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Scalar Meson σ Phase Motion at D+ → π−π+π+ Decay
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We make a direct and model-independent measurement of the low π+π− mass phase motion in the D+ →
π−π+π+ decay. Our preliminary results show a strong phase variation, compatible with the isoscalar σ(500)
meson. This result confirms our previous result [1] where we found evidence for the existence of this scalar
particle using full Dalitz-plot analysis. We apply the Amplitude Difference (AD) method [2] to the same
Fermilab E791 data sample used in the preceding analysis. We also give an example of how we extract the
phase motion of the scalar amplitude, looking at the f0(980) in D+

s → π−π+π+ decay.

1 Introduction

Fermilab experiment E791, with a full Dalitz plot analy-
sis, showed strong evidence for the existence of light and
broad scalar resonances in charm D+ meson decay [1, 3].
The π+π− resonance is compatible with the isoscalar me-
son σ(500), and was observed in the Cabbibo-suppressed
decay D+ → π−π+π+ . To get a good fit quality in this
analysis, it was necessary to include an extra scalar particle,
other than the well established dipion resonances [4]. For
the new state, modeled by a Breit-Wigner amplitude, it was
measured a mass and width of 478+24

−23 ± 17 MeV/c2 and
324+42

−40 ± 21 MeV/c2respectively . The D+ → σ(500)π+

decay contribution is dominant, accounting for approxima-
tely half of this particular D+ → π−π+π+ decay. We
found also evidence for a scalar K−π+ resonance, or κ, in
the Cabibbo-allowed decay D+ → K−π+π+ [3]. Further
studies about κ are discussed in this proceeding [5].

In full Dalitz plot analyses, each possible resonance am-
plitude is represented by a Breit-Wigner function multiplied
by angular distributions associated with the spin of the re-
sonance. The various contributions are combined in a cohe-
rent sum with complex coefficients that are extracted from
maximum likelihood fits to the data. The absolute value of
the coefficients are related to the relative fraction of each
contribution and the phases take into account the final state
interaction (FSI) between the resonance and the third pion.

Due to the importance of this scalar meson in many areas
of particle and nuclear physics, it is desirable to be able to
confirm the amplitude’s phase motion in a direct observa-
tion, without having to assume, a priori, the Breit-Wigner
phase approximation for low-mass and broad resonances
[6, 7, 8]. Recently, a method was proposed to extract the
phase motion of a complex amplitude in three body heavy

meson decays [2]. The phase variation of a complex ampli-
tude can be directly revealed through the interference in the
Dalitz-plot region where it crosses with a well established
resonant state, represented by a Breit-Wigner.

Here we begin with a simple example, showing that the
AD method can be applied to extract the resonant phase mo-
tion of the scalar amplitude due to the resonance f0(980),
using the same f0(980) resonance in the crossing channel in
the Dalitz plot of the decay D+

s → π−π+π+ using E791
data [9]. This example shows the ability of this method to
extract the phase motion of an amplitude. Then we apply
the AD method using the well known f2(1270) tensor me-
son in the crossing channel, as the base resonance, to extract
the phase motion of the scalar low mass ππ amplitude in
D+ → π−π+π+ , confirming the σ(500) suggested by the
E791 full Dalitz plot analysis [1].

2 Extracting f0(980) phase motion
with the AD method.

From the original 2×1010 event data collected in 1991/92 by
Fermilab experiment E791 from 500GeV/c π− − nucleon
interactions [10], and after reconstruction and selection cri-
teria, we obtained the π−π+π+ sample shown in Fig. 1.
To study the resonant structure of these three-body decays
we consider the 1686 events with invariant mass between
1.85 and 1.89 GeV/c2, for the D+ analysis and the 937
events with invariant mass between 1.95 and 1.99 GeV/c2

for the D+
s . Fig. 2(a) shows the Dalitz-plot for the D+

s →
π−π+π+ selected events and Fig. 2(b) the Dalitz-plot for
D+ → π−π+π+ events. The two axes are the squared
invariant-mass combinations for π−π+, and the plot is sym-
metrical with respect to the two identical pions.
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Figure 1. The π−π+π+ invariant mass spectrum. The dashed line represents the total background. Events used for the Dalitz analyses are
in the hatched areas.

Figure 2. (a) The D+
s → π−π+π+ Dalitz plot and (b) the D+ → π−π+π+ Dalitz plot. Since there are two identical pions, the plots are

symmetrical.

We can see in Fig. 2(a) the scalar f0(980) in s12, the
square invariant mass, crossing the f0(980) in s13, forming
an interference region around s13 = s12 = 0.95GeV2. The
AD method uses the interference region, between two cros-
sing resonances, to extract the phase motion of one of them,
and Final State Interaction (FSI) phase, provided that the se-
cond is represented by a Breit-Wigner [2]. In fact we are
using a Bootstrap approach; that is, using a well established
resonance f0(980) in s12 to extract its phase motion in s13.

It is a nice and didactic example to show the ability of this
method to extract the phase motion of an amplitude and the
FSI phase within the E791 data sample.

The coherent amplitude to describe the crossing between
a well known scalar resonance, represented by a Breit-
Wigner in s12, and a complex amplitude under study in s13

in a limited region of the phase space, where we can neglect
any other contributions, is given by:

�

A(s12, s13) = aRBW(s12) + as/(p∗/
√

s13)sinδ(s13)ei(δ(s13)+γ) (1)
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where p∗/
√

s13 is a phase space factor to make this des-
cription compatible with ππ scattering, γ is the final state
interaction (FSI) phase difference between the two amplitu-
des, aR and as are respectively the real magnitudes of the
resonance and the under-study complex amplitude. Finally
sinδ(s13)eiδ(s13) represents the most general amplitude for

a two-body hadronic interaction.
The Breit Wigner distribution is given by:

BW =
m0Γ0

m2
0 − s − im0Γ(m)

Taking the amplitude square of Equation 1 we get:

�

| A(s12, s13) |2= a2
R | BWf0(980)(s12) |2 +a2

s/p∗2/s13 sin2δ(s13)

+
2aRasm0Γ0sinδ(s13)/(p∗/

√
s13)

(m2
0 − s12)2 + m2

0Γ2(s12)

×[(m2
0 − s12)cos(δ(s13) + γ) + m0Γ0sin(δ(s13) + γ)] (2)

�

Since the Breit-Wigner is approximately symmetrical
around m0 for the narrow f0(980) resonance as we can see
in Fig. 3, we can divide our f0(980) mass distribution in
two pieces, one for m0 + ε and the other with m0 − ε. From
Equation 2 and noticing that the non-crossing Breit-Wigner
module square term will cancel we can write:

Figure 3. f0(980) s12 distribution, divided in m0 + ε (black) and
m0 − ε (hatch)

∆
∫

A2 =| A(m2
0 + ε, s13) |2 − | A(m2

0 − ε, s13) |2=
−4aRasm0Γ0/(p∗/

√
s13)ε

ε2 + m2
0Γ

2
0

(sin(2δ(s13) + γ) − sinγ) (3)

Only the real part of the interference term in Equation 2 re-
mains.

To extract the phase motion of the scalar amplitude in
s13 through the f0(980) in s12, represented by a Breit-
Wigner, we took the events in s12 between 0.7 and 1.2 GeV2

and divided them into two bins, as presented in Fig. 3. The

s13 distribution for the events of the s12 region integrated
between 0.95 and 1.2 GeV2, is shown in Fig. 4a and the
same in Fig.4b for events integrated between 0.7 and 0.95
GeV2.

Figure 4. s13 distribution. a) For events
∫ m2

0+ε

m2
0

| A(s12, s13) |2

ds12. b) For events
∫ m2

0
m2

0−ε
| A(s12, s13) |2 ds12.

We can see that the peaks in these two plots are in dif-
ferent s13 positions. The subtraction of these distributions,
corresponds to the integration of Equation 3, that we can
write as:

∆
∫

A2 ∼ −C(sin(2δ(s13) + γ) − sinγ) (4)

Where C is a constant factor coming from the constant and
integrated factors of Equation 3, to be determined from data.
The variation of the phase space in the integral was consi-
dered negligible for the f0(980) resonance. ∆

∫ A2 directly
reflects the behavior of δ(s13). A constant ∆ | A |2 would
imply constant δ(s13). This would be the case for a non-
resonant contribution. The same way a slow phase motion
will produce a slowly varying ∆ | A |2 and a full resonance
phase motion produces a clear signature in ∆ | A |2 with
the presence of zero, maximum and minimum values.

The subtracted distribution, corresponding to Equa-
tion 4, is shown in Fig.5. There is a significant diffe-
rence between the minimum (bin3) and maximum (bin4) of
∆

∫ A2.
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Figure 5. s13 distribution of ∆
∫ A2ds12.

We can see in Equation 4 that the zeros occur when
δ(s13) = 00, 1800 or π/2 − γ. In Fig. 5 we can see a zero
at s13 near 0.5GeV2, another one at s13 = 0.95GeV2 and a
third zero near 1.4GeV2. Assuming δ(s13) is an analytical
function of s13, Equation 4 allow us to set the two following
conditions at the maximum and minimum values of ∆

∫ A2

respectively:

∆
∫

A2
max → sin(2δ(s13) + γ) = −1 (5)

∆
∫

A2
min → sin(2δ(s13) + γ) = 1 (6)

With these two conditions we get C and γ, calculated
from the maximum and minimum values of the ∆

∫ A2 dis-
tribution in Fig. 5:

C = (∆
∫

A2
max − ∆

∫
A2

min)/2 (7)

γ = sin−1(
∆

∫ A2
max + ∆

∫ A2
min

∆
∫ A2

min − ∆
∫ A2

max

) (8)

From Fig. 5 and using the equations above, we measure
γ = −0.15±0.31, that is compatible with zero, as should be
since we are crossing the same resonances with, of course,
the same final state interaction phase.

With the above conditions we solve Equation 4 for
δ(s13):

δ(s13) =
1
2
(sin−1(

1
C∆ | A(s13) |2 +sin(γ)) − γ) (9)

Assuming that δ(s13) is an increasing function of s13,
we can extract directly the δ(s13) value from each bin of
Fig. 5. creating the f0(980) phase motion shown in Fig. 6.
The errors in the plot were produced by generating statisti-

cally compatible experiments, allowing each bin of
∫ m2

0+ε

m2
0

|
A(s12, s13) |2 (Fig.4a) and

∫ m2
0

m2
0−ε

| A(s12, s13) |2 (Fig.4b)

to fluctuate randomly following a Poisson law. We then
solve the problem for each “experiment”. The error in each
bin of δ(s13) will be the RMS of the distributions generated
by the ”experiments”.

Figure 6. δ(s13) plot with the errors.

From Fig. 6 we can see what one could expect, that is
the scalar amplitude near 970GeV with a phase motion of
about 1800 degrees. This example demonstrates the ability
of AD method to extract the phase motion of an amplitude
with E791 statistics.

3 Extracting the scalar low mass ππ
amplitude phase motion with the
AD method.

In the preceding section, we showed how to apply the AD
method to extract the phase motion of an amplitude, from
nonleptonic charm-meson three-body decay. Here we apply
the same method to extract the phase motion of the scalar
low-mass ππ amplitude in D+ → π−π+π+ decay, where
we previously found strong experimental evidence for the
existence of a light and broad isoscalar resonance [1]. To
start this analysis, we have to decide what is the best well-
known resonance to be used for crossing the low mass am-
plitude under study. Taking a look at Fig. 2b we can see the
signature of three resonances that in principle could be used,
the ρ(770), f0(980) and f2(1270). In fact, the E791 analy-
sis of this Dalitz plot found a significant contribution from
these three resonances in D+ → π−π+π+ decay [1]. Since
this D+ decay is symmetric for the exchange of the π+ me-
son, each resonance in s12 is present also in s13. Then if
we use ρ(770) as the base resonance in s12, we have also
the presence of the ρ(770) in same mass square distribution
of the σ(500) in s13. The proximity of the ρ(770) with the
σ(500), both broad resonances, creates an overlap between
them such that we are not able to separate the phase motion
of one from the other. We could use the f0(980) as a base
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resonance, but again the presence of the ρ(770) overlapping
with the σ(500) creates the same problem.

There remains only the tensor meson f2(1270) candi-
date at m2

0 = 1.61GeV 2, which is placed where the ρ(770)
contribution reaches a minimum due the angular distribu-
tion in the middle of the Dalitz plot, as we can see from the

D+ → ρ(770)π+ decay Monte Carlo simulation shown in
Fig. 7.

The amplitude for the crossing of the f2(1270) in s12

and the complex amplitude under study in s13 is given in
the same way as in Equation 1:

�

A(s12, s13) = aR BWf2(1270)(s12) j=2Mf2(1270)(s12, s13) + (10)

+ as/(p∗/
√

s13) sinδ(s13) ei(δ(s13)+γ)

�

Figure 7. MC ρ(770) distribution in D+ → π−π+π+ decay.
There is little contribution between 1.2 to 1.8GeV2.

Where j=2Mf2(1270)(s12, s13) is the angular function for
the f2(1270) tensor resonance. The amplitude under study
represents the scalar low mass ππ amplitude in a limited
region of the phase space, where we can neglect the other
amplitude contributions.

Both the width Γ(s12) and the angular function
j=2Mf2(1270) from this resonance produce asymmetries in
s12 and consequently we can not use the nominal f2(1270)
mass to divide our sample into two slices, as we did for the
f0(980) example. So we performed a Monte Carlo study to
determine the effective mass we must use. The s12 Monte
Carlo projection of the f2(1270) in D+ → π−π+π+ de-
cay is shown in Fig. 8. We can see the asymmetry created
around the nominal f2(1270) mass value due to Γ(s12) and
j=2Mf2(1270) contributions to the amplitude.

Figure 8. Monte Carlo f2(1270) s12 distribution, divided in m0+ε
(black) and m0 − ε (hatch)

Here we require an effective mass squared (meff ), such
that the number of events integrated between m2

eff and
m2

eff + ε is equal, by construction, to the number of events
integrated between m2

eff and m2
eff − ε. We choose, using

the f2(1270) Monte Carlo distribution, a mass of m2
eff =

1.535GeV 2, within ±0.26GeV 2 1, in such way that we can
write:

∫ m2
eff +ε

m2
eff

| BWf2(1270)(s12)j=2Mf2(1270) |2 ds12 =

∫ m2
eff

m2
eff−ε

| BWf2(1270)(s12)j=2Mf2(1270) |2 ds12 (11)

The effective mass squared meff and the separation
between m2

eff + ε (black) and m2
eff − ε (hatch) are shown

in Fig. 8.
The j=2Mf2(1270) function in s13 is presented in

Fig. 92. The distribution between m2
eff and m2

eff + ε is
shown in Fig. 9a, for events between m2

eff and m2
eff − ε

1Within this mass region, the amount of ρ(770) events was estimate to be around 5%
2Since we divided our data sample by this function, we represent this function in a histogram with the same binning of data.
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Figure 9. Fast MC j=2Mf2(1270) distribution in s13. a) For events
between m2

eff and m2
eff + ε. b) For events between m2

eff and
m2

eff − ε.

in Fig. 9b. We can see that these two plots are sligh-
tly different. However we considered the approximation
j=2M+

f2(1270)(s13) ∼ j=2M−
f2(1270)(s13) and take an ave-

rage function j=2M̄f2(1270)(s13). Another important effect,
that we had to take into account, is the zero of this function
at s13 = 0.48GeV 2. Below we discuss the consequences of
that in the AD method.

With the above considerations about the f2(1270) in s12

and s13 we can write the integrated amplitude-square diffe-
rence as:

�

∆
∫

A2 =
∫ m2

eff +ε

m2
eff

| A(s12, s13) |2 ds12 −
∫ m2

eff

m2
eff−ε

| A(s12, s13) |2 ds12

∼ −C(sin(2δ(s13) + γ) − sinγ) j=2M̄f2(1270)(s13)/(p∗/
√

s13) (12)

�

Figure 10. Events distributions in s13, a) for events
∫ m2

0+ε

m2
0

|
A(s12, s13) |2 ds12, b) For events

∫ m2
0

m2
0−ε

| A(s12, s13) |2 ds12.

This Equation is similar to Equation 4, with an extra an-
gular function term j=2M̄f2(1270)(s13) 3.

The background and the acceptance are similar between
m2

eff and m2
eff + ε and m2

eff and m2
eff − ε. Since we

are subtracting these two distributions, we do not take into
account these effects in our analysis.

The
∫ A2 in s13, for events integrated in s12 between

m2
eff = 1.535GeV 2 and m2

eff + ε and m2
eff and m2

eff − ε,
with ε = 0.26GeV 2 are presented in Fig. 10a and b respec-
tively.

Subtracting these two histograms, in the same way we
did for the f0(980) example, gives the ∆

∫ A2 of the Equa-
tion 12. The result is shown in Fig. 11.

Here we can not extract directly the phase motion from
Fig. 11, as we did for the f0(980) example using the condi-
tions 5 and 6. We have to divide the ∆

∫ A2 by M̄ (average
of the distributions in Figs. 9a and b) and multiply by p ′,

since phase space here is an important effect. By doing this
the only s13 dependence of the right hand side of Equation
12 is in δ(s13). However, as we could see in Fig.9, there is a
zero about 0.48GeV2 in the angular function, which means
a singularity around this value in ∆

∫ A2/M̄. To avoid this
singularity, we first produced a binning in such a way that
the singularity is placed in the middle of one bin. In Fig. 12
we show the ∆

∫ A2 by M̄ distribution. We can see that the
6th bin (around 0.48GeV2), has a huge error, that corres-
ponds to the bin of the singularity. Due to the singularity we
decided not to use this region (bin 6) further in this analysis.
The consequences of this choice are going to be taken care
of in systematic error studies. In any case, the singularity

Figure 11. s13 distribution for ∆
∫ A2.

3For short we shall use, from here on j=2M̄f2(1270)(s13) = M̄ and p∗/
√

s13 = p′.
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Figure 12. s13 distribution for ∆
∫ A2 p′/M̄.

could only affect the position of the minimum of Fig. 12. It
does not interfere with the general feature of starting at zero,
having statistically significant maximum and minimum va-
lues, and coming back to zero, indicating a strong phase va-
riation. Bins 2 and 5 are respectively the maximum and mi-
nimum value of ∆

∫ A2p′/M̄ of Fig. 12 where we use the
Equation 5 and 6 conditions.

With the same assumptions used for the f0(980), that is
δ(s13) is an analytical and increasing function of s13, and
using Equation 7, 8 and 9 (multiplied by p ′ and divided by
M̄), we can extract γ and δ(s13) from Fig. 12. For the
FSI phase we found γ = 3.26 ± 0.33, that is somewhat
bigger than found by the E791 full Dalitz-plot analysis [1]
(γDalitz = 2.59 ± 0.19). The fact that we used the effec-
tive mass for the f2(1270) = 1.535 GeV2 instead of the no-
minal mass is responsable for the shift observed in the re-
lative phase. To verify this statement we generated 1000
samples of fast-MC, with only two amplitudes, f2(1270)
and σ(500). For both we used Briet-Wigner functions and
the E791 parameters. We generated the phase difference of
2.59 rad, measured by the E791. For these 1000 samples,
we measure γ using the method presented here. The result
has a mean value of 3.07. We can say that the difference
between the generated and measured γ value is a correction
factor due to the use of an effective mass. Using this off-
set factor ( 2.59 - 3.07 = -0.48) we correct the measurement
γ = 3.26 ± 0.33 to γcorr = 2.78 ± 0.33. So the observed γ
difference between Dalitz analysis and the γcorr are in good
agreement, with a difference below one standard deviation.

The δ(s13) was extracted bin by bin, with the same
approach for the errors used in the f0(980) example, and
we got the distribution shown in Fig. 134. We can see a
strong phase variation of about 1800 around the mass for
the σ(500), showing a phase motion compatible with a re-
sonance.

Figure 13. Phase motion δ(s13) distribution for the scalar low mass
ππ amplitude, with the errors.

4 Conclusions

We showed that the AD method can be applied to E791 data
to extract the phase motion of the resonance f0(980) in the
Dalitz plot of the decay D+

s → π−π+π+ . This example
demonstrates the ability of this method to extract the phase
motion of a resonance amplitude.

Preliminary E791 results present a direct and model-
independent approach, obtained with the AD method, and
confirms our previous result of the evidence of an impor-
tant contribution of the isoscalar σ(500) meson in D+ →
π−π+π+ decay [1]. We use the well known f2(1270) ten-
sor meson in the crossing channel, as the base resonance, to
extract the phase motion of the low mass ππ scalar ampli-
tude. We obtain a δ(s13) variation of about 1800 consistent
with a resonant σ(500) contribution. We also obtain good
agreement between the FSI γcorr observed with AD method
and the γ observed in the full Dalitz plot analysis.
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