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In the present paper we consider the vortex lattice properties of a square superconductor such as the vortex
patterns, the Gibbs free energy, the magnetization, and the depairing critical current density. We show that this
last quantity shows a matching effect, that is, it shows a discontinuous behavior as a function of the applied
magnetic field.

1 Introduction

Recent progresses in nanotechnology have made possible
the fabrication of mesoscopic superconducting materials
with the size comparable to the coherence length ξ and the
London penetration depth λ. This has motivated both exper-
imental and theoretical physicists to investigated the mag-
netic properties of these small superconductors. The prop-
erties of the vortex lattice in superconductors of confined
geometries change radically with respect to their features in
the bulk.

The critical current density of a film of finite thickness
has been investigated by Mawatari and Yamafuji [1]. They
have shown that the critical current density (associated with
an applied transport current), exhibits a matching effect, that
is, this quantity decreases discontinuously in small steps as
the magnetic field, uniformly applied to the film, increases.

More recently, one of the present authors [2] has consid-
ered a more general scenario of a film of finite cross section,
namely, with finite width a and also with finite thickness b.
However, only the shape of the vortex lattice and magnetiza-
tion were studied; in addition, new expressions for the free
energy and the local magnetic field have been found. In the
present work, we will go a little further by considering the
depairing critical current density.1 In our previous work,
the field distribution and energy were determined for any fi-
nite values of a and b. So we can use those results for the
case of (a, b) comparable to the fundamental lengths (ξ, λ).
However, our approach has a limitation concerning the num-
ber of vortices allowed inside the sample. Because we use

London theory which supposes that the nearest neighbor dis-
tances between the vortices is much larger than the coher-
ence length ξ, we are restricted only to a sufficiently small
number of vortices.

Very recently, Mel’nikov et al. [3] have analyzed the
vortex lattice of a square mesoscopic superconductor of very
small size, 8ξ × 8ξ, in the context of Ginzburg-Landau the-
ory. They have found some exotic configurations like vor-
tex molecules and multiquanta vortices. Similar results have
been independently reported by Doria and Zebende [4]. In
our work we find only singly quantized vortex configura-
tions because of the limitations of London theory previously
mentioned.

In what follows we will first outline the theoretical
model in which we will be based on. Secondly, we will dis-
cuss the numerical method we use to find the vortex config-
urations which minimize the free energy. Thirdly, and last,
we will discuss the results for the critical fields, the vortex
profiles, the magnetization, and the depairing critical current
density of a square superconductor.

2 The Theoretical Model

Let us consider a very long cylinder of rectangular cross sec-
tion of sides a and b. The applied field is parallel to the
cylinder axis. Using appropriate boundary conditions and
London theory, it was found in Reference [2] that the local
magnetic field is given by

�
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1Notice that this a more fundamental quantity than that considered in Reference [1]. It is the current density near the vortex core where it achieves its
highest value. Currents above this value will break apart the superconducting Cooper pairs.
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where (xi, yi) is the position of the i-th vortex, α2
m = [1+(mπλ/b)2], H is the applied field, and G(x, y, x′, y′) is the Green’s

function which is given by
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1
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where

gm(x, x′) =
1

2λαm sin(αma/λ)
{cosh[αm(|x − x′| − a)λ] − cosh[αm(x − x′)/λ]} (3)

In what follows we will work in the limit (mπλ/b)2 � 1. Within this limit, the summation in m can be evaluated exactly.
Proceeding similarly to Reference [1] we obtain

G(xi, yi, xj , yj) =
1

4πλ2

{
ln

[
cosh[π|xi − xj |/b]− cos[π(yi + yj)/b]
cosh[π|xi − xj |/b]− cos[π(yi − yj)/b]

]

− ln
[
cosh[π(a − xi − xj)/b] − cos[π(yi + yj)/b]
cosh[π(a − xi − xj)/b] − cos[π(yi − yj)/b]

]

− ln
[
cosh[π(a + xi + xj)/b] − cos[π(yi + yj)/b]
cosh[π(a + xi + xj)/b] − cos[π(yi − yj)/b]

]}
. (4)

In the short range distance limit, London theory must be regularized, since G is infinite for (x, y) = (x ′, y′). We overcome
this difficulty by introducing a sharp cutoff in which |x − x ′| is replaced by ξ. By taking the limit (b/πξ) � 1 we obtain
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In Reference [2] it was also determined the Gibbs free energy of the vortex system. We found
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Finally, we quote the result for the magnetization 4πM = H −B, where B is the average magnetic induction and is given
by
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These formulae constitute the basis of our discussion of
the vortex configurations, energy, magnetization, and the de-
pairing critical current density.

3 Critical Fields and Vortex Configu-
rations

The calculation of the applied field sufficient for the en-
trance of another vortex, provided that N vortices have al-
ready penetrated in the sample, was done considering that
the Gibbs free energy is continuous at the transition from
N - to (N + 1)-vortex state,

GN − GN+1 = 0 . (8)

The root of this equation determines a series of critical
fields HsN (with Hs1 = Hc1, the lower critical field). Since
the vortex positions (xi, yi) depend on the applied field H ,
(8) is a transcendental equation. So we can solve it only nu-
merically. We have done this by using the routine ZBRENT

[5]. For a fixed value of H , the vortex state is determined
by minimizing the free energy GN (H). This process is re-
peated for several values of H until (8) converges to a fixed
value HsN .

The minimization of GN (H) is carried out by using the
simulated annealing method [6]. Within this method sev-
eral vortex configurations are randomly generated. By using
the Metropolis algorithm, the simulated annealing method
lead the system to the most promising configuration. This
method, carried out with sufficient care, usually leads us to
the global minimum vortex configuration.

4 Results

In what follows, energy is in units of G0 = (Φ0/4πλ2)2 and
fields in units of H0 = Φ0/4πλ2. The vortex configurations
were determined for the case a = b = 0.5λ and κ = 100,
for several values of N . The results are shown in Fig. 1.
Notice that in all cases there is at least one symmetry axis,
namely, the y-axis.

Figure 1. The local magnetic field profile for N = 5, 6, 7, 8 vortices.

Using the same value of κ as quoted above we deter-
mined the Gibbs free energy for three different square di-
mension 0.5λ × 0.5λ, 0.45λ × 0.45λ, 0.4λ × 0.4λ. The

results are illustrated in Fig. 2. As can be seen, by decreas-
ing the square size, the energy tends to increase more slowly
as a function of the H field. Nevertheless, in all cases stud-
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ied the free energy is far from achieving a constant value
as H increases. When G goes to a constant the supercon-
ductor returns to its normal state since the magnetization
M ∝ ∂G/∂H = 0. This behavior of the energy is more
evident for the cases in which the size of the square is of
order ξ [7]. This scenario could never be achieved in the
present context we study the vortex lattice, since the den-
sity of vortices would be so high that London theory breaks
down.
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Figure 2. The Gibbs free energy as a function of the applied field
H ; we have subtracted from the free energy its value in the Meiss-
ner state, that is, the last but one term in equation (6). The discon-
tinuities of the energy signals the entrance of another vortex.

The magnetization was also calculated for a 0.5λ×0.5λ
square. The result is shown in Fig. 3. Notice that the magne-
tization shows a series of sharp peaks. Each one signals the
entrance of a new vortex. In contrast to what occurs with a
rectangular superconductor [2], the peaks are much more in-
tense and the distances between the critical fields are much
larger. Thus, the energy cost in creating a new vortex is
much higher. Notice also that the sequence of peaks are less
regular than for a rectangular superconductor [2].

Finally, we calculated the depairing critical current den-
sity. Although the geometry does not allow us to consider
the vortex as a circle, we took this approximation. So it is
sufficient to evaluate one component of the current density
such as Jy(xj + ξ, yj); at (xj + ξ, yj), Jx vanishes since
the vortex is circular. In the calculation, we also included
the Meissner currents. Because of the proximity with the
surface, the value of the current density near the core may
change its value from vortex to vortex. This makes difficult
the comparison with the depairing critical current density of
an bulk superconductor, J0 = cΦ0/8π2λ2ξ [8]. To over-
come this difficulty, we made a global comparison by calcu-
lating ∆J =

∑N
j=1 Jy(xj + ξ, yj) − NJ0. The term NJ0

represents the sum of all current densities as if no surface is
present. The other term is its equivalent one for a rectangu-
lar superconductor. In Fig. 4 we present the result for ∆J .

Notice that as the applied field increases, the difference in
the current density decreases. In addition, the current den-
sity shows a series of discontinuities (matching effect), sim-
ilar to what occurs with the magnetization. We must address
that this behavior has been observed in the transport critical
current density [1], but not the more fundamental quantity,
the depairing critical current density.
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Figure 3. Magnetization as function of the applied field H .
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Figure 4. Depairing critical current density as a function of the
applied field H .
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