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Questions such as whether we live in a spatially finite universe, and what its shape and size may be, are among
the fundamental open problems that high precision modern cosmology needs to resolve. These questions go
beyond the scope of general relativity (GR), since as a (local) metrical theory GR leaves the global topology of
the universe undetermined. Despite our present-day inability topredict the topology of the universe, given the
wealth of increasingly accurate astro-cosmological observations it is expected that we should be able todetect
it. An overview of basic features of cosmic topology, the main methods for its detection, and observational
constraints on detectability are briefly presented. Recent theoretical and observational results related to cosmic
topology are also discussed.

1 Introduction

Is the space where we live finite or infinite? The popular
ancient Greek finite-world response, widely accepted in me-
dieval Europe, is at a first sight open to a devastating objec-
tion: in being finite the world must have a limiting boundary.
But this is impossible, because a boundary can only separate
one part of the space from another: why not redefine the uni-
verse to include that other part? In this way a common-sense
response to the above old cosmological question is that the
universe has to be infinite otherwise something else would
have to exist beyond its limits. This answer seems to be ob-
vious and needing no further proof or explanation. Howe-
ver, in mathematics it is known that there are compact spa-
ces (finite) with no boundary. They are called closed spaces.
Therefore, our universe can well be spatially closed (topo-
logically) with nothing else beyond its ’spatial limits’. This
may be difficult to visualize because we are used to viewing
from ’outside’ objects which are embedded in our regular3–
dimensional space. But there is no need to exist any region
beyond the spatial extent of the universe.

Of course, one might still ask what is outside such a clo-
sed universe. But the underlying assumption behind this
question is that the ultimate physical reality is an infinite
Euclidean space of some dimension, and nature needs not to
adhere to this theoretical embedding framework. It is per-
fectly acceptable for our3–space not to be embedded in any
higher-dimensional space with no physical grounds.

Whether the universe is spatially finite and what its size
and shape may be are among the fundamental open pro-
blems that high precision modern cosmology seeks to re-
solve. These questions of topological nature have become
particularly topical, given the wealth of increasingly accu-
rate astro-cosmological observations, especially the recent

observations of the cosmic microwave background radiation
(CMBR) [1]. An important point in the search for answers
to these questions is that as a (local) metrical theory gene-
ral relativity (GR) leaves the global topology of the universe
undetermined. Despite this inability topredict the topology
of the universe we should be able to devise strategies and
methods todetectit by using data from astro-cosmological
observations.

The aim of the article is to give a brief review of the main
points on cosmic topology addressed in the talk delivered by
one of us (MJR) in the XXIV Brazilian National Meeting on
Particles and Fields, and discuss some recent results in the
field. The outline of our paper is as follows. In section 2 we
discuss how the cosmic topology issue arises in the context
of the standard cosmology, and what are the main observa-
tional consequences of a nontrivial topology for the spatial
section of the universe. In section 3 we review the two main
statistical methods to detect cosmic topology from the dis-
tribution of discrete cosmic sources. In section 4 we des-
cribe the search for circles in the sky, an important method
which has been devised for the detection of cosmic topo-
logy from CMBR. In section 5 we discuss the detectability
of cosmic topology and present examples on how one can
decide whether a given topology is detectable or not accor-
ding to recent observations. Finally, in section 6 we briefly
discuss recent results on cosmic topology, and present some
concluding remarks.

2 Nontrivial topology and physical
consequences

The isotropic expansion of the universe, the primordial
abundance of light elements and the nearly uniform cos-
mic microwave background radiation constitute the main
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observational pillars for the standard cosmological model,
which provides a very successful description of the universe.
Within the framework of standard cosmology, the universe
is described by a space-time manifoldM4 = R × M
endowed with the homogeneous and isotropic Robertson-
Walker (RW) metric

ds2 = −c2dt2 +R2(t) { dχ2 +f2(χ) [ dθ2 +sin2 θ dφ2 ] } ,
(1)

where t is a cosmic time,f(χ) = (χ, sin χ, sinhχ) de-
pending on the sign of the constant spatial curvaturek =
(0, 1,−1), and R(t) is the scale factor. The spatial sec-
tion M is often taken to be one of the following (simply-
connected) spaces: EuclideanE3, sphericalS3, or hyper-
bolic spaceH3. This has led to a common misconception
that the Gaussian curvaturek of M is all one needs to de-
cide whether this3–space is finite or not. However, the
3-spaceM may equally well be one of the possible quoti-
ent manifoldsM = M̃/Γ, whereΓ is a discrete and fixed-
point free group of isometries of the corresponding covering
spaceM̃ = (E3, S3,H3). Quotient manifolds are multiply
connected: compact in three independent directions with no
boundary (closed), or compact in two or at least one inde-
pendent direction. The action ofΓ tessellates̃M into iden-
tical cells or domains which are copies of what is known as
fundamental polyhedron (FP). In forming the quotient mani-
foldsM the essential point is that they are obtained from̃M
by identifying points which are equivalent under the action
of the discrete groupΓ. Hence, each point on the quotient
manifoldM represents all the equivalent points on the cove-
ring manifoldM̃ . A simple example of quotient manifold in
two dimensions is the2–torusT 2 = S1 × S1 = E2/Γ. The
covering space clearly isE2, and a FP is a rectangle with
opposite sides identified. This FP tiles the covering space
E2. The groupΓ consists of discrete translations associated
with the side identifications.

In a multiply connected space any two points can always
be joined by more than one geodesic. Since the radiation
emitted by cosmic sources follows geodesics, the immedi-
ate observational consequence of a spatially closed universe
is that light from distant objects can reach a given obser-
ver along more than one path — the sky may show multiple
images of radiating sources [cosmic objects or cosmic mi-
crowave background radiation from the last scattering sur-
face - (LSS)]. Clearly we are assuming here that the radia-
tion (light) must have sufficient time to reach the observer at
p ∈ M (say) from multiple directions, or put in another way,
that the universe is sufficiently small so that this repetitions
can be observed. In this case the observable horizonχhor

exceeds at least the smallest characteristic size ofM atp 1,
and the topology of the universe is in principle detectable.

A question that arises at this point is whether one can use
the topological multiple images of the same celestial objects
such as cluster of galaxies, for example, to determine a non-
trivial cosmic topology2. Besides the pioneering work by
Ellis [2], others including Sokolov and Shvartsman [3], Fang

and Sato [4], Starobinskii [5], Gott [6] and Fagundes [7] and
Fagundes and Wichoski [8], used this feature in connection
with closed flat and non-flat universes. It has been recently
shown that the topology of a closed flat universe can be re-
constructed with the observation of a very small number of
multiple images [9].

In practice, however, the identification of multiple ima-
ges is a formidable observational task to carry out because it
involves a number of problems, some of which are:

• Images are seen from different angles (directions),
which makes it very hard to recognize them as identi-
cal due to morphological effects;

• High obscuration regions or some other object can
mask or even hide the images;

• Two images of a given cosmic object at different dis-
tances correspond to different periods of its life, and
so they are in different stages of their evolutions,
rendering problematic their identification as multiple
images.

These difficulties make clear that a direct search for mul-
tiples images is not overly promising, at least with available
present-day technology. On the other hand, they motivate
new search strategies and methods to determine (or just de-
tect) the cosmic topology from observations. In the next sec-
tion we shall discuss statistical methods, which have been
devised to determine a possible nontrivial topology of the
universe from the distribution of discrete cosmic sources.

3 Pair Separations Statistical
methods

On the one hand the most fundamental consequence of a
multiply connected spatial sectionM for the universe is the
existence of multiple images of cosmic sources, on the other
hand a number of observational problems render the direct
identification of these images practically impossible. In the
statistical approaches we shall discuss in this section instead
of focusing on the direct recognition of multiple images, one
treats statistically the images of a given cosmic source, and
use (statistical) indicators or signatures in the search for a
sign of a nontrivial topology. Hence the statistical methods
are not plagued by direct recognition difficulties such as
morphological effects, and distinct stages of the evolution
of cosmic sources.

The key point of these methods is that in a universe with
detectable nontrivial topology at least one of the characte-
ristic sizes of the space sectionM is smaller than a given
survey depthχobs, so the sky should show multiple images
of sources, whose3–D positions are correlated by the iso-
metries of the covering groupΓ. These methods rely on the
fact that the correlations among the positions of these ima-
ges can be couched in terms of distance correlations between

1This is the so-calledinjectivity radiusrinj(p). A more detailed discussion on this point will be given in section 5.
2There are basically three types of catalogues which can possibly be used in the search for multiple images in the universe: clusters of galaxies, with

redshifts up tozmax ≈ 0.3; active galactic nuclei with a redshift cut-off ofzmax ≈ 4; and maps of the CMBR with a redshift ofz ≈ 103.



1360 Brazilian Journal of Physics, vol. 34, no. 4A, December, 2004

the images, and use statistical indicators to find out signs of
a possible nontrivial topology ofM .

In 1996 Lehoucqet al. [10] proposed the first statistical
method (often referred to as cosmic crystallography), which
looks for these correlations by using pair separations histo-
grams (PSH). To build a PSH we simply evaluate a suitable
one-to-one functionF of the distanced between a pair of
images in a catalogueC, and defineF (d) as the pair se-
paration: s = F (d). Then we depict the number of pairs
whose separation lie within certain sub-intervalsJi partiti-
ons of(0, smax], wheresmax = F (2χmax), andχmax is
the survey depth ofC. A PSH is just a normalized plot of
this counting. In most applications in the literature the se-
paration is taken to be simply the distance between the pair
s = d or its squares = d2, Ji being, respectively, a partition
of (0, 2χmax] and(0, 4χ2

max].

The PSH building procedure can be formalized as fol-
lows. Consider a catalogueC with n cosmic sources and
denote byη(s) the number of pairs of sources whose sepa-
ration is s. Divide the interval(0, smax] in m equal sub-
intervals (bins) of lengthδs = smax/m, being

Ji = (si − δs

2
, si +

δs

2
] ; i = 1, 2, . . . ,m ,

and centered atsi = (i− 1
2 ) δs . The PSH is defined as the

following counting function:

Φ(si) =
2

n(n− 1)
1
δs

∑

s∈Ji

η(s) , (2)

which can be seen to be subject to the normalization condi-
tion

∑m
i=1 Φ(si) δs = 1 . An important advantage of using

normalizedPSH’s is that one can compare histograms built
up from catalogues with different number of sources.

An example of PSH obtained through simulation for a
universe with nontrivial topology is given in Fig. 1. Two
important features should be noticed: (i) the presence of the
very sharp peaks (called spikes); and (ii) the existence of a
’mean curve’ above which the spikes stands. This curve cor-
responds to an expected pair separation histogram (EPSH)
Φexp(si), which is a typical PSH from which the statistical
noise has been withdrawn, that isΦexp(si) = Φ(si)−ρ(si) ,
whereρ(si) represents the statistical fluctuation that arises
in the PSHΦ(si).
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Figure 1. Typical PSH for a flat universe with a3–torus topology.
The horizontal axis gives the squared pair separations2, while the
vertical axis provides a normalized number of pairs.

The primary expectation was that the distance correlati-
ons would manifest as topological spikes in PSH’s, and that
the spike spectrum of topological origin would be a definite
signature of the topology [10]. While the first simulations
carried out for specific flat manifolds appeared to confirm
this expectation [10], histograms subsequently generated for
specific hyperbolic manifolds revealed that the correspon-
ding PSH’s exhibit no spikes [11, 12]. Concomitantly, a
theoretical statistical analysis of the distance correlations in
PSH’s was accomplished, and a proof was presented that
the spikes of topological origin in PSH’s are due to just one
type of isometry: the Clifford translations (CT) [13], which
are isometriesgt ∈ Γ such that for allp ∈ M̃ the distance
d(p, gtp) is a constant (see also in this regard [11]). Clearly
the CT’s reduce to the regular translations in the Euclidean
spaces (for more details and simulations see [14, 15, 16]).
Since there is no CT translation in hyperbolic geometry this
result explains the absence of spikes in the PSH’s of hy-
perbolic universes with nontrivial detectable topology. On
the other hand, it also makes clear that distinct manifolds
which admit the same Clifford translations in their covering
groups present the same spike spectrum of topological ori-
gin. Therefore the topological spikes are not sufficient for
unambiguously determine the topology of the universe.

In spite of these limitations, the most striking evidence
of multiply-connectedness in PSH’s is indeed the presence
of topological spikes, which result from translational isome-
triesgt ∈ Γ . It was demonstrated [14, 13] that the other iso-
metriesg manifest as very tiny deformations of the expected
pair separation histogramΦsc

exp(si) corresponding to the un-
derlying simply connected universe [17, 18]. Furthermore,
in PSH’s of universes with nontrivial topology the amplitude
of the sign of non-translational isometries was shown to be
smaller than the statistical noise [14], making clear that one
cannot use PSH to reveal these isometries.
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In brief, the only significant (measurable) sign of a non-
trivial topology in PSH are the spikes, but they can be used
merely to disclose (not to determine) a possible nontrivial
topology of universes that admit Clifford translations: any
flat, some spherical, and no hyperbolic universes.

The impossibility of using the PSH method for the de-
tection of the topology of hyperbolic universes motivated
the development of a new scheme calledcollecting correla-
ted pairs method(CCP method) [19] to search for cosmic
topology.

In the CCP method it is used the basic feature of the iso-
metries, i.e., that they preserve the distances between pairs
of images. Thus, if(p, q) is a pair of arbitrary images (cor-
related or not) in a given catalogueC, then for eachg ∈ Γ
such that the pair(gp, gq) is also inC we obviously have

d(p, q) = d(gp, gq) . (3)

This means that for a given (arbitrary) pair(p, q) of images
in C, if there aren isometriesg ∈ Γ such that both images
gp andgq are still inC, then the separations(p, q) will occur
n times.

The easiest way to understand the CCP method is by
looking into its computer-aimed procedure steps, and then
examine the consequences of having a multiply connected
universe with detectable topology. To this end, letC be a
catalogue withn sources, so that one hasP = n(n − 1)/2
pairs of sources. The CCP procedure consists on the fol-
lowing steps:

1. Compute theP separationss(p, q), wherep andq are
two images in the catalogueC;

2. Order theP separations in a list{si}1≤i≤P such that
si ≤ si+1 ;

3. Create a list ofincrements{∆i}1≤i≤P−1, where
∆i = si+1 − si ;.

4. Define the CCP index as

R =
N

P − 1
,

whereN = Card{i : ∆i = 0} is the number of
times the increment is null.

If the smallest characteristic length ofM exceeds the
survey depth (rinj > χobs) the probability that two pairs of
images are separated by the same distance is zero, soR ≈ 0.
On the other hand, in a universe with detectable nontrivial
topology (χobs > rinj) given g ∈ Γ, if p and q as well
asgp andgq are images inC, then: (i) the pairs(p, q) and
(gp, gq) are separated by the same distance; and (ii) when
Γ admits a translationgt the pairs(p, gtp) and(q, gtq) are
also separated by the same distance. It follows that when
a nontrivial topology is detectable, and a given catalogueC
contains multiple images, thenR > 0, so the CCP index is
an indicator of a detectable nontrivial topology of the spatial
sectionM of the universe. Note that althoughR > 0 can be
used as a sign of multiply connectedness, it gives no indica-
tion as to what the actual topology ofM is. Clearly if one

can find out whetherM is multiply connected (compact in
at least one direction) is undoubtedly a very important step,
though.

In more realistic situations, uncertainties in the deter-
mination of positions and separations of images of cosmic
sources are dealt with through the following extension of
the CCP index:

Rε =
Nε

P − 1
,

whereNε = Card{i : ∆i ≤ ε}, andε > 0 is a parameter
that quantifies the uncertainties in the determination of the
pairs separations.

Both PSH and CCP statistical methods rely on the ac-
curate knowledge of the three-dimensional positions of the
cosmic sources. The determination of these positions, howe-
ver, involves inevitable uncertainties, which basically arises
from: (i) uncertainties in the determination of the values of
the cosmological density parametersΩm0 andΩΛ0; (ii) un-
certainties in the determination of both the red-shifts (due to
spectroscopic limitations), and the angular positions of cos-
mic objects (displacement, due to gravitational lensing by
large scale objects, e.g.); and (iii) uncertainties due to the pe-
culiar velocities of cosmic sources, which introduce peculiar
red-shift corrections. Furthermore, in most studies related to
these methods the catalogues are taken to be complete, but
real catalogues are incomplete: objects are missing due to
selection rules, and also most surveys are not full sky cove-
rage surveys. Another very important point to be considered
regarding these statistical methods is that most of cosmic
objects do not have very long lifetimes, so there may not
even exist images of a given source at large red-shift. This
poses the important problem of what is the suitable source
(candle) to be used in these methods.

Some of the above uncertainties, problems and limits of
the statistical methods have been discussed by Lehoucqet
al. [20], but the robustness of these methods still deserves
further investigation. So, for example, a quantitative study
of the sensitivity of spikes and CCP index with respect to the
uncertainties in the positions of the cosmic sources, which
arise from unavoidable uncertainties in values of the density
parameters is being carried out [21]. In [21] it is also deter-
mined the optimal values of the bin size (in the PSH method)
and theε parameter (in the CCP method) so that the corre-
lated pairs are collected in a way that the topological sign is
preserved.

For completeness we mention that Bernui [22] has wor-
ked with a similar method which uses angular pair separa-
tion histogram (APSH) in connection with CMBR.

To close this section we refer the reader to referen-
ces [24, 23], which present variant statistical methods (see
also the review articles [25]).

4 Circles in the sky

The deepest surveys currently available are the CMBR tem-
perature anisotropy maps withzLSS ≈ 103. Thus, given
the current high quality and resolution of such maps, the
most promising searches for cosmic topology through mul-
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tiple images of radiating sources are based on pattern repe-
titions of these CMBR anisotropies.

The last scattering surface (LSS) is a sphere of radius
χLSS on the universal covering manifold of the comoving
space at present time. If a nontrivial topology of space is
detectable, then this sphere intersects some of its topologi-
cal images. Since the intersection of two spheres is a circle,
then CMBR temperature anisotropy maps will have matched
circles, i.e. pairs of equal radii circles (centered on different
point on the LSS sphere) that have the same pattern of tem-
perature variations [26].

These matched circles will exist in CMBR anisotropy
maps of universes with any detectable nontrivial topology,
regardless of its geometry. Thus in principle the search for
‘circles in the sky’ can be performed without anya priori
information (or assumption) on the geometry, and on the to-
pology of the universe.

The mapping from the last scattering surface to the night
sky sphere is a conformal map. Since conformal maps pre-
serves angles, the identified circle at the LSS would appear
as identified circles on the night sky sphere. A pair of mat-
ched circles is described as a point in a six-dimensional para-
meter space. These parameters are the centers of each circle,
which are two points on the unit sphere (four parameters),
the angular radius of both circles (one parameter), and the
relative phase between them (one parameter).

Pairs of matched circles may be hidden in the CMBR
maps if the universe has a detectable topology. Therefore to
observationally probe nontrivial topology on the available
largest scale, one needs a statistical approach to scan all-sky
CMBR maps in order to draw the correlated circles out of
them. To this end, letn1 = (θ1, ϕ1) andn2 = (θ2, ϕ2)
be the center of two circlesC1 andC2 with angular radius
ν. The search for the matching circles can be performed by
computing the following correlation function [26]:

S(α) =
〈2T1(±φ)T2(φ + α)〉

〈T1(±φ)2 + T2(φ + α)2〉 , (4)

where T1 and T2 are the temperature anisotropies along
each circle,α is the relative phase between the two cir-
cles, and the mean is taken over the circle parameterφ :
〈 〉 =

∫ 2π

0
dφ. The plus(+) and minus(−) signs in (4) cor-

respond to circles correlated, respectively, by non-orientable
and orientable isometries.

For a pair of circles correlated by an isometry (perfectly
matched) one hasT1(±φ) = T2(φ+α∗) for someα∗, which
givesS(α∗) = 1, otherwise the circles are uncorrelated and
so S(α) ≈ 0. Thus a peaked correlation function around
someα∗ would mean that two matched circles, with centers
atn1 andn2, and angular radiusν, have been detected.

From the above discussion it is clear that a full se-
arch for matched circles requires the computation ofS(α),
for any permittedα, sweeping the parameter sub-space
(θ1, ϕ1, θ2, ϕ2, ν), and so it is indeed computationally very
expensive. Nevertheless, such a search is currently in pro-
gress, and preliminary results using the first year WMAP
data indicate the lack of antipodal, and nearly antipodal,

matched circles with radii larger than25◦ [27]. Here ne-
arly antipodal means circles whose center are separated by
more than170◦.

According to these first results (if confirmed), the pos-
sibility that our universe has a torus-typelocal shapeis dis-
carded, i.e. any flat topology with translations smaller than
the diameter of the sphere of last scattering is ruled out.
As a matter of fact, as they stand these preliminary results
exclude any topology whose isometries produce antipodal
images of the observer, as for example the Poincaré dode-
cahedron model [28], or any other homogeneous spherical
space with detectable isometries.

Furthermore, since detectable topologies (isometries) do
not produce, in general, antipodal correlated circles, a little
more can be inferred from the lack or nearly antipodal mat-
ched circles. Thus, in a flat universe, e.g., any screw motion
may generate pairs of circles that are not even nearly antipo-
dal, provided that the observer’s position is far enough from
the axis of rotation [29]. As a consequence, our universe
can still have a flat topology, other than the3-torus, but in
this case the axis of rotation of the screw motion correspon-
ding to a pair of matched circles would pass far from our
position. Similar results also hold for spherical universes
with non-translational isometries generating pairs of mat-
ched circles. Indeed, the universe could have the topology
of, e.g., an inhomogeneous lens spaceL(p, q), but with both
equators of minimal injectivity radius passing far from us
3. These points also make clear the crucial importance of
the position of the observer relative to the ’axis of rotation’
in the matching circles search scheme for inhomogeneous
spaces (in this regard see also [30]).

To conclude, ‘circles in the sky’ is a promising method
in the search for the topology of the universe, and may pro-
vide more general and realistic constraints on the shape and
size of our universe in the near future. An important point in
this regard is the lack of computational less expensive search
for matched circles, which can be archived by restricting (in
the light of observations) the expected detectable isometries,
confining therefore the parameter space of realistic search
for correlated circles as indicated, for example, by Motaet
al. [31].

5 Detectability of cosmic topology

In the previous sections we have assumed that the topology
of the universe is detectable, and focussed our attention on
strategies and methods to discover or even determine a pos-
sible nontrivial topology of the universe. In this section we
shall examine the consequences of this underlying detectabi-
lity assumption in the light of the current astro-cosmological
observations which indicate that our universe is nearly flat
(Ω0 ≈ 1) [32]. Although this near flatness of the uni-
verse does not preclude a nontrivial topology it may push the
smallest characteristic size ofM to a value larger than the

3In spherical geometry, the equators of minimal injectivity radius of an orientable non-translational isometry correspond to the axis of rotation of an
Euclidean screw motion [31].
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observable horizonχhor, making it difficult or even impos-
sible to detect by using multiple images of radiating sour-
ces (discrete cosmic objects or CMBR maps). The extent to
which a nontrivial topology may or may not be detected has
been examined in locally flat [33], spherical [34, 35, 36] or
hyperbolic [37, 38, 39, 36] universes. The discussion below
is based upon our articles [34, 37, 38, 36], so we shall fo-
cus on nearly (but not exactly) flat universes (for a study of
detectability of flat topology see [33]).

The study of the detectability of a possible nontrivial to-
pology of the spatial sectionsM requires topological typical
scale which can be put into correspondence with observation
survey depths. A suitable characteristic size ofM is the so-
called injectivity radiusrinj(x) atx ∈ M , which is defined
in terms of the length of the smallest closed geodesics that
pass throughx as follows.

A closed geodesic that passes through a pointx in a mul-
tiply connected manifoldM is a segment of a geodesic in the
covering spacẽM that joins two images ofx. Since any such
pair of images are related by an isometryg ∈ Γ, the length of
the closed geodesic associated to any fixed isometryg, and
that passes throughx, is given by the corresponding distance
function

δg(x) ≡ d(x, gx) . (5)

The injectivity radius atx then is defined by

rinj(x) =
1
2

min
g∈Γ̃

{ δg(x) } , (6)

where Γ̃ denotes the covering group without the identity
map. Clearly, a sphere with radiusr < rinj(x) and cen-
tered atx lies inside a fundamental polyhedron ofM .

For a specific survey depthχobs a topology is said to be
undetectable by an observer at a pointx if χobs < rinj(x),
since in this case every image catalogued in the survey lies
inside the fundamental polyhedron ofM centered at the
observer’s positionx. In other words, there are no multi-
ple images in the survey of depthχobs, and therefore any
method for the search of cosmic topology based on their
existence will not work. If, otherwise,χobs > rinj(x), then
the topology is potentially detectable (or detectable in prin-
ciple).

In a globally homogeneous manifold, the distance func-
tion for any covering isometryg is constant. Therefore, the
injectivity radius is constant throughout the whole space,
and so if the topology is potentially detectable (or undetec-
table) by an observer atx, it is detectable (or undetectable)
by any other observer at any other point in the same space.
However, in globally inhomogeneous manifolds the injec-
tivity radius varies from point to point, thus in general the
detectability of cosmic topology depends on both the obser-
ver’s positionx and survey depth. Nevertheless, for globally
inhomogeneous manifolds one can define the global injecti-
vity radius by

rinj = min
x∈M

{ rinj(x) } , (7)

and state an’absolute’ undetectabilitycondition. Indeed, for
a specific survey depthχobs a topology is undetectable by

any observer (located at any pointx) in the space provided
thatrinj > χobs.

Incidentally, we note that for globally inhomogeneous
manifolds one can define the so-called injectivity profile
P(r) of a manifold as the probability density that a point
x ∈ M has injectivity radiusrinj(x) = r. The quan-
tity P(r)dr clearly provides the probability thatrinj(x) lies
betweenr andr + dr, and so the injectivity profile curve is
essentially a histogram depicting how much of a manifold’s
volume has a given injectivity radius (for more detail on this
point see Weeks [39]). An important point is that the injec-
tivity profile for non-flat manifolds of constant curvature is
a topological invariant since these manifolds are rigid.

In order to apply the above detectability of cosmic to-
pology condition in the context of standard cosmology, we
note that in non-flat RW metrics (1) , the scale factorR(t) is
identified with the curvature radius of the spatial section of
the universe at timet, and thusχ can be interpreted as the
distance of any point with coordinates(χ, θ, φ) to the origin
(in the covering space) in units of curvature radius, which is
a natural unit of length.

To illustrate now the above condition for detectability
(undetectability) of cosmic topology, in the light of recent
observations [1, 32] we assume that the matter content of
the universe is well approximated by dust of densityρm plus
a cosmological constantΛ. In this cosmological setting the
curvature radiusR0 of the spatial section is related to the
total density parameterΩ0 through the equation

R2
0 =

kc2

H2
0 (Ω0 − 1)

, (8)

whereH0 is the Hubble constant,k is the normalized spatial
curvature of the RW metric (1), and where here and in what
follow the subscript0 denotes evaluation at present timet0.
Furthermore, in this context the redshift-distance relation in
units of the curvature radius,R0 = R(t0), reduces to

χ(z) =
√
|1− Ω0|

∫ 1+z

1

dx√
x3Ωm0 + x2(1− Ω0) + ΩΛ0

,

(9)
whereΩm0 and ΩΛ0 are, respectively, the matter and the
cosmological density parameters, andΩ0 ≡ Ωm0 + ΩΛ0.
For simplicity, on the left hand side of (9) and in many pla-
ces in the remainder of this article, we have left implicit the
dependence of the functionχ on the density components.

A first qualitative estimate of the constraints on detecta-
bility of cosmic topology from nearflatness can be obtained
from the functionχ(Ωm0, ΩΛ0, z) given by (9) for a fixed
survey depthz. Fig. 2 clearly demonstrates the rapid way
χ drops to zero in a narrow neighbourhood of theΩ0 = 1
line. This can be understood intuitively from (8), since the
natural unit of length (the curvature radiusR0) goes to in-
finity asΩ0 → 1, and therefore the depthχ (for any fixed
z) of the observable universe becomes smaller in this limit.
From the observational point of view, this shows that the de-
tection of the topology of the nearly flat universes becomes
more and more difficult asΩ0 → 1, a limiting value favou-
red by recent observations. As a consequence, by using any
method which relies on observations of repeated patterns the
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topology of an increasing number of nearly flat universes be-
comes undetectable in the light of the recent observations,
which indicate thatΩ0 ≈ 1.
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Figure 2. The behaviour ofχ(Ωm0, ΩΛ0, z) for a fixedz = 1100
as a function of the density parametersΩΛ0 andΩm0 .

From the above discussion it is clear that cosmic topo-
logy may be undetectable for a given survey up to a depth
zmax, but detectable if one uses a deeper survey. At present
the deepest survey available corresponds tozmax = zLSS ≈
103, with associated depthχ(zLSS). So the most promising
searches for cosmic topology through multiple images of ra-
diating sources are based on CMBR.

To quantitatively illustrate the above features of the de-
tectability problem, we shall examine the detectability of
cosmic topology of the first ten smallest (volume) hyperbo-
lic universes.

To this end we shall take the following interval of the
density parameters values consistent with current observa-
tions: Ω0 ∈ [0.99, 1) and ΩΛ0 ∈ [0.63, 0.73]. In this
hyperbolic sub-interval one can calculate the largest value
of χobs(Ωm0, ΩΛ0, z) for the last scattering surface (z =
1100), and compare with the injectivity radiirinj to decide
upon detectability. From (9) one obtainsχmax

obs = 0.337 .

TABLE I. Restrictions on detectability of cosmic topology for
Ω0=0.99 with ΩΛ0 ∈ [0.63, 0.73] for the first ten smallest known
hyperbolic manifolds. HereU stands for undetectable topology
with CBMR (zmax = 1100), while the dash denotes detectable in
principle.

Manifold rinj CMBR

m003(-3,1) 0.292 —
m003(-2,3) 0.289 —
m007(3,1) 0.416 U
m003(-4,3) 0.287 —
m004(6,1) 0.240 —
m004(1,2) 0.183 —
m009(4,1) 0.397 U
m003(-3,4) 0.182 —
m003(-4,1) 0.176 —
m004(3,2) 0.181 —

Table I summarizes our results which have been refined
upon and reconfirmed by Weeks [39]. It makes explicit that
there are undetectable topologies even if one uses CMBR.

We note that similar results hold for spherical universes
with values of the density parameters within the current ob-
servational bounds (for details see [34, 35, 36]). This makes
apparent that there exist nearly flat hyperbolic and spherical
universes with undetectable topologies forΩ0 ≈ 1 favoured
by recent observations.

The most important outcome of the results discussed in
this section is that, as indicated by recent observations (and
suggested by inflationary scenarios)Ω0 is close (or very
close) to one, then there are both spherical and hyperbolic
universe whose topologies are undetectable. This motivates
the development of new strategies and/or methods in the se-
arch for the topology of nearly flat universes, perhaps based
on the local physical effect of a possible nontrivial topology.
In this regard see [40-45], for example.

6 Recent results and concluding re-
marks

In this section we shall briefly discuss some recent results
and advances in the search for the shape of the universe,
which have not been treated in the previous sections. We
also point out some problems, which we understand as im-
portant to be satisfactorily dealt with in order to make further
progress in cosmic topology.

One of the intriguing results from the analysis of WMAP
data is the considerably low value of the CMBR quadru-
pole and octopole moments, compared with that predicted
by the infinite flatΛCDM model. Another noteworthy fea-
ture is that, according to WMAP data analysis by Tegmark
et al. [46], both the quadrupole and the octopole moments
have a common preferred spatial axis along which the power
is suppressed4.

This alignment of the low multipole moments has been
suggested as an indication of a direction along which a pos-
sible shortest closed geodesics (characteristic of multiply
connected spaces) of the universe may be [47]. Motiva-
ted by this as well as the above anomalies, test usingS-
statistics [48] and matched circles furnished no evidence of a
nontrivial topology with diametrically opposed pairs of cor-
related circles [47]. It should be noticed, however, that these
results do no rule out most multiply connected universe mo-
dels becauseS-statistics is a method sensitive only to Eu-
clidean translations, while the search for circles in the sky,
which is, in principle, appropriate to detect any topology,
was performed in a limited three-parameter version, which
again is only suitable to detect translations.

At a theoretical level, although strongly motivated by
high precision data from WMAP, it has been shown that if a
verynearly flat universe has a detectable nontrivial topology,

4Incidentally, it was the fitting to the observed low values of the quadrupole and the octopole moments of the CMB temperature fluctuations that moti-
vated Poincaŕe dodecahedron space topology [28], which according to ’cirlces in the sky’ plus WMAP analysis is excluded [27]. Nevertheless, the Poincaré
dodecahedron space proposal was an important step in cosmic topology to the extent that for the first time a possible nontrivial cosmic topology was tested
against accurate CMBR data.
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then it will exhibit the generic local shape of (topologically)
R2 × S1 or more rarelyR × T2 , irrespective of its global
shape [31]. In this case, from WMAP and SDSS the data
analysis, which indicates thatΩ0 ≈ 1 [32], one has that
if the universe has a detectable topology, it is very likely
that it has a preferred direction, which in turn is in agree-
ment with the observed alignement of the quadrupole and
octopole moments of the CMBR anisotropies. In this con-
text, it is relevant to check whether a similar alignment of
higher order multipole (̀ > 3) takes place in order to rein-
force a possible nontrivial local shape of our3–space. In
this connection it is worth mentioning that Hajian and Sou-
radeep [49, 50] have recently suggested a set of indicators
κ` (` = 1, 2, 3, ...) which for non-zero values indicate and
quantify statistical anisotropy in a CMBR map. Although
κ` can be potentially used to discriminate between different
cosmic topology candidates, they give no information about
the directions along which the isotropy may be violated, and
therefore other indicators should be devised to extract ani-
sotropy directions from CBMR maps.

In ref. [31] it has also been shown that in a very nearly
flat universe with detectable nontrivial topology, the obser-
vable (detectable) isometries will behave nearly like trans-
lations. Perhaps if one use Euclidean space to locally ap-
proximate a nearly flat universe with detectable topology,
the detectable isometries can be approximated by Euclidean
isometries, and since these isometries are not translations,
they have to be screw motions. As a consequence, an appro-
ximate local shape of a nearly flat universe with detectable
topology would look like atwistedcylinder, i.e. a flat mani-
fold whose covering group is generated by a screw motion.
Work toward a proof of this conjecture is being carried out
by our research group.

Before closing this overview we mention that the study
of the topological signature (possibly) encoded in CMBR
maps as well as to what extent the cosmic topology CMBR
detection methods are robust against distinct observational
effects such as, e.g., Suchs-Wolfe and the thickness of the
LSS effects, will benefit greatly from accurate simulations
of these maps in the context of the FLRW models with mul-
tiply connected spatial sections. A first step in this direc-
tion has been achieved by Riazueloet al. [51], with special
emphasis on the effect of the topology in the suppression
of the low multipole moments. Along this line it is worth
studying through computer-aided simulations the effect of
a nontrivial cosmic topology on the nearly alignments of
the quadrupole and the octopole moments (spatial axis along
which the power is suppressed).

To conclude, cosmic topology is at present a very active
research area with a number of important problems, ranging
from how the characterization of the local shape of the uni-
verse may observationally be encoded in CMBR maps, to
the development of more efficient computationally searches
for matching circles, taking into account possible restricti-
ons on the detectable isometries, and thereby confining the
parameter space which realistic ‘circles in the sky’ searches
need to concentrate on. It is also of considerable interest the
search for the statistical anisotropy one can expect from a
universe with non-trivial space topology. Finally, it is im-

portant not to forget that there are almost flat (spherical and
hyperbolic) universes, whose spatial topologies are undetec-
table in the light of current observations with the available
methods, and our universe can well have one of such to-
pologies. In this case we have to devise new methods and
strategies to detect the topology of the universe.
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[25] M. Lachièze-Rey and J.-P. Luminet, Phys. Rep.254, 135
(1995) ;
J.J. Levin, Phys. Rep.365, 251 (2002).

[26] N.J. Cornish, D. Spergel, and G. Starkman, Class. Quantum
Grav.15, 2657 (1998).

[27] N.J. Cornish, D.N. Spergel, G.D. Starkman, and E. Ko-
matsu, Constraining the Topology of the Universe, astro-
ph/0310233.

[28] J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq, and J.-P.
Uzan, Nature425, 593 (2003).

[29] G.I. Gomero,‘Circles in the Sky’ in twisted cylinders, astro-
ph/0310749.

[30] A. Riazuelo, J. Weeks, J.-P. Uzan, and J.-P. Luminet,Cosmic
microwave background anisotropies in multi-connected flat
spaces, astro-ph/0311314.

[31] B. Mota, G.I. Gomero, M.J. Reboucas, and R. Tavakol, Class.
Quantum Grav.21, 3361 (2004). Also astro-ph/0309371.

[32] M. Tegmark et al.,Cosmological parameters from SDSS and
WMAP, astro-ph/0310723.

[33] G.I. Gomero and M.J. Rebouças, Phys. Lett. A311, 319
(2003).

[34] G.I. Gomero, M.J. Rebouças, and R. Tavakol, Class. Quan-
tum Grav.18, 4461 (2001).

[35] J. Weeks, R. Lehoucq, J.-P. Uzan, Class. Quant. Grav.20,
1529 (2003).

[36] B. Mota, M.J. Rebouças, and R. Tavakol, Class. Quantum
Grav.20, 4837 (2003);

B. Mota, M.J. Rebouças, and R. Tavakol, Consequences of
Observational Uncertainties on Detection of Cosmic Topo-
logy, astro-ph/0403310.

[37] G.I. Gomero, M.J. Rebouças, and R. Tavakol, Class. Quan-
tum Grav.18, L145 (2001).

[38] G.I. Gomero, M.J. Rebouças, and R. Tavakol, Int. J. Mod.
Phys. A17, 4261 (2002).

[39] J.R. Weeks, Mod. Phys. Lett. A18, 2099 (2003).

[40] W. Oliveira, M.J. Rebouças, and A.F.F. Teixeira, Phys. Lett.
A 188, 125 (1994).

[41] A. Bernui, G.I. Gomero, M.J. Rebouças, and A.F.F. Teixeira,
Phys. Rev. D57, 4699 (1998).

[42] M.J. Rebouças, R. Tavakol, and A.F.F. Teixeira, Gen. Rel.
Grav.30, 535 (1998).

[43] G.I. Gomero, M.J. Rebouças, A.F.F. Teixeira, and A. Bernui,
Int. J. Mod. Phys. A15, 4141 (2000).

[44] D. Muller, H.V. Fagundes, and R. Opher, Phys. Rev. D63,
123508 (2001).

[45] D. Muller, H.V. Fagundes, and R. Opher Phys. Rev. D66,
083507 (2002).

[46] M. Tegmark, A. de Oliveira–Costa, and A.J.S. Hamilton,A
high resolution foreground cleaned CMB map from WMAP,
astro-ph/0302496.

[47] A. de Oliveira–Costa, M. Tegmark, M. Zaldarriaga, and
A.J.S. Hamilton,The significance of the largest scale CMB
fluctuations in WMAP, astro-ph/0307282.

[48] A. de Oliveira–Costa, G.F. Smoot, and A.A. Starobinsky, As-
trophys. J.468, 457 (1996).

[49] A. Hajian and T. Souradeep,Statistical Isotropy of CMB and
Cosmic Topology, astro-ph/0301590.

[50] A. Hajian and T. Souradeep,Measuring Statistical Isotropy
of the CMB Anisotropy, astro-ph/0308001.

[51] A. Riazuelo, J.-P. Uzan, R. Lehoucq, and J. Weeks,Si-
mulating Cosmic Microwave Background maps in multi-
connected spaces, astro-ph/0212223.


