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In this seminar we shall discuss the issue of duality transformation in the context of f topological mass gener-
ation in diverse dimensions. Particular emphasis will be given to the mass generation mechanism as the result
of interference between self and anti self-dual components, as disclosed by the soldering formalism. Since this
is a gauge embedding procedure derived from an old algorithm of second-class constraint conversion used by
the author to approach anomalous gauge theories, a quick review of the subject will be presented. The prob-
lem of classification of the electromagnetic duality groups that is closely related will also be briefly discussed.
Particular emphasis will be given to a new approach to duality based on the soldering embedding to tackle to
problem of mass generation by topological mechanisms in D=3 and D=4 dimensions including the couplings
to dynamical matter and nonlinear cases.

1 Preliminaries

The notion of soldering or combining different species of
objects to yield a new composite structure is a very recur-
rent concept in Physics and Mathematics. The fusion pro-
cess can be established as long as the constituents display
either opposite or complementary aspects of some definite
property. This simple observation contains the genesis of the
technique, which we call the Soldering Formalism. Over the
last few years we have systematically developed the solder-
ing formalism and extensively applied to a wide variety of
problems, including higher dimensional models [1-18]. In
this report we shall basically review our work.

The soldering mechanism is a new technique developed
to work with distinct manifestations of self dual aspects of
some symmetry, for instance, chirality, helicity and electro-
magnetic self-duality, which can be soldered. It provides
a clean algorithm, inherited from our constraint conversion
program[19], for fusing the opposite nature of these symme-
tries by taking into account interference effects. Therefore,
two models carrying the representation of such symmetries
being otherwise completely independent, can be fused by
this technique, irrespective of dimensional considerations.
Indeed while this technique is applied for the quantum me-
chanical harmonic oscillator[20] it may also be used to in-
vestigate the cases of electromagnetic dualities in distinct di-
mension, including the new and interesting instance of non
commutative manifolds. Particular instances of the scalar
field theory in two dimensions, the Maxwell theory in four
dimensions or the Chern-Simons theory in three dimensions
and massive p-form self-duality in arbitrary dimensions are
some of the exemples to be discussed here.

The list of applications is indeed quite extensive but I
would like to emphasize the following four contributions

that brought original solutions to old problems. In [2] a pro-
posal for mass generation as a consequence of interference
of massless modes was given that corroborates an old con-
jecture by Jackiw[21]. It proposes an alternative mechanism
for the dynamical mass generation known as Schwinger
mechanism as a consequence of left–right interaction. In the
same spirit, a proposal for the physical origin of the topo-
logical mass in the 3D Maxwell-Chern-Simon model was
given in [9] as a consequence of the interference between
self-dual and anti self-dual modes of a 3D analogue of chiral
bosons. A dispute, lasting more than ten years, regarding the
proper way to formulate the dynamics of 2D chiral bosons
has been settled in [5] using the dual projection version of
the soldering formalism. Finally, I would like to mention
the resolution of the equivalence between the non-abelian
self-dual model and the Yang-Mills-Chern-Simons model,
for any value of the coupling constantg, in [12]. Previous at-
tempts, based on the master action approach, were restricted
to g →∞ limit.

After discussing the general aspects of the method we
shall focus on a few applications. Although our initial
study in soldering was to investigate the possibility of fusing
different chiralities of two independent systems displaying
truncated diffeomorphism into a 2D gravity model, we shall
concentrate on two different lines of developments. One is
to explore the intimate connection between soldering and
duality to study the phenomenon of topological mass gener-
ation. The other is to study the possibility of simultaneously
considering the soldering and bosonization, in different di-
mensions. In the context of the last, the technique is ini-
tially developed to solder the dual aspects of some symmetry
following from the bosonization of two distinct fermionic
models, thereby leading to new results. Exploiting this tech-
nique, the two dimensional chiral determinants with oppo-
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site chirality is soldered to reproduce either the usual gauge
invariant Schwinger model or the Thirring model. The ex-
tension of the analysis forD ≥ 2 bosonization has also been
considered and two independent three dimensional massive
Thirring models with same coupling but opposite mass sig-
natures, in the long wavelength limit, combined by the pro-
cess of bosonization and soldering to yield an effective mas-
sive Maxwell theory. The current bosonization formulas are
given, both in the original independent formulation as well
as the effective theory, and shown to yield consistent results
for the correlation functions. Similar features also hold for
quantum electrodynamics in three dimensions.

An interpretation of the soldering process has also been
offered that discloses the whole process as a canonical trans-
formation, however in the Lagrangian side[22]. We coined
it dual projection. This new interpretation has provided us
with some practical applications and used to study some
controversial issues to date, such as the way to properly cou-
ple chiral matter to gauge and gravitational backgrounds[23]
or to establish to equivalence between different formulations
of chiral modes besides providing new interpretation to their
field constituintes. It also offered the opportunity to treat the
electromagnetic duality groups under this technique and to
disclose their group structure dimensional dependence, both
for massless and massive fields and to propose a new phys-
ical interpretation for the phenomenon[6]. It also opens up
the possibility to deal with electromagnetic duality for arbi-
trary p-form theory in different dimensions. In a different
line of investigation, the formalism was also used to study
the duality equivalence of related models, including nonlin-
ear effects, in distinct dimensions and couplings to different
matters [9,11-17].

2 General Aspects of Soldering and
Canonical Transformations

The basic idea is to raise a global Noether symmetry of the
self and anti-self dual constituents into a local one, but for
an effective composite system, consisting of the dual com-
ponents and an interference term that defines the soldered
action. Here we adopt an iterative Noether procedure to lift
the global symmetries. Assume the symmetries are being
described by the local actions

S
(0)
± (ϕη

±) =
∫

L
(0)
± (ϕη

±) dt (1)

invariant under a global multi-parametric transformation
δϕη

± = αη where the suffix (0) indicates the iterative nature
of the analysis. Hereη represents the tensorial character of
the basic fields and, for simplicity, will be dropped from now
on. In general, under local transformations these actions
will not remain invariant, and Noether counter terms be-
come necessary in order to reestablish the invariance. These
counter terms contain, apart from the original fields, appro-
priate contributions of auxiliary fieldsW (N). Thus, after N
iterations we obtain,

S±(ϕ±)(0) → S±(ϕ±)(N) = S±(ϕ±)(N−1) −W (N)J
(N)
± (2)

whereJ
(N)
± are the Noether currents. For the individual self

and anti-self dual systems this iterative gauging procedure
will not produce gauge invariant systems. However, for the
composite system this procedure will, eventually, lead to an
effective action of the form,

S(ϕ±,W )(N) = S+(ϕ+)(N−1)+S−(ϕ−)(N−1)

+ W (N−1)
(
J

(N−1)
+ + J

(N−1)
−

)
(3)

which turns out to be invariant under the original transfor-
mations. The auxiliary fieldsW (N) are then eliminated in
favor of the other variables. The final effective action then
becomes a function of the original variables only. In this
form the effective action is no longer a function of the indi-
vidual fields but of some composite asφ = ϕ+ − ϕ− if the
fields belong to the algebra of some group orφ = ϕ+ · ϕ−
if they are group variables,

S(ϕ+, ϕ−,W )(N)|W=f(ϕ±) → Seff (ϕ±) = Seff (φ) (4)

so that,δSeff = 0. This is our cherished effective action
which is a result of the soldering or the fusion of the orig-
inal actions. Also, since the auxiliary fields are used for
soldering only, they will be calledsoldering fields.

3 Soldering, dynamical mass genera-
tion and interference

Here we discuss the applications of the soldering technique
to the problems of quantum field theory where the full
power of this approach is manifested. In quantum mechan-
ics see the original papers[20] and applications[24]. We dis-
cuss first two-dimensional field theory where the use of the
bosonization technique provides us with exact results. The
extension to the non Abelian example and a new look at the
Polyakov-Weigmann identity[2], as well as the result of dif-
ferent regularization schemes, known to exist in the chiral
Schwinger models leading to distinct categorization of sec-
ond class constraints, has been proposed[7].

Three dimensional models are considered in the sequel.
Although bosonization is not exact in these dimensions, yet
some expressions are known in particular limiting condi-
tions. Our interest is basically confined to the long wave-
length limit where local expressions are available. Under
these conditions the massive Thirring model or quantum
electrodynamics bosonize to self dual models. Soldering of
such models is carried out to get new models. The soldering
of models with different coupling parameters is given. Three
dimensional gravity has been examined in the literature
where the soldering of linearized Hilbert-Einstein actions
with Chern-Simons terms is studied[10]. Some attention has
also been devoted to a study of W gravity models[15]. The
W2 andW3 cases, which yields exact soldering, were dis-
cussed in details. Finally the case of higher conformal spins
Wn(n > 2), which is developed within some perturbative
scheme since soldering is not exact in this instance, was con-
sidered. We will not give details of all these exemples in this
review.
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3.1 Fermion Determinants and Bosonization
in Two Dimensions.

Bosonization is a powerful technique that maps a fermionic
theory into its bosonic counterpart. It was fully explored
in the context of two dimensions[25] and later extended to
higher dimensions [26-29]. Its importance lies in the fact
that it includes quantum effects already at the classical level.
Consequently, different aspects and manifestations of quan-
tum phenomena may be investigated directly, that would
otherwise be highly nontrivial in the fermionic language.

The basic notions and ideas are first introduced in the
context of two dimensions where bosonization is known to
yield exact results. Consider an explicit one loop calculation
following Schwinger’s point splitting method[30] which is
known to yield[31],

W+[ω] = −i log det(i∂/ + eA/±) (5)

=
∫

d2x
(
∂+ω∂−ω + 2 eA±∂∓ω + a± e2 A+A−

)

whereω = ϕ, ρ. Here light cone metric is used and the
regularization ambiguity is manifested througha±. In the
Hamiltonian approach their values define a second-class
constrained systems with two and four constraints.

Observe that different scalar fieldsϕ andρ are used to
emphasize that the fermionic chiral components are uncor-
related. It is the soldering that abstracts a meaningful combi-
nation, this being essentially the simultaneous gauging of a
global symmetry of the individual chiral components. Con-
sider, therefore, the gauging of the following global symme-
try, δϕ = δρ = α, δA± = 0. The variations in the effective
actions (5) are found to be,

δW±[η] =
∫

d2x ∂∓α J±(η) (6)

where the currents are defined as,J±(η) = 1
2π (∂±η +

e A±); η = ϕ, ρ. Next we introduce the soldering fieldB±
so that,

W
(1)
± [η] = W±[η]−

∫
d2xB∓ J±(η) (7)

Then it is possible to define a modified action,

W [ϕ, ρ] = W
(1)
+ [ϕ] + W

(1)
− [ρ] +

1
2π

∫
d2xB+ B− (8)

which is invariant under an extended set of transformations
that includes the matter fields together with,δB± = ∂±α.
Observe that the soldering field transforms as a vector po-
tential. Since it is an auxiliary field, it can be eliminated
from (8). This will naturally solder the otherwise indepen-
dent chiral components. The relevant solution is found to
be,B± = 2 J±. Inserting this solution in (8), we obtain,

W [Φ] =
∫

d2x {(∂+Φ∂−Φ + 2eA+∂−Φ− 2eA−∂+Φ)

+ (a+ + a− − 2) e2 A+ A−
}

(9)

where,Φ = ϕ − ρ. The action is no longer expressed in
terms of the different scalarsϕ andρ, but only on their spe-
cific combination. This combination is gauge invariant.

Let us digress on the significance of the findings. At the
classical fermionic version, the chiral Lagrangians are com-
pletely independent. Bosonizing them includes quantum ef-
fects, but still there is no correlation. The soldering mecha-
nism exploits the symmetries of the independent actions to
precisely combine them to yield a single action. Note that
the soldering works with the bosonized expressions. Thus
the soldered action obtained in this fashion corresponds to a
new quantum theory.

We now show that different choices for the parameters
a+ anda− lead to well known models. To do this consider
the variation of (9) under the conventional gauge transfor-
mations,δϕ = δρ = α andδA± = ∂±α. It is easy to see
that the expression in parenthesis is gauge invariant. Con-
sequently a gauge invariant structure forW is obtained pro-
vided,a+ +a−− 2 = 0. By functionally integrating out the
Φ field from (9), we obtain,

W [A±] =
e2

4π

∫
d2x{A+

∂−
∂+

A++A−
∂+

∂−
A−−2A+A−} (10)

which is the familiar structure for the gauge invariant action
expressed in terms of the potentials. The opposite chiral-
ities of the two independent fermionic theories have been
soldered to yield a gauge invariant action.

Some interesting observations are possible concerning
the regularization ambiguity manifested by the parameters
a+ anda−. Since a single equation cannot fix both the pa-
rameters, it might appear that there is a whole one param-
eter class of solutions for the chiral actions that combine
to yield the vector gauge invariant action. Indeed, with-
out any further input, this is the only conclusion. However,
Bose symmetry imposes a crucial restriction[32]. This sym-
metry plays an essential part that complements gauge in-
variance. In the present case, this symmetry corresponds
to the left-right (or + –) symmetry in (5), thereby requir-
ing a+ = a− = 1. This has important consequences if a
Maxwell term was included from the beginning to impart
dynamics. Then the soldering takes place among two chi-
ral Schwinger models[33] having opposite chiralities to re-
produce the usual Schwinger model[30]. It is known that
the chiral models satisfy unitarity provideda± ≥ 1 and the
spectrum consists of a vector boson with mass,m2 = e2a2

a−1
and a massless chiral boson. The values of the parame-
ters obtained here just saturate the bound. For the minimal
parametrization, the mass of the vector boson becomes in-
finite so that it goes out of the spectrum. Thus the solder-
ing mechanism shows how the massless modes in the chiral
Schwinger models are fused to generate the massive mode
of the Schwinger model. It may be observed that the sol-
dering process can be carried through for the non Abelian
theory as well, and a relation analogous to (9) is obtained.

Naively it may appear that the soldering of the left and
right chiralities to obtain a gauge invariant result is a sim-
ple issue since adding the classical LagrangiansψD/+ψ and
ψD/−ψ, with identical fermion species, just yields the usual
vector LagrangianψD/ψ. The quantum considerations are,
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however, much involved. The chiral determinants, as they
occur, cannot be even defined since the kernels map from
one chirality to the other so that there is no well defined
eigenvalue problem. This is circumvented by working with
ψ(i∂/ + eA/±)ψ, that satisfy an eigenvalue equation, from
which their determinants may be computed. But now a sim-
ple addition of the classical Lagrangians does not reproduce
the expected gauge invariant form. At this juncture, the sol-
dering process becomes important. It systematically com-
bined the quantized (bosonized) expressions for the oppo-
site chiral components ofdifferent fermionic species. The
importance of this will become more transparent when the
three dimensional case is discussed.

At this point it is interesting to examine the impact that
different choices of regularizations may have over our result.
There are two possible situations left. Here we examine the
present regularization and show that different choices for the
parametersa± in (9) lead to the Thirring model. We have
examined an alternative regularization prescription leading
to a diverse constraint structure for the Hamiltonian descrip-
tion of the model[7]. Indeed it is precisely when the mass
term exists (i.e., a+ + a− − 2 6= 0), that (9) represents the
Thirring model. Consequently, this parametrization comple-
ments that used previously to obtain the vector gauge invari-
ant structure. it is now easy to see that the term in paren-
theses in (9) corresponds toψ(i∂/+ eA/)ψ so that integrating
out the auxiliaryAµ field yields,

L = ψi∂/ψ − g

2
(ψγµψ)2 ; g =

4π

a+ + a− − 2
(11)

which is just the Lagrangian for the usual Thirring model.
It is known[34] that this model is meaningful provided the
coupling parameter satisfies the conditiong > −π, so that,
| a+ + a− |> 2. This condition complements the condition
found earlier.

We have therefore explicitly derived expressions for the
chiral determinants (5) which simultaneously preserve the
factorization property and gauge invariance of the vector de-
terminant. It was also perceived that the naive way of inter-
preting the chiral determinants asW [A+, 0] or W [0, A−]
led to the supposed incompatibility of factorization with
gauge invariance. Perturbatively we show the lacking
of crossing graphs. Classically these graphs do vanish
(P+P− = 0) so that it becomes evident that this incompat-
ibility originates from a lack of properly accounting for the
quantum effects. It is possible to interpret this effect, as we
will now show, as a typical quantum mechanical interference
phenomenon, closely paralleling the analysis in Young’s
double slit experiment. We also provide a new interpreta-
tion for the Polyakov-Wiegman[35] identity. Rewriting (10)
in Fourier space as

W [A±] = −N

2

∫
dk

{
A∗+

k−
k+

A+ + A∗−
k+

k−
A− − 2A∗+A−

}

= −N

2

∫
dk |

√
k−
k+

A+ −
√

k+

k−
A− |2 (12)

immediately displays the typical quantum mechanical inter-
ference phenomenon, in close analogy to the optical exam-

ple. The dynamically generated mass arises from the in-
terference between these movers, thereby preserving gauge
invariance. Setting eitherA+ or A− to vanish, destroys the
quantum effect, very much like closing one slit in the optical
experiment destroys the interference pattern. Although this
analysis was done for the Abelian theory, it is straightfor-
ward to perceive that the effective action for a non Abelian
theory can also be expressed in the form of an absolute
square (12), except that there will be a repetition of copies
depending on the group index. This happens because only
the two-legs graph has an ultraviolet divergence, leading to
the interference (mass) term. The higher legs graphs are all
finite, and satisfy the naive factorization property.

It is now simple to see that (12) represents an abelian-
ized version of the Polyakov – Wiegman identity by mak-
ing a familiar change of variables,A+ = i

eU−1∂+U ;
A− = i

eV ∂−V −1 where, in the Abelian case, the matri-
cesU andV are given as,U = exp{iϕ} ; V = exp{−iρ}
; UV = exp{iΦ} with Φ being the gauge invariant soldered
field. It is possible to recast (12), in the coordinate space, as

W [UV ]=W [U ]+W [V ]+
∫

d2x
(
U−1∂+U

)(
V ∂−V −1

)
(13)

which is the Polyakov-Wiegman identity, satisfying gauge
invariance. The result can be extended to the non Abelian
case since, as already mentioned, the nontrivial interfer-
ence term originates from the two-legs graph which has
been taken into account. It is now relevant to point out
that the important crossing piece in either (12) or (13) is
conventionally[35, 25] interpreted as a contact (mass) term,
or a counter term, necessary to restore gauge invariance. In
our analysis, on the contrary, this term was uniquely speci-
fied from the interference between the left and right movers
in one space dimension, automatically providing gauge in-
variance. This is an important point of distinction.

3.2 Self-Dual Models and Bosonization in
Three Dimensions: The massive Thirring
model.

While the bosonization in three dimensions is not exact, nev-
ertheless, for massive fermionic models in the large mass or,
equivalently, the long wavelength limit, well defined local
expressions are known to exist[27, 28]. Interestingly, these
expressions exhibit a self or an anti self dual symmetry that
is dictated by the signature of the fermion mass. Clearly,
therefore, this symmetry simulates the dual aspects of the
left and right chiral symmetry in the two dimensional exam-
ple, thereby providing a novel testing ground for our ideas.
Indeed, two distinct massive Thirring models with opposite
mass signatures, are soldered to yield a massive Maxwell
theory. This result is vindicated by a direct comparison of
the current correlation functions obtained before and after
the soldering process.

To effect the soldering consider the bosonization of the
massive Thirring model in three dimensions[27, 28] that is
therefore reviewed briefly. The relevant partition functional,
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in the Minkowski metric, is given by,

Z=
∫

DψDψ e
i
∫

d3x
[
ψ(i∂/+m)ψ−λ2

2 jµjµ
]

(14)

wherejµ = ψγµψ is the fermionic current. As usual, the
four fermion interaction can be eliminated by introducing
an auxiliary field,

Z=
∫

DψDψDfµ ei
∫

d3x[ψ(i∂/+m+λf/)ψ+ 1
2 fµfµ] (15)

Contrary to the two dimensional models, the fermion in-
tegration cannot be done exactly. Under large mass limit,
however, this integration is possible leading to closed and
local expressions[29]. The leading term in this limit was cal-
culated by various means[36] and shown to yield the Chern-
Simons three form. Thus the partition functional for the
massive Thirring model in the large mass limit is given by,

Z=
∫

Dfµ e
i
∫

d3x
(

λ2
8π

m
|m| εµνλfµ∂νfλ+ 1

2 fµfµ
)

(16)

where the signature of the topological terms is dictated by
the corresponding signature of the fermionic mass term. The
Lagrangian in the above partition function defines a self
dual model introduced earlier[42]. The massive Thirring
model, in the relevant limit, therefore bosonizes to a self
dual model. It is useful to clarify the meaning of this
self duality. The equation of motion is given by,fµ =
−λ2

4π
m
|m|εµνλ∂νfλ from which the following the relations

∂µfµ = 0 and
(
∂µ∂µ + M2

)
fν = 0; M = 4π

λ2 may be
easily verified. A field dual tofµ is defined as,∗fµ =
1
M εµνλ∂νfλ where the mass parameterM is inserted for
dimensional reasons. Repeating the dual operation, we find,
∗(∗fµ) = 1

M εµνλ∂ν ∗fλ = fµ thereby validating the def-
inition of the dual field. Combining these results we con-
clude that,fµ = − m

|m|
∗fµ. Hence, depending on the sign of

the fermion mass term, the bosonic theory corresponds to a
self-dual or an anti self-dual model. Likewise, the Thirring
current bosonizes to the topological current

jµ =
λ

4π

m

| m |εµνρ∂
νfρ (17)

The close connection with the two dimensional analysis
is now evident. There the starting point was to consider two
distinct fermionic theories with opposite chiralities. In the
present instance, the analogous thing is to take two indepen-
dent Thirring models with identical coupling strengths but
opposite mass signatures,

L+ = ψ (i∂/ + m)ψ − λ2

2
(
ψγµψ

)2

L− = ξ (i∂/−m′) ξ − λ2

2
(
ξγµξ

)2
(18)

Note that only the relative sign between the mass parameters
is important, but their magnitudes are different. From now
on it is also assumed that bothm andm′ are positive. Then

the bosonized Lagrangians are, respectively,

L+ =
1

2M
εµνλfµ∂νfλ +

1
2
fµfµ

L− = − 1
2M

εµνλgµ∂νgλ +
1
2
gµgµ (19)

wherefµ andgµ are the distinct bosonic vector fields. The
current bosonization formulae in the two cases are given by

j+
µ = ψγµψ =

λ

4π
εµνρ∂

νfρ

j−µ = ξγµξ = − λ

4π
εµνρ∂

νgρ (20)

It is now possible to effect the soldering following the
general prescription detailed in the last section. The final
result, after elimination of auxiliary soldering fields, is

LS = L+ + L− − 1
8

(
J+

ρσ(f) + J−ρσ(g)
)2

= −1
4
FµνFµν +

M2

2
AµAµ (21)

where,Aµ = 1√
2M

(gµ − fµ) is the usual field tensor ex-
pressed in terms of the basic entityAµ. The soldering mech-
anism has precisely fused the self and anti self dual symme-
tries to yield a massive Maxwell.

We conclude, therefore, that two massive Thirring mod-
els with opposite mass signatures, in the long wavelength
limit, combine by the process of bosonization and solder-
ing, to a massive Maxwell theory. The bosonization of the
composite current, obtained by adding the separate contribu-
tions from the two models, is given in terms of a topological
current of the massive vector theory. These results cannot
be obtained by a straightforward application of conventional
bosonization techniques. The massive modes in the original
Thirring models are manifested in the two modes of (21) so
that there is a proper matching in the degrees of freedom.

4 Electromagnetic Duality in Differ-
ent Dimensions

4.1 Duality Groups.

The problem with the space-time dimensionality is a cru-
cial one that has obscured the understanding of duality with
technicalities and misconceptions. The distinction among
the different even dimensions is manifest by the following
double duality relation,

∗∗F =
{

+F, if D = 4k + 2
−F, if D = 4k (22)

where∗ denotes the usual Hodge operation andF is a D
2 -

form. The concept of self duality seems to be well de-
fined only in twice odd dimensions, and not present in the
twice even cases and (22) apparently leads to separate con-
sequences regarding the duality groups in these cases. The
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invariance of the actions in differentD-dimensions is pre-
served by the following groups,

Gd =
{

Z2, if D = 4k + 2
SO(2), if D = 4k (23)

which are called the “duality groups”. The duality oper-
ation is characterized by a one-parameter SO(2) group of
symmetry in D=4k dimensions, while for D=4k+2 dimen-
sions it is manifest by a discreteZ2 operation. Notice that
only the 4 dimensional Maxwell theory and its 4k extensions
would possess duality as a symmetry, while for the 2 dimen-
sional scalar theory and its 4k+2 extensions duality is not
even definable. We shall discuss the physical origin of this
dichotomy.

A solution for the problem came with the recognition
of a 2-dimensional internal structure hidden in the space of
potentials[37, 38, 39]. Recently this author[6] has developed
a systematic method for obtaining and investigating differ-
ent aspects of duality symmetric actions that embraces all di-
mensions. A redefinition of the fields in the first-order form
of the action naturally discloses the 2-dimensional internal
structure hidden into the theory. This procedure produces
two distinct classes of dual theories characterized by the op-
posite signatures of the (2x2) matrices in the internal space.
These actions correspond to self dual and anti-selfdual rep-
resentations of the original theory. Indeed the dichotomy
(23) seems to be of much deeper physical origin, since it
attributes different group structures to distinct dimensions.

The dual projection operation, that systematically dis-
closes the internal duality space of any theory in D-
dimensions is quickly discussed. The distinction of the du-
ality groups is manifest, in the dual projection approach by
the following construction. The first-order action for a free
field theory is, in general, given as

L = Π · Φ̇− 1
2
Π ·Π− 1

2
∂Φ · ∂Π (24)

with Π andΦ being generic free tensor fields in D-1 dimen-
sions and∂ an appropriate differential operator. For visual
simplicity we omit all tensor and space-time indices describ-
ing the fields, unless a specific example is considered. The
parity of∂ has a particularly interesting dependence with the
dimensionality,

P (∂) =
{

+1, if D = 4k
−1, if D = 4k + 2 (25)

where parity is defined as,
∫

Φ · ∂Ψ = P (∂)
∫

∂Φ ·Ψ (26)

Take for instance the specific cases of 2 and 4 dimensions
where∂ is defined as,

∂ =
{

∂x, if D = 2
εkmn∂n, ifD = 4 (27)

which we recognize as odd and even parity respectively. The
internal space is disclosed by a suitable field redefinition as

(Φ , Π) → (A+ , A−) that is dimensionally dependent,

Φ → A+ + A−
Π → η (∂A+ − ∂A−) (28)

with η = ± defining the signature of the duality symmetric
action. The effect of the dual projection (28) into the first
order action is manifest as,

L = η
(
Ȧασαβ

3 ∂Aβ + Ȧαεαβ∂Aβ

)
− ∂Aα · ∂Aα (29)

We can appreciate the impact of the dimensionality over the
structure of the internal space, and the role of the operator’s
parity in determining the appropriate group for each dimen-
sion. For twice odd dimension the dual projection produces
the diagonalization of the first-order action into chiral ac-
tions, while for twice even dimensions, the result is either a
self or an anti-selfdual action, depending on the sign ofη,

L =
{

ηȦασαβ
3 ∂Aβ − ∂Aα · ∂Aα, if D = 4k + 2

ηȦαεαβ∂Aβ − ∂Aα · ∂Aα, ifD = 4k
(30)

By inspection on the above actions one finds that while the
first is duality symmetric under the discreteZ2, the second is
invariant under the continuous one-parameter groupSO(2).
This is in accord with general discussion based on algebraic
methods[40]. In fact, using the choice of operators in (27)
we easily find that the D=2 case describes a right and a left
Floreanini-Jackiw chiral actions[41] if we identifyΦ with a
scalar field,

L = ηȦασαβ
3 A′β −A′α ·A′α (31)

The second case, on the other hand, describes either selfd-
ual or anti-selfdual Schwarz-Sen actions, according to the
signature ofη,

L = ηϕ̇α
k εαβBβ

k −Bα
k ·Bα

k (32)

if we identify Φ with a vector field,Φ → ϕα
k and∂Φ →

εkmn∂mϕα
n = Bα

k , with Bα
k being the magnetic field.

In summary the above analysis clearly shows that the
physical origin for the dimensional dependence of the elec-
tromagnetic duality group lies in the parity dependence on
dimensionality of a curl-operator naturally defined in the so-
lution of the Gauss law.

4.2 Duality Equivalence: Noether Embed-
ding.

Using the well known equivalence between the self-dual[42]
and the topologically massive models[36] proved by Deser
and Jackiw[43] through the master action approach, a corre-
spondence has been established between the partition func-
tions for the MTM and the Maxwell-Chern-Simons (MCS)
theories. The situation for the case of fermions carrying non-
Abelian charges, however, is less understood due to a lack
of equivalence between these vectorial models, which has
only been established for the weak coupling regime[44]. As
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critically observed in [45], the use of master actions in this
situation is ineffective for establishing dual equivalences.

We propose a new technique to perform duality map-
pings for vectorial models in any dimensions that is alterna-
tive to the master action approach. It is based on the tradi-
tional idea of a local lifting of a global symmetry and may
be realized by an iterative embedding of Noether counter
terms. This technique was originally explored in the context
of the soldering formalism[2, 3] and is exploited here since it
seems to be the most appropriate technique for non-Abelian
generalization of the dual mapping concept.

Using the gauge embedding idea, we clearly show the
dual equivalence between the non-Abelian self-dual and the
Yang-Mills-Chern-Simons models, extending the proof pro-
posed by Deser and Jackiw in the Abelian domain. These re-
sults have consequences for the bosonization identities from
the massive Thirring model into the topologically massive
model, which are considered here, and also allows for the
extension of the fusion of the self-dual massive modes[3]
for the non-Abelian case[12]. As mentioned in the introduc-
tion this has the advantage of possessing a straightforward
extension to the non-Abelian case for all values of the cou-
pling constant.

The non-Abelian version of the vector self-dual model
(16), which is our main concern, is given by

Sχ=
∫

d3x tr

[
−1

2
FµF

µ+
χ

4m
εµνλ

(
FµνFλ− 2

3
FµFνFλ

)]
(33)

whereFµ = F a
µ ta, is a vector field taking values in the

Lie algebra of a symmetry groupG andta are the matrices
representing the underlying non Abelian gauge group with
a = 1, . . . , dim G. The field-strength tensor and the covari-
ant derivative have their usual meaning.

Using the master action approach, the action (33) has
been shown to be equivalent to the gauge invariant Yang-
Mills-Chern-Simons (YMCS) theoryS

S=
∫

d3xtr

[
1

4m2
FµνFµν +

χ

4m
εµνλ

(
FµνFλ− 2

3
FµFνFλ

)]
(34)

only in the weak coupling limitg → 0 so that the Yang-Mills
term effectively vanishes. Here we are using the bosoniza-
tion nomenclature that relates the Thirring model coupling
constantg2 with the inverse mass of the vector model. To
study the dual equivalence of (33) and (34) for all coupling
regimes, a problem open for more than twenty years, and the
consequences over the bosonization program is main contri-
bution of this work.

We are now in position to study the non-Abelian version
of the vector self-dual model whose dynamics is given by the
action (33). To this end we discuss first in which sense this
model possess the self-dual property. Following the same
reasoning as in the Abelian case, we define the duality oper-
ation as,

?Fλ ≡
[ χ

m
εµνλ (∂µ + Fµ)

]
Fν , (35)

where the operator inside the square brackets in the right-
hand side acts on the basic fieldFν defining?Fλ as the dual

of Fν . Repeating this operation, and using the equations of
motion obtained by varying (33) with respect toFλ

Fλ =
χ

2m
εµνλ Fµν , (36)

we find,? (?Fµ) = Fµ thus justifying our terminology and
showing the self-dual character of this model.

Likewise the Abelian case, to proceed with the dualiza-
tion, we begin with the zeroth-iterated action (33) whose
variation with respect toFµ is given by

δSχ =
∫

d3x tr [JµδFµ] , (37)

with the Noether currents being defined as,

Jµ = −Fµ +
χ

2m
εµνλ Fµν . (38)

Our goal is to obtain a non-Abelian gauge invariant theory
from the above non-invariant self-dual model. To this end
we define the first-iterated action by a coupling between the
currentsJµ and an auxiliary fieldBµ,

S(1) = Sχ −
∫

d3x tr [ Jµ Bµ ] , (39)

and whose variation is

δS(1)=
∫

d3x tr

[
−1

2
δ(JµJµ)− δ(JµBµ)− JµδBµ

]
, (40)

where we have used the following transformation rule for
the gauging field,δFµ = −δBµ − δJµ. This prompt us to
define the following second iterated action,

S(2)=Sχ +
∫

d3x tr

[
1
2

Jµ Jµ − Fµ Bµ

]

=
∫

d3x tr

[
χ

4m
εµνλ

(
FµνFλ− 2

3
FµFνFλ

)
+

1
2
BµBµ

]

which is gauge invariant after noticing that this transfor-
mation rule fixes theBµ field asBµ = − χ

2m εµνλ F νλ.
Thanks to the structure of the current (38), this action can
finally be put in a more familiar presentation as the gauge
invariant theory,S(2) → SY MCS the Yang-Mills-Chern-
Simons theory defined in (34). This proves that just as in
the Abelian case, the non-Abelian self-dual action defined
in (33) is physically equivalent to (34) for all regimes of
the coupling constant. In the process we have also shown
the duality transformation that correctly defines the inherent
self-duality property of action (33).

In summary, a general method has been developed that
establishes dual equivalence between self-dual and topologi-
cally massive theories based on the idea of gauge embedding
over second-class constrained systems. The equivalence has
been established using an adaptation of the iterative Noether
procedure both for Abelian and non-Abelian self-dual mod-
els, including the cases with coupling to dynamical charged
fermions.
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