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We explain how the string spectrum in flat space and plane waves arises from the largeN limit of U(N) N = 4
super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We also
describe some other aspects of string propagation on plane wave backgrounds. This talk based on [1].

1 Introduction

The fact that largeN gauge theories have a string theory de-
scription was believed for a long time [2] . These strings live
in more than four dimensions [3] . One of the surprising as-
pects of the AdS/CFT correspondence [4-7] is the fact that
for N = 4 super Yang Mills these strings move in ten di-
mensions and are the usual strings of type IIB string theory.
The radius of curvature of the ten dimensional space goes as
R/ls ∼ (g2

Y MN)1/4. The spectrum of strings onAdS5×S5

corresponds to the spectrum of single trace operators in the
Yang Mills theory. The perturbative string spectrum is not
known exactly for general values of the ’t Hooft coupling,
but it is certainly known for large values of the ’t Hooft
coupling where we have the string spectrum in flat space.
In these notes we will explain how to reproduce this spec-
trum from the gauge theory point of view. In fact we will
be able to do slightly better than reproducing the flat space
spectrum. We will reproduce the spectrum on a plane wave.
These plane waves incorporate, in a precise sense, the first
correction to the flat space result for certain states.

The basic idea is the following. We consider chiral pri-
mary operators such asTr[ZJ ] with largeJ . This state cor-
responds to a graviton with large momentump+. Then we
consider replacing some of theZs in this operator by other
fields, such asφ, one of the other transverse scalars. The po-
sition ofφ inside the operator will matter since we are in the
planar limit. When we include interactionsφ can start shift-
ing position inside the operator. This motion ofφ among
theZs is described by a field in 1+1 dimensions. We then
identify this field with the field corresponding to one of the
transverse scalars of a string in light cone gauge. This can be
shown by summing a subset of the Yang Mills Feynman di-
agrams. We will present a heuristic argument for why other
diagrams are not important.

Since these results amount to a “derivation” of the string
spectrum at large ’t Hooft coupling from the gauge theory,
it is quite plausible that by thinking along the lines sketched
in this paper one could find the string theory for other cases,
most interestingly cases where the string dual is not known

(such as pure non-supersymmetric Yang Mills).
This paper is organized as follows. In section two we

describe various aspects of plane waves. We discuss parti-
cle and string propagation on a plane wave as well as their
symmetries. In section three we describe how plane waves
arise from Penrose limits of various spacetimes, concentrat-
ing mostly onAdS5 × S5. In section 4 we describe the
computation of the spectrum from theN = 4 Yang Mills
point of view.

2 Plane waves

We will be interested in the following plane wave solution
of IIB supergravity [8]

ds2 = −4dx+dx− − y2(dx+)2 + dyidyi (1)

We also have a constant field strength

F = dx+(dy1dy2dy3dy4 + dy5dy6dy7dy8) (2)

String propagation on this background can be solved exactly.
by choosing light cone gauge in the Green-Schwarz action
[9, 10]. The lightcone action becomes

S =
1

2πα′

∫
dt

∫ πα′|p−|

0

dσ

[
1
2
ẏ2 − 1

2
y′2

− 1
2
µ2y2 + iS(6 ∂ + µI)S

]
(3)

whereI = Γ1234 andS is a Majorana spinor on the world-
sheet and a positive chirality SO(8) spinor under rotations in
the eight transverse directions. We quantize this action by
expanding all fields in Fourier modes on the circle labeled
by σ. For each Fourier mode we get a harmonic oscillator
(bosonic or fermionic depending on the field). Then the light
cone Hamiltonian is

2p− = −p+ = Hlc =
+∞∑

n=−∞
Nn

√
µ2 +

n2

(α′|p−|/2)2
(4)
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Heren is the label of the fourier mode,n > 0 label left
movers andn < 0 right movers.Nn denotes the total occu-
pation number of that mode, including bosons and fermions.
Note that the ground state energy of bosonic oscillators is
canceled by that of the fermionic oscillators. The constraint
on the momentum in the sigma direction reads

P =
∞∑

n=−∞
nNn = 0 (5)

In the limit thatµ is very small,µα′|p−| ¿ 1, we re-
cover the flat space spectrum. It is also interesting to con-
sider the opposite limit, where

µα′p+ À 1 (6)

This limit corresponds to strong tidal forces on the strings.
It corresponds to strong curvatures. In this limit all the low
lying string oscillator modes have almost the same energy.
This limit corresponds to a highly curved background with
RR fields. In fact we will later see that the appearance of
a large number of light modes is expected from the Yang-
Mills theory.

3 Plane waves as Penrose limits.

Penrose showed that plane waves can be obtained as limits
of various backgrounds [11]. Here we first consider a spe-
cific case and then we will say something about the general
case.

3.1 Type IIB plane wave fromAdS5 × S5

In this subsection we obtain the maximally supersymmetric
plane wave of type IIB string theory as a limit ofAdS5×S5.

The idea is to consider the trajectory of a particle that is
moving very fast along theS5 and to focus on the geometry
that this particle sees. We start with theAdS5 × S5 metric
written as

ds2 = R2
[−dt2 cosh2 ρ + dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 θ

+ dθ2 + sin2 θdΩ′23
]

(7)

We want to consider a particle moving along theψ direction
and sitting atρ = 0 andθ = 0. We will focus on the geom-
etry near this trajectory. We can do this systematically by
introducing coordinates̃x± = t±ψ

2 and then performing the
rescaling

x+ = x̃+ , x− = R2x̃− , ρ =
r

R
,

θ =
y

R
, R →∞ (8)

In this limit the metric (7) becomes

ds2 = −4dx+dx− − (~r 2 + ~y 2)(dx+)2 + d~y 2 + d~r 2 (9)

where~y and~r parametrize points onR4. We can also see
that only the components ofF with a plus index survive the
limit. The mass parameterµ can be introduced by rescaling
(8) x− → x−/µ andx+ → µx+. These solutions where
studied in [8].

It will be convenient for us to understand how the energy
and angular momentum alongψ scale in the limit (8) . The
energy in global coordinates inAdS is given byE = i∂t

and the angular momentum byJ = −i∂ψ. This angular
momentum generator can be thought of as the generator that
rotates the 56 plane ofR6. In terms of the dual CFT these
are the energy and R-charge of a state of the field theory on
S3 × R where theS3 has unit radius. Alternatively, we can
say thatE = ∆ is the conformal dimension of an operator
onR4. We find that

2p−=−p+ = i∂x+ = i∂x̃+ = i(∂t + ∂ψ) = ∆− J

2p+ =−p− = − p̃−
R2 = 1

R2 i∂x̃− = 1
R2 i(∂t − ∂ψ)= ∆+J

R2

(10)

Configurations with fixed non zerop− in the limit (8)
correspond to states inAdS with large angular momentum
J ∼ R2 ∼ (gN)1/2. It is useful also to rewrite (4) in terms
of the Yang Mills parameters. Then we find that the contri-
bution of each oscillator to∆− J is

(∆− J)n = wn =

√
1 +

4πgNn2

J2
(11)

Notice thatgN/J2 remains fixed in thegN →∞ limit that
we are taking.

When we perform the rescalings (8) we can perform the
limit in two ways. If we want to get the plane wave with fi-
nite string coupling then we take theN →∞ limit keeping
the string couplingg fixed and we focus on operators with
J ∼ N1/2 and∆− J fixed.

On the other hand we could first take the ’t Hooft limit
g → 0, gN =fixed, and then after taking this limit, we take
the limit of large ’t Hooft coupling keepingJ/

√
gN fixed

and∆ − J fixed. Taking the limit in this fashion gives us a
plane wave background with zero string coupling. Since we
will be interested in these notes in the free string spectrum
of the theory it will be more convenient for us to take this
second limit.

From this point of view it is clear that the full supersym-
metry algebra of the metric (7) is a contraction of that of
AdS5 × S5 [8]. This algebra implies thatp± ≥ 0.

4 Strings from N = 4 Super Yang
Mills

After taking the ’t Hooft limit, we are interested in the
limit of large ’t Hooft couplinggN → ∞. We want to
consider states which carry parametrically large R charge
J ∼ √

gN . 1 This R charge generator,J , is the SO(2) gen-
erator rotating two of the six scalar fields. We want to find
the spectrum of states with∆−J finite in this limit. We are
interested in single trace states of the Yang Mills theory on

1Since we first took the ’t Hooft limit then giant gravitons are not important.
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S3×R, or equivalently, the spectrum of dimensions of single
trace operators of the euclidean theory onR4. We will often
go back and forth between the states and the corresponding
operators.

Let us first start by understanding the operator with low-
est value of∆− J = 0. There is a unique single trace oper-
ator with∆− J = 0, namelyTr[ZJ ], whereZ ≡ φ5 + iφ6

and the trace is over theN color indices. We are takingJ
to be the SO(2) generator rotating the plane 56. At weak
coupling the dimension of this operator isJ since eachZ
field has dimension one. This operator is a chiral primary
and hence its dimension is protected by supersymmetry. It
is associated to the vacuum state in light cone gauge, which
is the unique state with zero light cone hamiltonian. In other
words we have the correspondence

1√
JNJ/2

Tr[ZJ ] ←→ |0, p+〉l.c. (12)

We have normalized the operator as follows. When we com-

pute〈Tr[Z
J
](x)Tr[ZJ ](0)〉 we haveJ possibilities for the

contraction of the firstZ but then planarity implies that we
contract the secondZ with a Z that is next to the first one
we contracted and so on. Each of these contraction gives a
factor ofN . Normalizing this two point function to one we
get the normalization factor in (12)2.

Now we can consider other operators that we can build
in the free theory. We can add other fields, or we can add
derivatives of fields like∂(i1 · · · ∂in)φ

r, where we only take
the traceless combinations since the traces can be eliminated
via the equations of motion. The order in which these oper-
ators are inserted in the trace is important. All operators are
all “words” constructed by these fields up to the cyclic sym-
metry, these were discussed and counted in [3]. We will find
it convenient to divide all fields, and derivatives of fields,
that appear in the free theory according to their∆−J eigen-
value. There is only one mode that has∆ − J = 0, which
is the mode used in (12). There are eight bosonic and eight
fermionic modes with∆ − J = 1. They arise as follows.
First we have the four scalars in the directions not rotated
by J , i.e. φi, i = 1, 2, 3, 4. Then we have derivatives of the
field Z, DiZ = ∂iZ + [Ai, Z], wherei = 1, 2, 3, 4 are four
directions inR4. Finally there are eight fermionic operators
χa

J= 1
2

which are the eight components withJ = 1
2 of the

sixteen component gauginoχ (the other eight components
haveJ = − 1

2 ). These eight components transform in the
positive chirality spinor representation ofSO(4) × SO(4).
We will focus first on operators built out of these fields and
then we will discuss what happens when we include other
fields, with∆− J > 1, such asZ.

The state (12) describes a particular mode of ten dimen-
sional supergravity in a particular wavefunction [6]. Let us
now discuss how to generate all other massless supergravity
modes. On the string theory side we construct all these states
by applying the zero momentum oscillatorsai

0, i = 1, . . . , 8
andSb

0, b = 1, . . . 8 on the light cone vacuum|0, p+〉l.c..
Since the modes on the string are massive all these zero mo-
mentum oscillators are harmonic oscillators, they all have

the same light cone energy. So the total light cone energy
is equal to the total number of oscillators that are acting on
the light cone ground state. We know that inAdS5 × S5 all
gravity modes are in the same supermultiplet as the state of
the form (12) [12]. The same is clearly true in the limit that
we are considering. More precisely, the action of all super-
symmetries and bosonic symmetries of the plane wave back-
ground (which are intimately related to theAdS5×S5 sym-
metries) generate all other ten dimensional massless modes
with givenp−. For example, by acting by some of the rota-
tions ofS5 that do not commute with the SO(2) symmetry
that we singled out we create states of the form

1√
J

∑

l

1√
JNJ/2+1/2

Tr[ZlφrZJ−l] =

1
NJ/2+1/2

Tr[φrZJ ] (13)

whereφr, r = 1, 2, 3, 4 is one of the scalars neutral under
J . In (13) we used the cyclicity of the trace. Note that we
have normalized the states appropriately in the planar limit.
We can act any number of times by these generators and we
get operators roughly of the form

∑
Tr[· · · zφrz · · · zφk].

where the sum is over all the possible orderings of theφs.
We can repeat this discussion with the other∆ − J = 1
fields. Each time we insert a new operator we sum over
all possible locations where we can insert it. Here we
are neglecting possible extra terms that we need when two
∆−J = 1 fields are at the same position, these are sublead-
ing in a1/J expansion and can be neglected in the largeJ
limit that we are considering. We are also ignoring the fact
thatJ typically decreases when we act with these operators.
In other words, when we act with the symmetries that do not
leaveZ invariant we will change one of theZs in (12) to a
field with ∆ − J = 1, when we act again with one of the
symmetries we can change one of theZs that was left un-
changed in the first step or we can act on the field that was
already changed in the first step. This second possibility is
of lower order in a1/J expansion and we neglect it. We will
always work in a “dilute gas” approximation where most of
the fields in the operator areZs and there are a few other
fields sprinkled in the operator.

For example, a state with two excitations will be of the
form

∼ 1
NJ/2+1

1√
J

J∑

l=0

Tr[φrZlψb
J= 1

2
ZJ−l] (14)

where we used the cyclicity of the trace to put theφr oper-
ator at the beginning of the expression. We associate (14)
to the string statea†k0 S† b

0 |0, p+〉l.c.. Note that for planar
diagrams it is very important to keep track of the position
of the operators. For example, two operators of the form
Tr[φ1Zlφ2ZJ−l] with different values ofl are orthogonal
to each other in the planar limit (in the free theory).

The conclusion is that there is a precise correspondence
between the supergravity modes and the operators. This is

2In general in the free theory any contraction of a single trace operator with its complex conjugate one will give us a factor ofNn, wheren is the number
of fields appearing in the operator.
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of course well known [5, 6, 7]. Indeed, we see from (4) that
their ∆ − J = −p+ is indeed what we compute at weak
coupling, as we expect from the BPS argument.

In order to understand non-supergravity modes in the
bulk it is clear that what we need to understand the Yang
Mills description of the states obtained by the action of the
string oscillators which haven 6= 0. Let us consider first
one of the string oscillators which creates a bosonic mode
along one of the four directions that came from theS5, let’s
saya† 8

n . We already understood that the action ofa† 8
0 cor-

responds to insertions of an operatorφ4 on all possible po-
sitions along the “string ofZ ’s”. By a “string ofZs” we just
mean a sequence ofZ fields one next to the other such as we
have in (12). We propose thata†8n corresponds to the inser-
tion of the same fieldφ4 but now with a position dependent
phase

1√
J

J∑

l=1

1√
JNJ/2+1/2

Tr[Zlφ4ZJ−l]e
2πinl

J (15)

In fact the state (15) vanishes by cyclicity of the trace. This
corresponds to the fact that we have the constraint that the
total momentum along the string should vanish (5), so that
we cannot insert only onea† i

n oscillator. So we should in-
sert more than one oscillator so that the total momentum is
zero. For example we can consider the string state obtained
by acting with thea† 8

n anda† 7
−n, which has zero total mo-

mentum along the string. We propose that this state should
be identified with

a† 8
n a† 7

−n|0, p+〉l.c. ←→ 1√
J

J∑

l=1

1
NJ/2+1

× Tr[φ3Zlφ4ZJ−l]e
2πinl

J (16)

where we used the cyclicity of the trace to simplify the ex-
pression. The general rule is pretty clear, for each oscillator
mode along the string we associate one of the∆ − J = 1
fields of the Yang-Mills theory and we sum over the inser-
tion of this field at all possible positions with a phase propor-
tional to the momentum. States whose total momentum is
not zero along the string lead to operators that are automat-
ically zero by cyclicity of the trace. In this way we enforce
theL0 − L0 = 0 constraint (5) on the string spectrum.

In summary, each string oscillator corresponds to the in-
sertion of a∆ − J = 1 field, summing over all positions
with ann dependent phase, according to the rule

a†i −→ DiZ for i = 1, · · · , 4
a†j −→ φj−4 for j = 5, · · · , 8 (17)

Sa −→ χa
J= 1

2

In order to show that this identification makes sense we
want to compute the conformal dimension, or more pre-
cisely∆ − J , of these operators at large ’t Hooft coupling
and show that it matches (4). First note that if we setgN

J2 ∼ 0
in (11) we find that all modes, independently ofn have the
same energy, namely one. This is what we find at weak ’t
Hooft coupling where all operators of the form (16) have

the same energy, independently ofn. Expanding the string
theory result (11) we find that the first correction is of the
form

(∆− J)n = wn = 1 +
2πgNn2

J2
+ · · · (18)

This looks like a first order correction in the ’t Hooft
coupling and we can wonder if we can reproduce it by a a
simple perturbative computation.

In order to compute the corrections it is useful to view
theN = 4 theory as anN = 1 theory. As anN = 1 the-
ory we have a Yang Mills theory plus three chiral multiplets
in the adjoint representation. We denote these multiplets as
W i, wherei = 1, 2, 3. We will often setZ = W 3 and
W = W 1. The theory also has a superpotential

W ∼ gY MTr(W iW jW k)εijk (19)

The potential for the Yang Mills theory is the sum of two
terms,V = VF + VD, one coming fromF terms and the
other from D-terms. The one coming fromF terms arises
from the superpotential and has the form

VF ∼
∑

ij

Tr
(
[W i,W j ][W

i
,W

j
]
)

(20)

On the other hand the one coming fromD terms has the
form

VD ∼
∑

ij

Tr([W i, W
i
][W j ,W

j
]) (21)

We will concentrate in computing the contribution to the
conformal dimension of an operator which contains aW in-
sertion along the string ofZs. There are various types of dia-
grams. There are diagrams that come fromD terms, as well
as from photons or self energy corrections. There are also
diagrams that come fromF terms. The diagrams that come
from F terms can exchange theW with theZ. TheF term
contributions cancel in the case that there are no phases, see
Fig. (1) . This means that all other diagrams should also
cancel, since in the case that there are no phases we have
a BPS object which recieves no corrections. All other one
loop diagrams that do not come fromF terms do not ex-
change the position ofW , this means that they vanish also
in the case that there are phases since they will be insensi-
tive to the presence of phases. In the presence of phases the
only diagrams that will not cancel are then the diagrams that
come from theF terms. These are the only diagrams that
give a momentum,n, dependent contribution.

In the free theory, once aW operator is inserted at one
position along the string it will stay there, states withW ’s
at different positions are orthogonal to each other in the pla-
nar limit (up to the cyclicity of the trace). We can think of
the string ofZs in (12) as defining a lattice, when we in-
sert an operatorW at different positions along the string of
Zs we are exciting an oscillatorb†l at the sitel on the lattice,
l = 1, · · · J . The interaction term (20) can take an excitation



Brazilian Journal of Physics, vol. 34, no. 1A, March, 2004 155

−F

Z W Z W

F

Figure 1. Diagrams that come fromF terms. The two diagrams
have a relative minus sign. TheF terms propagator is a delta func-
tion so that we could replace the three point vertex by a four point
vertex coming from (20). If there are no phases in the operator
these contributions vanish..

from one site in the lattice to the neighboring site. So we see
that the effects of (20) will be sensitive to the momentumn.
In fact one can precisely reproduce (18) from (20) including
the precise numerical coefficient. Below we give some more
details on the computation.

We will write the square of the Yang-Mills coupling in
terms of what inAdS is the string coupling that transforms
asg → 1/g under S-duality. The trace is just the usual trace
of anN ×N matrix.

We defineZ = 1√
2
(φ5+iφ6) and similarly forW . Then

the propagator is normalized as

〈Z j
i (x)Z

l

k (0)〉 = δl
iδ

j
k

2πg

4π2

1
|x|2 (22)

In (20) there is an interaction term of the form the form
1

πg

∫
d4xTr([Z, W ][Z, W ]), whereW is one of the (com-

plex) transverse scalars, let’s sayW = W 1. The contribu-
tion from theF terms shown in (20) give

< O(x)O∗(0) > =
N
|x|2∆

[
1 + N(4πg)

× (−2 + 2 cos
2πn

J
)I(x)

]
(23)

whereN is a normalization factor andI(x) is the integral

I(x) =
|x|4

(4π2)2

∫
d4y

1
y4(x− y)4

∼ 1
4π2

log |x|Λ + finite (24)

We extracted the log divergent piece of the integral since it is
the one that reflects the change in the conformal dimension
of the operator.

In conclusion we find that for largeJ andN the first
correction to the correlator is

< O(x)O∗(0) >=
N
|x|2∆

[
1− 4πgNn2

J2
log(|x|Λ)

]
(25)

which implies that the contribution of the operatorW
inserted in the “string ofZs” with momentumn gives a con-
tribution to the anomalous dimension

(∆− J)n = 1 +
2πgNn2

J2
(26)

which agrees precisely with the first order term computed
from (18).

There are similar computations we could do for inser-
tions ofDiZ, W or the fermionsχa

J=1/2. In the case of the
fermions the important interaction term will be a Yukawa
coupling of the formχΓz[Zχ] + χΓz[Z, χ]. We have not
done these computations explicitly since the 16 supersym-
metries preserved by the state (12) relate them to the com-
putation we did above for the insertion of aW operator.

The full square root in (11) was recently obtained in the
beautifull paper by Santambrogio and Zanon [13]/

In summary, the “string ofZs” becomes the physical
string and eachZ carries one unit ofJ which is one unit
of −p−. Locality along the worldsheet of the string comes
from the fact that planar diagrams allow only contractions
of neighboring operators. So the Yang Mills theory gives a
string bit model (see [14]) where each bit is aZ operator.
Each bit carries one unit ofJ which is one unit of−p−.

The reader might, correctly, be thinking that all this
seems too good to be true. In fact, we have neglected many
other diagrams and many other operators which, at weak ’t
Hooft coupling also have small∆ − J . In particular, we
considered operators which arise by inserting the fields with
∆ − J = 1 but we did not consider the possibility of in-
serting fields corresponding to∆ − J = 2, 3, . . . , such
asZ, ∂kφr, ∂(l∂k)Z, etc.. The diagrams of the type we
considered above would give rise to other 1+1 dimensional
fields for each of these modes. These are present at weak
’t Hooft coupling but they should not be present at strong
coupling, since we do not see them in the string spectrum.
We believe that what happens is that these fields get a large
mass in theN → ∞ limit. In other words, the operators
get a large conformal dimension. One can compute the first
correction to the energy (the conformal weight) of the of the
state that results from insertingZ with some “momentum”
n. In contrast to our previous computation for∆ − J = 1
fields we find that besides an effective kinetic term as in (18)
there is ann independent contribution that goes asgN with
no extra powers of1/J2 [1]. This is an indication that these
excitations become very massive in the largegN limit. In
addition, we can compute the decay amplitude ofZ into a
pair ofφ insertions. This is also very large, of ordergN .

Though we have not done a similar computation for
other fields with∆ − J > 1, we believe that the same will
be true for the other fields. In general we expect to find
many terms in the effective Lagrangian with coefficients that
are of ordergN with no inverse powers ofJ to suppress
them. In other words, the lagrangian of Yang-Mills onS3

acting on a state which contains a large number ofZs gives
a lagrangian on a discretized spatial circle with an infinite
number of KK modes. The coefficients of this effective la-
grangian are factors ofgN , so all fields will generically get
very large masses.

The only fields that will not get a large mass are those
whose mass is protected for some reason. The fields with
∆ − J = 1 correspond to Goldstone bosons and fermions
of the symmetries broken by the state (12). Note that de-
spite the fact that they morally are Goldstone bosons and
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fermions, their mass is non-zero, due to the fact that the
symmetries that are broken do not commute withp+, the
light cone Hamiltonian. The point is that their masses are
determined, and hence protected, by the (super)symmetry
algebra.

Having described how the single string Hilbert space
arises it is natural to ask whether we can incorporate prop-
erly the string interactions. Clearly string interactions come
when we include non-planar diagrams [2].

Some of the arguments used in this section look very
reminiscent of the DLCQ description of matrix strings [15]
[16]. It would be interesting to see if one can establish a con-
nection between them. Notice that the DLCQ description of
ten dimensional IIB theory is in terms of the M2 brane field
theory. Since here we are extracting also a light cone de-
scription of IIB string theory we expect that there should be
a direct connection.

It would also be nice to see if using any of these ideas
we can get a better handle on other largeN Yang Mills theo-
ries, particularly non-supersymmetric ones. The mechanism
by which strings appear in this paper is somewhat reminis-
cent of [17].
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