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We extend a Fokker-Planck formalism, previously used to describe the behavior of a cooling granular gas,
with a Hertzian contact potential and viscoelastic radial friction, giving a velocity dependent coefficient of
restitution. In the present work, we study the more general case of a steady-state with finite kinetic energy, far
from equilibrium, due to the coupling to an external energy-feeding mechanism. Also from first-principles, we
extend the validity of the former results.

1 Introduction on a first-principles expansion around equilibrium [12], ki-
netic theory methods [18], Monte Carlo methods or molec-
The problem of a granular gas (GG) at a steady-state, un-ular dynamics simulations [19]. Most of these are effec-
der the action of an energy feeding mechanism, has beeriive approaches that ignore the detailed collisional dynam-
extensively studied by means of theoretical [1, 2, 3] and ex- ics. Some authors did indeed take the time dependence for
perimental methods [4, 5]. A GG presents many interest- the collisional dynamics into account in their models [20].
ing and non-trivial properties concerning its statistical be- Naturally, most models in the literature are base@gos-
havior, such as non-Gaussian velocity distributions [4, 6], teriori justifications for their assumptions.
energy equipartition breakdown [6, 7], vortices and cluster- We believe our model can show its usefulness in help-
ing [8, 9, 10]. These interesting properties are a direct con-ing to set some of the stochastic and kinetic theory models
sequence of the inelastic behavior of a GG. No matter howused to describe granular gases in better theoretical footing.
small, any amount of inelasticity will make a GG completely It explores the same expansion methods [14] used to de-
different, in long times, from an elastic molecular gas. For rive stochastic equations for granular gases in the rapid flow
instance, no matter how small the inelasticity is, the GG will state. In special, careful steps are taken to ensure that an
eventually lose all its internal kinetic energy [11]. However, appropriate non-equilibrium steady-state is correctly taken
a more fundamental approach unifying all these aspects ofinto account as the basis for the expansions methods. The
granular physics is still laking [13]. Fokker-Planck equation thus obtained can be used as the
With the goal of obtaining a basic first-principles ap- starting point for the development of kinetic theory meth-
proach to the problem of an inelastic GG, Schofield and 0ds appropriate for granular gases. For didactic reasons, we
Oppenheim [12] derived a set of Fokker-Planck equations keep most of the calculation details in the main body of the
for the distribution of positions and velocities for the grain's text.
centers of mass of a GG at the (not necessarily homoge- In order to maintain our model system in a constant en-
neous) cooling state (no energy-feeding mechanism) tendingergy steady-state, we make use of the democratic model of
to true thermal equilibrium. This is a very general method energy feeding and derive the inelastic Boltzmann equation
that depends on a time-scale separation between the internah that context. This mechanism is used because of its prac-
relaxation processes of a grain (fast variables) and the evodicallity. More realistic energy-feeding mechanisms can be
lution of the long wavelength phenomena for the GG (slow modeled [6, 7]. It should be noticed that the typical granu-
variables) [14]. It gives the velocity dependence for the co- lar energies for the GG steady state, compared to that of the
efficient of restitution found elsewhere [15, 16, 17]. thermal equilibrium situation, may typically be of the order
In the present work, we introduced a well known energy- of 10 or larger.
feeding mechanism to extend the validity of that previous This paper is organized as follows. In Section II, we de-
approach to a GG in a steady-state of finite granular kinetic scribe the microscopic model. In Section lll, we describe
energy. The basic steps leading to an equation describinghe energy-feeding mechanism used in the paper. In Section
the time-evolution for the distribution include postulating 1V, we eliminate the fast degrees of freedom for the sys-
the inelastic Boltzmann-Enskog equation [8, 9], adding en- tem and obtain the appropriate Fokker-Planck equations and
ergy feeding mechanisms such as the “democratic” vibra-the viscoelastic friction coefficient. In Sections V, VI, VII
tion model [1], and deriving Fokker-Planck equations based and VIII, we obtain the BBGKY hierarchy and proceed to
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make the multiple time-scale analysis and to obtain the ap-cles. The positions and momenta of the grains are defined
propriate Boltzmann equation for the GG. In Section IX, a below:
Sonine polynomials expansion is obtained for the distribu-

tion and its moments analyzed. In Section X, we analyze the r¥ = {ry,rs,...,rn} andp” = {p1,p2...., PN}
properties of the steady-state distribution. In Section XI, we ) ] .
summarize the results and make our concluding remarks. The microscopic degrees of freedom are atomic coor-

dinates¢™~ and atomic momenta™~ (-, 7N = 0)
associated to each atom of every grain. We can simplify the

2  Fokker-Plank approach notation by grouping these two sets of coordinates into:

— MN _MN — N N
= d = .
We will follow closely the method used by Schofield and = {8, 7 andyr = {7}

Oppenheim [12] and study a system/$fspherical, smooth Thus, the complete Hamiltonian can be partitioned as
and identical grains of mass constituted byM atoms,
M > 1. The grains are large enough making quantum H(xr,xr) = Hi(xr) + Hi(x1) + o(xr,x1), (1)

effects irrelevant. The only frictional forces acting on the
particles are radial, along the collisional axis for two parti- where the terms above are given in the sequence.

]
The granular Hamiltonian:
Y p; N p"? N
Hi(xr) = 221;1 +U(r )E%‘FU(I‘ ). 2
1=1
The internal Hamiltonian:
N M ﬂ_2 7TN2
Hixr) = Y».> 2—; +V(ENM) = ot V(EN). (3)

i=1 =1

The interaction (coupling) term:

N M
dxrxr) = Y Y oy [Em = Gal) = o™, &Y. @)

i,j=11l,m=1

[

The probability density for the system evolves according 3 Energy feeding - Democratic Model
to the Liouvillian operator defined by:
For dissipative systems, the rate of kinetic energY loss

L=Li+Lr+Lg due to the inelasticity during the collisions is given by
where
Py OE o /PN .PN
LT:—7~VTN+VTNU'VPN, v = =
m ot Dissipation ot 2m Dissipation
7TN
Li=—— -Ven +VenV-Von, PN . PV
poot ¢ = / dxrdxi Lp(xrxi.t) (6)
and In order to keep the system | trivial steady-stat
o n order to keep the system in a non-trivial steady-state,
Ly = . . . . e . .
¢ = Ving - Vpx + Veng - Vo itis necessary to feed kinetic energy into it. In the sequence,
The Liouville equation reads we describe the so-called democratic model [1], which is
equivalent to coupling the GG with a granular heat-bath.
Oy pOxrxant) = Lp(xr xiit) (5) We assume that each grain in the system will periodi-

cally gain random momentum. That momentum is assumed
In the expression above, we need to average out theto be a vectorial random variable, with fixed amplitude (in
terms containing internal degrees of freedom in order to ob-fact it is a set of N random variables)
tain an effective equation for the remaining granular degrees
of freedom. N = ¢V,
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where the unit vector is uniformly distributed on the to a shift that can be written as
sphere. It obeys:

Vv

PN pN 4N xat) = €5 VP N pN xr ). (7

- 1
<{>=0 and <(>==¢%
2 We assume that all grains are hit periodically, and simul-
The effect on the distributiop(-~ »™ x1,t) corresponds  taneously, with a period,. The heating rate corresponds to

]

Ty~
ot 2m Heating

2 2
= / ) {1<V N -V Np(r ,XI; }+O(C ()

2m 70

OF
En NN 4N xnt) — prN N xt))
t Heating

Itis necessary to take the limifsy — 0, keeping the ratig% = M, fixed. We obtain exactly:

oF
8) = M; / NN xat) )
t Heating
[
Hence, the time evolution term for the distribution, cor- scopic (fast) degrees of freedom through an averaging pro-
responding to the interaction with the heat bath, will be: cess [21]. Thus, our goal is to find an effective equation for

the reduced granular distribution:
MCVPN . va p(rN,pN,XI,t).
The full Liouville-like Master Equation for the GG (now W (xrt) = /dXI Plxrxit) (11)
an open system) becomes

@) We use the method of eliminating the fast variables [14,
21]. The idea is to consider some naturally occurring small
Steady-state distribution: parameter that sets the time-scale differences. In previous

In order to study the GG's steady-state, we need to makemOdels for granular systems, that role was played by the

suitable expansions around a reference state. Our goal is tgnass ratiee = /; [12] reflecting the large number of
use a reference state that approximates the true s:teady-sta?e%omS constlturt:ng a grain. However, for a fr ealistic granular
solutionpss (x1, xr). That state can be chosen by noticing steady-state, the parametehas to be modified in order to
that a typical steady-state has its internal and granular detalke into account that the granular temperature

grees of freedom almost uncorrelated. A suitable state for

0
oy POxrxat) = {L+McVpn - Von } plerxat).

2
expansions is given by T, = <p>
) 3m
— —B(Hi+9) 9
Zf (xr)e ’ © obeysT, > kgT. Since
wheref (xr) = [ dxrpss (x1, xr), and P2 2

—va NT,and—w ~ kpT,
7 = / dxrdxrf (xr) e PHI+), (10) m ! et ~ ka

The form of Eq. 9 is not the same as the steady-state sothe parameter ~ “¢ ~ fj} T
lution pss but it will stand for the expansion reference state aration for the granular gas. A typical value for it is of the
used for obtaining a stochastic equation for the distribution order10~3 whereas for previous models [12] it was of the
of the granular degrees of freedom. order of10~9. The Liouville equation can be rewritten in
a way that makes explicit the role ef associated with the

4 Elimination of fast degrees of free- > Paton-i2l

dom Op=LOp4+LWp, (12)

The exact Liouville-like equation, Eq. 8, is unmanageable Where
and can only be made tractable by eliminating the micro- LO =Li+ Veng - Vox
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and we can write
1
LW =Ly + Ve - Vpx + 552va VN, oy = eAy+eBz, (17)
Oz = FEz+4+eCy+eDz, (18)
In order to average over the fast degrees of freedom, we
define a projection operatd?, projectingp onto the fast  where
variables, and its complemegt = 1 — P. The projection
operator must satisfy [14] (see appendix) y Pp, z = Qp,
A = PP, B=PLWQ C=9oLWP,

PLO =0 and LOP=0. (13)
oL, E=0L"o.

A solution is given by the projection operatpracting

upon a dynamical variable = g(xr,x:,t) as

Pg = 0(rx1) / dxry g(xr Xt (14)

whereg is a function of the form of Eq. 9:

_ e~ BHI+¢)
o) = g eI+ 3)

where we see thaf dx: 6(r,x1) = 1.

By switching to the slow time scale= «t we obtain

0sy = Ay+ Bz, (19)
Osz = %EerCerDz. (20)

We use an expansion feras a function of the parameter

o = Z(O> + 82’(1) + 522(2) + ... (21)

and substitute it foe in Eqg. 20. By grouping terms of equal

The following identities guarantee that the condition order ine we have
given by Eq. 13 is satisfied:

Ez9 = o, (22)
/dXI (Li+Veng-Von) =0 PR EzM 4+ Cy+ D20, (23)
and From above, we obtain the solution fof) andz(1):

(LI +V£N¢'V7TN)§: 0

We multiply Eq. 12 on the left by? and also byQ in
order to obtain

29 =0andzY = —E~'Cy. (24)

By substituting the expression fef") in Eq. 19, we ob-
(15) tain an equation foy

ePLMPp 4+ PLY Qp,
QL™ Qp + QLM Pp 4 QLM Qp. (16)

3{Pp
5:& Q,O =

By using the fact that the projectors obey
and Q%= 0,

dsy = Ay —eBE~'Cy. (25)

Now, it is necessary to compute the right hand side of

P2=P, PQ=QP=0, the equation above. The first term is given by:

]

Ay = PLWOy = 5(0) (L + (Vax @), - Vpx + MeVpn - Vo )Wk ), (26)

where(V,~¢), = [ dxi pV,.~¢. In order to find the second term, we need to calculate

Cy = QLWpy
= {0 H{Lr + MV - Vv JWixer.t)
+Wixr ) Q{Lra(rx1)} + Vv Wixr,t) - Q{00 x1) Vv ¢}, (27)

where the first term of the right hand side cancels identically. By writingexplicitly in the second term we obtain

W) Q{Lrdtra) ) = W) Q{ (=B - w,8)80ron) } = Wi { =5 - v,v 8(rx) }
It is easy to show that [12]
VTN é(T’XI) = _ﬁé(rvxI)V/T-\Nd)
where
A\(XTlevt) = Axroxit) — /dXI 0(rx1) Alxr.x1.b)-
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Hence N
W e, ) Q{Lrdtran)} = Wixr )88 B - Vv g,
and . N
Cy = é(T‘,XI)VT.N(]S . {ﬂ% =+ va }W(XT,t). (28)
In order to operaté3 ontoC'y, we write B in a suitable way
B = PLMQ
= 0(rx1) / dxi (Lt +V,~no- va + M(VPN . va)Q
= @(T,XI)(LT =+ VTN(ZS . va) /d}a Q + @(T,XI) / dXI VTN(b . va Q
Using that
[ao=0,
we obtain
B = @(T,XI) / dX[V,,,N(b . VPN Q (29)
Therefore N
_ — P
BE1Cy = g [ daVond - Vs QE g Fovd- (3 + Von }Wer. (30)

where the inverse operator &fcan be written as [12, 21]

O
E~! :—/ e dr
0

By substituting this into Eq. 30, we have

o] . bo— pN
BE™'Cy = —(rxn) / dxl{ / dr oo Vynde™” erfzﬁ}: Vv {8— + Ve~ Wixr )

0 m

(31)
SinceL?" = (L1 + Ven g - Von) = —(Li + Vend - Von), we obtain
PN
BE_le = —é(r,XI)F(rN)i VpN {[37 + VPN }W(XT,t) (32)
where -
Lo = [ ar(@ae T, (33)
0

Adding up the results above, and switching back to the time-gcalezs, we obtain a Fokker-Planck equation for the
reduced granular distribution

OWxrt) = eLp+(V,nod), Vv + Medp - Vpn )Wixr.t)
+e%I(): Vpn {ﬂ% + Vpn W (xr,t). (34)
The equation above can be expressed in a more convenient form as [12]
OWixr,t) = E(LT + <VrN ¢>o : VpN + MCVpN : va )W(XT»t)

1 £ (pi — pk)
+552 ; Yirtiktit (Vp, — Vp ) {(Vp, — V) + B

}W(XT 7t)7 (35)

where, for short-ranged potentials, the radial friction coefficient is given by [1,15,22]

Yik E/ drl(ri,rin,) :/ d7<m[677L(0)]m>o (36)
0 0
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Eqg. 35 has the same form as the one obtained bynumber density of the system and the rate of energy feeding.
Schofield and Oppenheim [12], except for a new energy-
injecting term. This fact shows their coherence ambste-
riori justifies their use in deriving the behavior of a system 5§ BBGKY Hierarchy
of grains withT, > kg7 [15]. We have now established
the correct form for the basic equation of our model and |n the following we simplify the notation by letting,, stand
can proceed to study some of their physical properties. Thefor (r,,, p,,). We define the reduced distributions below
Fokker-Planck equation 35 is the starting point for the hy-
drodynamic analysis. Its validity is based on the separation £ — d Iy oW 37)
of internal and granular time-scales given by the condition ~ (N —n)! / Xnt1 - - AXN W Gersb):
that the parameterhas to be small. However, in order to de-
rive, from Eq. 35, the hydrodynamic equations appropriated By integrating Eq. 35 and using the definition of Eq. 37,
for the granular steady-state, we need a few more physicalwe can compute the equations for the one-particle density
assumptions, concerning the rate of energy dissipation, thef(!) and pair densityf (?). For f(1) that reads [12]:

]

0 1 —
af(l) + Epl : vh f(l) = /d‘x?(lezU(Tl?) + VT12¢(T12)) : vpl f(Z)

-l-/ dzayiafiatia(Vp, 2 + %Vplpl - %Vplpz)f@

IS (38)
C52P1 '

Similarly for £ [12]:

—

0 2 Di
afm = - Z; o Vo £ = (Vi Uri2) + Vi, 6(r12)) - (V, — Vi, ) fP

b (p1 — p2) f?

m
-y / d23(Vyy U(ris) + Yy d(ris)) - Vp, £

i=1,2

+’712f12?12(vpl - sz)(v]n - sz +

+> /dx37i3fi3fi3(vpi — Vps + %(pi —ps))f®

i=1,2
9? 0?
M (2) (2) 39
M 1 4 o () (39)

We shall estimate the order of magnitude of each term in both Egs. 38 and 39). We assume the distribution to be unif
thatis f(") = f(p), we obtain [12]

2
2f<1> = —n L@ 4 9N @ — KU 4 n*@Mgg—f(l) (40)
0s 0%py
where
0
K! = P9
m Orq
0
L' = [dasFio—
0 0 0 0
le/dx frofio: (m— — —)(=— — — + —
271212112 (3])1 apg)(ﬁpl O ﬁ(pl Pz))
and
%f(Q) _ _K2f(2) _ IQf(Z) + 9M2f(2) _ n*LZf(S) + n*GNQf(S)
9? 0?
*OM, @4 @ 41
FOM (g f P+ g 1) (41)
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with
P 0 P, 0
K? = = 4=~
m Ory + m Ory
0 0
I? = Flo— + Fyy—
128P1 + 218P2
s o 0 0 0 0 8
M? = Profio i (m— — ) (5— — 5—+ —(p1 —
Y12l12l12 (3p1 apg)(apl Opa m(pl Pz))
> = /dl‘gFmi-i-/dl‘gngi
Op1 Opa
s A o , 0 8
N? :/dx afisfis : —(— + = (p1 —
3713f13f13 8p1(8p1 m(p1 p3))
+ [ degantanten s (4 2 = o))
3723023 25'(‘3p2 O m b2 —Pps3

In the next section we use the time-scale separation  Then, the time derivative becomes
method in order to obtain an inelastic Boltzmann equation
for the granular gas in the democratic vibration regime. 9 _ i_Hgi +n*i+92i+n*9 9 4+ (42)
T4

ds 01 on 079 0T3 0

6 Time-scale separation The distributionsf (™ will be expanded perturbatively

as
V\/_e_shall express the distribution f_ur_uctiorjs asdependingim-  f(0) — fn gfm 4 op* f0 L G20 4 p*0f0 4. . (43)
plicitly on the variableg trough explicit variables [237y, 71,
To, T3, T4, - - -, defined by We substitute equations (42) and (43) into (38) and col-
lect terms to the correct order in the small parameters ob-
To=8,1 = 08,70 =n%s, 73 = 0%s, 74 = n*0s, . .. taining
|
0 1 1,1l
—_— f— —K =
87’0 0 fO 0
9 9 . _
9, 0 + aimfl =0
8 1 8 1 1r2
_— _— =_L
9y 0 + or fa fo
9 . 9 o, 0 a1 _
8’7'3 0 + c’)ﬁfl +a’7'0f3 =0
0 1 0 1 0 1 0 1 _ 1,2 1,2 82 1
9,70 + 87'2f1+67'0f4+871f2_ L T+ N[5 +Mcagp1f0
(44)
|
Similarly for (39) For 7y we impose the initial condition
s>1 s>2 N! 1
fEi=0 e 7=y 1:[f0 @7)
a 2 _ 2 2\ p2 __ 2 r2
a0 —(KS+ ) fo = —H'fo (45) By canceling the secular terms (for— oc) we obtain
6 2 6 2 __ 2 p2 2 r2 2 p2
.0 + Tmf1—_Kf1_If1+Mfo(46) fl=fi=o,
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ifl _ ifl _o. whereSy, = lim,, _..e~*°™. Using the definitions of.!
2 To andsS;,, we obtain
The following consistency equations must be satisfied P 5
Lo 877'2]% = /d$2dp2F128771512f(}f(} (53)
= —L 4 .
o g 15 (48)
L L 2 Using the property

K?S1afo fo = 1S f fo para 19 — 00,
The solutions for the Egs. 45 and 46 are respectively
, yields
fi(m) = e f3(0) (50)
(p1 — p2)

T0 8 a
it = _H/o DH A2 L 1 (51) b = [ dwadpy PP s

.. Making use of the Bogoliubov's scheme integration[23
7 The Boltzmann collisional term J J ? 123

Whenr, — oo, we obtain from Egs. 48 and 50 7f0 /d [ =pe | /bdbde/dwfsmfo fo
%fol =—L'Siofs fi (52) we finally obtain the collisional term
|
2 i = [ amaol 2222l @) (00 86 - B A2, (54)
[
wher ()l 24y s oo RIS

8 The dissipative contribution and

the energy feeding term

The first term on the right hand side of the equation
above is negligibly small when, — oo. It is due to the
application of operatof.! S;, to the integral [23]. Hence,
9 by using explicitly the operatav!, the above equations be-

8774% = —L1512/ dreT M2 A pl pl comes
0

Equation (49) gives us

]

o . .. 00 p1— D2
14 fo = /dmgdp2’71gl’1gl’12 - O;m (5101 mikpT

We can write this last equation as a Fokker-Planck equation

82
)Suafdfi + Mg 13- (56)

B) s T2 (p1—Pp2)
8T4f0 = Tm/dxzdpﬂmfm%smf&fol
0

8P1 3P1

o 0
/dxzdp2712r12r12512f0f0 +M<3p op1 9ps 10

(57)
At low dissipation, we can approximate [22]
Siafofo = Sifo(P1)fo(p2)
~ f3(p1)f3 (pa)e T, (58)
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whereg,, is the elastic potential energy between grains. We define the granular tempéigtyre

2
= < > .
g Smk‘B P

At the low density, low dissipation limit, the distribution is nearly Gaussian:

1 N 1 3/2
fo(p) = n(27rng (7'4)) ’ (59)
The inelastic contribution is then
J .4 1 8 0 0 .,

whereA is given by [22]

2 P12 3
A ino (r)e *sTeta) x Ty, (61)
for a Hertzian potentiap .
The dissipative contribution reads
0 0 1 1 0 0 .
- B M — . —fL 62
0y fo 3P1 [3p1 * kaTpl]fO * “Op1 Op1 fo (62)
We finally obtain the Inelastic Boltzmann Equation:
afd —
-] dmd@%omw&(pu)f&(p/z) ~ AP0 p2)
0 0 1 0 0
= M — . — 1

The form of Eq. 63 is slightly different from the one used the non-Gaussian velocity distribution has been obtained for
in reference [25]. However, a similar form has been pro- systems with constant coefficients of restitution [28]. How-
posed recently for a driven elastic hard sphere model that re-ever, this is an approximation that becomes invalid as insta-
produces the physics of an inelastic GG [26]. These distinctbilities develop [29]. Since our model shows a velocity de-
equations should reproduce the same physics in the limit ofpendent coefficient of restitution, we need to study whether
a low density, low dissipation GG. We will check this in the these instabilities are indeed present at long times, or disap-
next section. pear as shown for systems with velocity dependent coeffi-

cients of restitution [25].

9 Homogeneous Cooling State - HCS g 1 sonine Polynomials Expansion

By turning off the energy source, the granular temperature Eq. 63 is the starting point for the asymptotic analysis. We
will tend to zero [27]. For an initially homogeneous system, express it in terms of the velocity:

J
%f(vl) = /dedQ | vi—va | a(Q)(f(vh)f(vr2) — f(v1)f(v2))
A 0
kaTTV]_ : V1f(V1), (64)

whereM, = 0 and 22 ~ 0.
We assume that the distribution scales with the granular velogias [1]

fv,t) =~ f(e.t) (65)

ow\ 3
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where Q
Czlvn:/dvf(vﬂt)vo—:(j(g)a (66)
Vo (o)
oo being the granular diameter angl= v, (t) is given byT, (t) = $mv3(t).
We obtain 14 5 w
Yo FoH2(e o 9T Y i no2I(F f
’UO dt (3 )f+’Uo Btf 3 ( te 3c)f+ 0815 nUOI(f7f), (67)
where s o R
and
n(f.f) = /dCQdQ | e1— ¢ | 5(Q)(f(c1)f(c'2) = fler) f(ea)), (68)
. A 9 .
L(f) = W@Tﬁ : {le(cl)} . (69)
|
The approximations obey We use the results in Ref. [25] to obtain
2
mug 2 £ £ = i
bt << L A< nagmukpT. /dcc L(f, f) = 42 {a2 + 5502 } (73)
The functionf(c, t) will be expanded by means of So- and
nine polynomials A
/dcc L(f 15(1 + ag) —5———- (74)
. 00 ) nogmuokpT
flet) = C){1+Zap(t)sp(c )}7
p=1 The coefficienfu, then reads
where 1, A
¢(C): 1 gei%, M4—4V2W{a2+3§a2 }+15(1+GQ)W
(2m) = (75)

We define the coefficients

de |c|" I(f, f). (70)

these will be useful in the sequence.

9.1.1 Calculation ofpus

In this case, the term correspondinglidf, f) cancels out
due to the symmetry of the integrand [24]:

/ de 1,(f. ) =

The second term does contributeitg

3A

Lo = —/dcc212=m§mw7 (71)
where we useek O >= [de fO = <2 >=3
9.1.2 Calculation ofjuy
From the definition:
—/dcc4f(ff /dcc 11 N+LINH|.

(72)

9.2 Long-time behavior

The granular temperatufg, = mvo(t) satisfies [25]

2AT
mkp

dT, 2
@ —3 BT =

3 , (76)

1
3 nogmui g =

whered = ~T,%/® and B = vy(t)no2.
Expressing Eq. 76 as a function of the variable=
T4/Ty0, WhereTy, is the initial granular temperature, we

obtam
d 2 T, S5
—u = . 77
at" T kgt (7
The solution is given by
t [2T, £\ 8
u = (1_1_7)—5/3, vy = 90 <1+> (78)
To m To
where
5kaT
To = .
6vT50°

It is the equivalent of Haff's law [27] for systems with ve-
locity dependent coefficients of restitution. The time depen-
dence ofas is given by [25]:
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d 4 4
fad - 1 _ =
e 3BM2( + az) 15BM4

3A

— (1
nagmvokBT( +a2)

= fmjoag

3

4 1
—Envoag [4\/ 27r{a2 + 2 a22} +15(1 + a2)

16 1
= —1—5nvoa(2)\/27r{a2 + 33 a22}. (79)

nodmuokpT

|
The equation above agrees with Eq. (53) from the first cooling state for low densities and low dissipation is thus

article on Ref. [25]. Rewriting Eq. 79 as a function of  well described by Eq. 63.
gives us

d a22 t —5/6
s+ eafar+ T <1 + ) =0, (80) 10 Steady-state

dt 32 To
where We now check the validity of our model against the results
oy — gmz 27T g0 obtained from the inelastic Boltzmann-Enskog method [25]
271500 ' at the low density, low dissipation limit.

At this order of approximation, the solution is given by

as(t) = az(0) i (81) 10.1 Collision operators
(1 + ‘“(0)) e (1155) " _ a© Wh ' -feedi -
32 32 en the GG is acted upon by an energy-feeding mecha
nism, such as the democratic model defined eaffiér >
= az(t — 00) — 0. 0), a steady-state distribution tends to develop at the point

The system tends to exhibit a Gaussian velocity distri- where the rate of energy injection equals the rate of energy
bution at long-times, as it becomes more elastic [25]. The dissipation. The Dissipation-Vibration operator is given by

]

B = e fen)] +

nogmuokpT Ocq

M 09
nogm?v3 Ocy Ocy”

(82)
At the steady state, the granular temperature is a constant and
- A 0 < M, o 0 :
27 = == / 22 . el S / 22 9
/dcc 2(f)=0=10 nogmuokpT dee dc {Cf} +na§m2v8 dec dc 8cf’
giving the steady-state value
MckpT\ 3
(o = (25

T,
3y

3
where we usedl = 1T, .
Thus, the operataf; can be put on the convenient form:

Ao M T, ' 9 (o ren] @ 9
L(f) = P gm{Q(Tg(io)) 9es {le(cl)}Jracl 8c1f}’
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10.2 Distribution Tail

It is important to understand the behavior of distribution on
the limit of largest velocities [1]. We shall study f, f) =
L(f, f) + L(f), whenc > 1, separately. In order to deter-
mine the behavior of the system at large velocities we will
follow the Ansatz

fle) ~ve#tte, (83)
For I, we shall use the well known form [1]
Li(f, f) ~ —mcf. (84)
For I, we notice that
9 0 2 <
5e el =T+,
C C
and
O (ef) =3 - pef
dc B L4
]
B L R
gwef—B - oef cf |
de | 3M;
A l”"om V2mT, (o0

2 _1
ﬁnag\/— g -
m

The solution for the equation above is given by

9 t
o(t) = ¢(0) + o/ E/ at’ T,*(t').  (86)
0
Since
(MckpT\?
Jim 7,(0) = 700) = (M52 ) >0,

the integral in Eq. 86 diverges as

t
lim [ dtT)/? ~t— co. (87)
t—oo 0
Thus,
lim p(t) ~ t— 0. (88)
t—oo

The result above shows that the overpopulation of the

velocity tails will decrease with time, as was shown previ-
ously in Ref. [25].

R. C. Proleon and W. A. M. Morgado

The operatod( f) thus becomes

~ M,
L(f) ~ — T1° ,
Q(f) nUOFT( ) g (pcf
fore> 1.
For all values of:;, we have
Pog e Sy B O f = 1)
3 © ot Ml

In the limit of largec, and using

0

at f’

we derive an equation that allows us to calculat@t high-
est order on):

M, 1
TlD ,
TLO'O\/ mT,(c0)5 ! 4
2 /or,\? 2T\ ?
—— T (9”;’) © + o (mq)
(85)
[

11 Conclusions

The main motivation for the present work is to reformulate a
first-principles approach to the stochastic behavior of a gran-
ular gas [12], done previously in the context of a cooling
granular system, in order to include an energy feeding mech-
anism, in this case, the democratic model [1]. We believe
this to be important since the results obtained in Ref. [12]
have been successfully applied to describe the inelastic be-
havior of grains during a collision [15] and to derive the hy-
drodynamics of dilute granular gases [22].

Technically, we eliminate the fast (internal) degrees
of freedom from the most general Liouville-like Master-
Equation for the complete system. That s in fact a Liouville
equation plus an energy-feeding term coupling the system
to a thermal bath. A naturally occurring small parameter
setting the time-scales is (typically) in this case

kaT

— ~107% <« 1.
w Ty

The expansion leads to a Fokker-Planck equation that incor-
porates the energy feeding term, and shows to be consistent
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in form, with the one obtained previously [12]. In order to
study the granular hydrodynamic from it, we use the time-

extension method [23] and obtain, as a consistency condi-

tion, a modified Boltzmann Equation appropriate for low
density, low dissipation limit. Comparing with Ref. [25],
we re-obtain the Sonine expansion results in lower order in

density and dissipation, as expected. We also study the dis-

tribution’s large velocity dependence for the cooling state

and the constant energy steady-state and conclude that the
results are consistent, on the correct approximation order, tq17]

the ones obtained by rather different methods [25].

In summary, the method satisfactorily describes the
physics of inelastic, energy-fed systems at the low density,
low dissipation limit. The stochastic equations obtained are

consistent with the ones obtained by other methods, thus 19
being able to serve as a basis for other theories describiné ]

flowing granular systems.
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