionD.

The perturbative Wilson coefficients, which generate the
conventional OPE, can be found in Refs. [8, 10] for the0++

and in Refs. [9, 10, 13] for the0−+ channel. In the fol-
lowing we will focus on the nonperturbative contributions
due to direct instantons and topological-charge screening.
The unit-operator coefficient̃C(G)

0 of the IOPE receives the
dominant direct-instanton contribution [10],

Π(I+Ī)
G

(
x2

)
=

283
7

∫
dρn (ρ)

1
ρ4 2F1

(
4, 6,

9
2
,− x2

4ρ2

)
.

(15)
From its Fourier transform one finds the corresponding
Borel moments [4] (x = ρ2/2τ )

L(I+Ī)
−1 (τ) = −26π2

∫
dρn (ρ) x2e−x (16)

×
[
(1 + x) K0 (x) +

(
2 + x +

2
x

)
K1 (x)

]

(which, for τ → ∞, approaches the subtraction term

−δk,−1Π
(I+Ī)
G (0)) and

L(I+Ī)
k+1 (τ) =

−∂

∂τ
L(I+Ī)

k (τ) (for k ≥ −1). (17)

From the imginary part [4]

ImΠ(I+Ī)
S (−s) = −24π4

∫
dρn (ρ) ρ4s2J2

(√
sρ

)
Y2

(√
sρ

)

(18)
at timelike momenta one then has

R(I+Ī)
k (τ) = −27π2δk,−1

∫
dρn (ρ)− 24π3

∫
dρ (19)

× n (ρ) ρ4

∫ s0

0

dssk+2J2

(√
sρ

)
Y2

(√
sρ

)
e−sτ .

The only input for the evaluation of these contribution is
the (anti-) instanton distributionsn (ρ). The Wilson coeffi-
cients are primarily sensitive to the qualitative behavior of
n (ρ) and two characteristic scales, the leading moments

n̄ =
∫

dρn (ρ) , ρ̄ =
1
n̄

∫
dρρn (ρ) . (20)

All previous direct-instanton calculations have relied on the
oversimplified “spike” approximationn(ρ) = n̄δ (ρ− ρ̄).
Additional features ofn (ρ) (shape, small- and large-ρ be-
havior) are by now well enough established, however, to
make more realistic parametrizations possible. Artefacts of
the spike approximation (e.g. oscillations in the time-like
region) are thereby avoided. Hence we introduce ansätze
for n (ρ) which are uniquely determined bȳn, ρ̄ and their
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small- and large-ρ behavior [10]. The most realistic one is
the Gaussian-tail distribution (forNc = Nf = 3)

ng (ρ) =
218

36π3

n̄

ρ̄

(
ρ

ρ̄

)4

exp
(
− 26

32π

ρ2

ρ̄2

)
(21)

which starts asρ4 at small ρ, as required by instanton-
background perturbation theory.

Realistic instanton size distributions have an additional
benefit: they allow to renormalize the direct-instanton con-
tributions at the operator scaleµ. Although the neglect
of renormalization is common practice (“pragmatic OPE”)
for the perturbative Wilson coefficients, it is completely
untested in the nonperturbative sector. Since instanton-
associated flutuations carry a momentum scalek ∼ ρ−1, we
implementµ (gauge invariantly) by excluding contributions
from instantons with sizeρ > µ−1, i.e. by replacing

n (ρ) → ñµ (ρ) ≡ θβ

(
ρ− µ−1

)
n (ρ) (22)

where the “soft” step functionθβ can be choosen, e.g.
as a Fermi distribution with “diffuseness”β. We find
the instanton-induced Wilson coefficients to be relatively
weakly µ-dependent forµ < ρ̄−1 where the large-ρ sup-
pression fromn (ρ) at ρ < µ−1 has already set in. This is
reassuring since the compensatingµ-dependence of the con-
densates is equally weak. The standard spike distribution
(with ρ̄ < µ−1) misses the reduction of the total instanton
density active in the Wilson coefficients,

n̄ =
∫ ∞

0

dρn (ρ) →
∫ ∞

0

dρñµ (ρ) ≡ n̄direct. (23)

Comparison of the imaginary part (18) fromng (ρ) to
that obtained from the spike distribution shows that the
finite-width distribution turns an oscillating rise at larges
into a strong decay∝ s−5/2. Moreover, fors0 & 2 − 4
GeV2 (and τ & 0.2 GeV−1) the finite-width distribution
increasingly reduces the size of the instanton contributions.
Therefore, they will be smaller in the pseudoscalar sum rule
(wheres0 is typically about a factor of two larger) than in
the scalar sum rule.

4 Topological charge screening

Due to the sign change originating from (Minkowski) self-
duality, the instanton-induced attraction in the0++ glueball
correlator turns into repulsion for the0−+ correlator. The
strength of the direct-instanton contributions explains why
their inclusion in the pseudoscalar IOPE makes the signal
for the pseudoscalar glueball and the compulsory spectral
positivity disappear [9]. Additional and equally important
contributions to the Wilson coefficients must therefore still
be missing. These contributions must affect mostly the pseu-
doscalar IOPE since the scalar sum rules are consistent and
stable without them.

Such a strong channel selectivity is indeed possible since
the pseudoscalar correlator is proportional to the topologi-
cal charge density correlator and thus maximally sensitive
to instanton - antiinstanton correlations. Correlations of

this sort are created by the attractive (repulsive)η′-meson
exchange forces between opposite-sign (equal-sign) topo-
logical charges in the QCD vacuum and lead to their De-
bye screening [14]. The largeη′ mass is the corresponding
“screening mass”, andλD ∼ m−1

η′ ∼ 0.2 fm the (small!)
screening length. Sincemη′ > µ, the screening correlations
contribute to the Wilson coefficients of the pseudoscalar
glueball correlator.

The screening corrections can be obtained from the cou-
pling of theη0 meson (the flavor-singlet part of theη′) to the
topological charge density in the vacuum medium (approxi-
mated for simplicity as concentrated in pointlike instantons)
which is dictated by the axial anomaly [15] and governed by
the effective lagrangian [14]

L =
1
2

(∂η0)
2 +

1
2
m2

0η
2
0 − ξ cos

(
θ (x) +

√
2Nf

fη′
η0 (x)

)
.

Here ξ is the overall topological charge density (= n̄ for
instantons) andθ (x) is a source for the topological charge
densityQ (x). Taking two derivatives of the corresponding
generating functional with respect toθ leads (for smallη0

amplitudes) to the topological charge correlator

〈Q (x)Q (0)〉 = ΠP (x) / (8π)2 (24)

' −2ξδ4 (x)− 8Nf
ξ2

f2
η′
〈η0 (x) η0 (0)〉 .

The first term is just the pointlike-instanton approximation
of the direct-instanton contribution evaluated above. The
second one is the screening correction which, after correct-
ing for η0 − η8 mixing, adds the contribution

R(scr)
P,k (τ) = −δk,−1

(
F 2

η′

m2
η′

+
F 2

η

m2
η

)

+ F 2
η′m

2k
η′ e

−m2
η′τ + F 2

η m2k
η e−m2

ητ (25)

to the pseudoscalar IOPE moments. The quantitative anal-
ysis of the associated sum rules reveals that the screening
contributions indeed resolve the detrimental problems men-
tioned above: positivity of the spectral function is restored,
all sum rules (including anη′ pole on the RHS) are stable,
and they provide a clear signal for the pseudoscalar glueball
(for more details see Ref. [10]).

5 Glueball predictions

On the basis of the improved and extended IOPE we have
performed a comprehensive numerical analysis of eight
Borel sum rules in both spin-0 glueball channels. The
results reveal a rather diverse pattern of glueball prop-
erties. In the scalar channel, the improved treatment
of the direct-instanton sector reduces our earlier (spike-
distribution based) result for the0++ glueball mass by about
20%, tomS = 1.25 ± 0.2 GeV. This is somewhat smaller
than the quenched lattice results [16] which are, however,
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expected to be reduced by light-quark effects and quarko-
nium admixtures.

Our mass prediction is consistent with the broad glue-
ball state found in a recentK-matrix analysis which in-
cludes the new states recently identified in the Crystal Bar-
rel data [17]. The systematics in our results from different
Borel-moment sum rules indicates a rather large width of
the scalar glueball,ΓS & 0.3 GeV. Our prediction for the
glueball decay constant,fS = 1.05 ± 0.1 GeV, is several
times larger than the value obtained when ignoring the non-
perturbative Wilson coefficients. This result implies an ex-
ceptionally small glueball size and at least partially explains
the strong attraction between gluons in the scalar channel as
instanton-induced. Furthermore, our prediction forfS im-
plies substantially larger partial widths of radiativeJ/ψ and
Υ decays into scalar glueballs and is therefore important for
experimental glueball searches, in particular for the interpre-
tation of the recent CLEO [18] and forthcoming CLEO-III
data onΥ → γf0 and other decay branches.

In the pseudoscalar glueball channel, the hard nonper-
turbative contributions modify qualitative features of the
0−+ Borel moments to which the matching analysis is par-
ticularly sensitive, and they are vital for achieving con-
sistency among all moment sum rules and with the axial
anomaly. Our mass predictionmP = 2.2 ± 1.5 GeV
for the pseudoscalar glueball lies inside the range obtained
from quenched and unquenched lattice data. The coupling
fP = 0.6± 0.2 GeV is again enhanced by the nonperturba-
tive Wilson coefficients, but less strongly than in the scalar
channel. The consequently larger partial width of radiative
quarkonium decays into pseudoscalar glueballs and the en-
hancedγγ → GP π0 cross section at high momentum trans-
fers will be relevant for the experimental identification of the
lowest-lying0−+ glueball and help in measuring its proper-
ties.

Our nonperturbative IOPE, including the topological
short-distance physics described above, should also be use-
ful for the calculation of other spin-0 glueball properties.
Quantitative estimates of the already mentioned production
rates in gluon-rich channels (includingJ/ψ andΥ decays)
and characteristic glueball decay properties and signatures,
including γγ couplings, OZI suppression and branching
fractions incompatible withqq̄ decay, would be particularly
interesting.
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