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We extend a Fokker-Planck formalism, previously used to describe the behavior of a cooling granular gas,
with a Hertzian contact potential and viscoelastic radial friction, giving a velocity dependent coefficient of
restitution. In the present work, we study the more general case of a steady-state with finite kinetic energy, far
from equilibrium, due to the coupling to an external energy-feeding mechanism. Also from first-principles, we
extend the validity of the former results.

1 Introduction

The problem of a granular gas (GG) at a steady-state, un-
der the action of an energy feeding mechanism, has been
extensively studied by means of theoretical [1, 2, 3] and ex-
perimental methods [4, 5]. A GG presents many interest-
ing and non-trivial properties concerning its statistical be-
havior, such as non-Gaussian velocity distributions [4, 6],
energy equipartition breakdown [6, 7], vortices and cluster-
ing [8, 9, 10]. These interesting properties are a direct con-
sequence of the inelastic behavior of a GG. No matter how
small, any amount of inelasticity will make a GG completely
different, in long times, from an elastic molecular gas. For
instance, no matter how small the inelasticity is, the GG will
eventually lose all its internal kinetic energy [11]. However,
a more fundamental approach unifying all these aspects of
granular physics is still laking [13].

With the goal of obtaining a basic first-principles ap-
proach to the problem of an inelastic GG, Schofield and
Oppenheim [12] derived a set of Fokker-Planck equations
for the distribution of positions and velocities for the grain’s
centers of mass of a GG at the (not necessarily homoge-
neous) cooling state (no energy-feeding mechanism) tending
to true thermal equilibrium. This is a very general method
that depends on a time-scale separation between the internal
relaxation processes of a grain (fast variables) and the evo-
lution of the long wavelength phenomena for the GG (slow
variables) [14]. It gives the velocity dependence for the co-
efficient of restitution found elsewhere [15, 16, 17].

In the present work, we introduced a well known energy-
feeding mechanism to extend the validity of that previous
approach to a GG in a steady-state of finite granular kinetic
energy. The basic steps leading to an equation describing
the time-evolution for the distribution include postulating
the inelastic Boltzmann-Enskog equation [8, 9], adding en-
ergy feeding mechanisms such as the “democratic” vibra-
tion model [1], and deriving Fokker-Planck equations based

on a first-principles expansion around equilibrium [12], ki-
netic theory methods [18], Monte Carlo methods or molec-
ular dynamics simulations [19]. Most of these are effec-
tive approaches that ignore the detailed collisional dynam-
ics. Some authors did indeed take the time dependence for
the collisional dynamics into account in their models [20].
Naturally, most models in the literature are based ona pos-
teriori justifications for their assumptions.

We believe our model can show its usefulness in help-
ing to set some of the stochastic and kinetic theory models
used to describe granular gases in better theoretical footing.
It explores the same expansion methods [14] used to de-
rive stochastic equations for granular gases in the rapid flow
state. In special, careful steps are taken to ensure that an
appropriate non-equilibrium steady-state is correctly taken
into account as the basis for the expansions methods. The
Fokker-Planck equation thus obtained can be used as the
starting point for the development of kinetic theory meth-
ods appropriate for granular gases. For didactic reasons, we
keep most of the calculation details in the main body of the
text.

In order to maintain our model system in a constant en-
ergy steady-state, we make use of the democratic model of
energy feeding and derive the inelastic Boltzmann equation
in that context. This mechanism is used because of its prac-
ticallity. More realistic energy-feeding mechanisms can be
modeled [6, 7]. It should be noticed that the typical granu-
lar energies for the GG steady state, compared to that of the
thermal equilibrium situation, may typically be of the order
of 1012 or larger.

This paper is organized as follows. In Section II, we de-
scribe the microscopic model. In Section III, we describe
the energy-feeding mechanism used in the paper. In Section
IV, we eliminate the fast degrees of freedom for the sys-
tem and obtain the appropriate Fokker-Planck equations and
the viscoelastic friction coefficient. In Sections V, VI, VII
and VIII, we obtain the BBGKY hierarchy and proceed to
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make the multiple time-scale analysis and to obtain the ap-
propriate Boltzmann equation for the GG. In Section IX, a
Sonine polynomials expansion is obtained for the distribu-
tion and its moments analyzed. In Section X, we analyze the
properties of the steady-state distribution. In Section XI, we
summarize the results and make our concluding remarks.

2 Fokker-Plank approach

We will follow closely the method used by Schofield and
Oppenheim [12] and study a system ofN spherical, smooth
and identical grains of massm constituted byM atoms,
M À 1. The grains are large enough making quantum
effects irrelevant. The only frictional forces acting on the
particles are radial, along the collisional axis for two parti-

cles. The positions and momenta of the grains are defined
below:

rN ≡ {r1, r2, . . . , rN} andpN ≡ {p1,p2, . . . ,pN} .

The microscopic degrees of freedom are atomic coor-
dinatesξMN and atomic momentaπMN (

∑M
i=1 πN

i = 0)
associated to each atom of every grain. We can simplify the
notation by grouping these two sets of coordinates into:

χI ≡
{
ξMN , πMN

}
, andχT ≡

{
rN ,pN

}
.

Thus, the complete Hamiltonian can be partitioned as

H(χT , χI) ≡ Ht(χT ) + Hi(χI) + φ(χT , χI), (1)

where the terms above are given in the sequence.

c
The granular Hamiltonian:

Ht(χT ) =
N∑

i=1

p2
i

2m
+ U(rN ) ≡ pN2

2m
+ U(rN ). (2)

The internal Hamiltonian:

Hi(χI) =
N∑

i=1

M∑

l=1

π2
il

2µ
+ V(ξNM ) ≡ πN2

2µ
+ V(ξN ). (3)

The interaction (coupling) term:

φ(χT , χI) =
N∑

i,j=1

M∑

l,m=1

φ(ri, rj , |ξjm − ξil|) ≡ φ(rN , ξN ). (4)

d

The probability density for the system evolves according
to the Liouvillian operator defined by:

L = LI + LT + Lφ

where

LT = −PN

m
· ∇rN +∇rN U · ∇pN ,

LI = −πN

µ
· ∇ξN +∇ξN V · ∇πN ,

and
Lφ = ∇rNφ · ∇pN +∇ξNφ · ∇πN .

The Liouville equation reads

∂tρ(χT,χI,t) = Lρ(χT,χI,t) (5)

In the expression above, we need to average out the
terms containing internal degrees of freedom in order to ob-
tain an effective equation for the remaining granular degrees
of freedom.

3 Energy feeding - Democratic Model

For dissipative systems, the rate of kinetic energy (E) loss
due to the inelasticity during the collisions is given by

∂E

∂t

)

Dissipation

≡ ∂

∂t

〈
PN · PN

2m

〉

Dissipation

=
∫

dχTdχI
PN · PN

2m
Lρ(χT,χI,t) (6)

In order to keep the system in a non-trivial steady-state,
it is necessary to feed kinetic energy into it. In the sequence,
we describe the so-called democratic model [1], which is
equivalent to coupling the GG with a granular heat-bath.

We assume that each grain in the system will periodi-
cally gain random momentum. That momentum is assumed
to be a vectorial random variable, with fixed amplitude (in
fact it is a set of N random variables)

~ζN = ζζ̂N ,
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where the unit vector̂ζ is uniformly distributed on the
sphere. It obeys:

< ~ζ >= 0 and < ~ζ2 >=
1
2
ζ2.

The effect on the distributionρ(rN ,pN ,χI,t) corresponds

to a shift that can be written as

ρ(rN ,pN+ζN ,χI,t) = eζN ·∇pρ(rN ,pN ,χI,t). (7)

We assume that all grains are hit periodically, and simul-
taneously, with a periodτ0. The heating rate corresponds to

c

∂E

∂t

)

Heating

≡ ∂

∂t

〈
PN · PN

2m

〉

Heating

=
1
τ0

〈∫
dp

(PN)2

2m
(ρ(rN ,pN+ζN ,χI,t)− ρ(rN ,pN ,χI,t))

〉

=
∫

dp
(PN)2

2m

{
1
2

ζ2

τ0
∇pN · ∇pN ρ(rN ,pN ,χI,t)

}
+O(

ζ2

τ0
ζ).

It is necessary to take the limitsζ, τ0 → 0, keeping the ratioζ2

2τ0
≡ Mζ fixed. We obtain exactly:

∂E

∂t

)

Heating

= Mζ

∫
dp

(PN)2

2m
{∇pN · ∇pN ρ(rN ,pN ,χI,t)}.

d

Hence, the time evolution term for the distribution, cor-
responding to the interaction with the heat bath, will be:

Mζ∇pN · ∇pN ρ(rN ,pN ,χI,t).

The full Liouville-like Master Equation for the GG (now
an open system) becomes

∂

∂t
ρ(χT,χI,t) =

{
L + Mζ∇pN · ∇pN

}
ρ(χT,χI,t). (8)

Steady-state distribution:
In order to study the GG’s steady-state, we need to make

suitable expansions around a reference state. Our goal is to
use a reference state that approximates the true steady-state
solutionρSS (χI , χT ). That state can be chosen by noticing
that a typical steady-state has its internal and granular de-
grees of freedom almost uncorrelated. A suitable state for
expansions is given by

1
Z

f (χT ) e−β(HI+φ), (9)

wheref (χT ) ≡ ∫
dχIρSS (χI , χT ), and

Z =
∫

dχIdχT f (χT ) e−β(HI+φ). (10)

The form of Eq. 9 is not the same as the steady-state so-
lution ρSS but it will stand for the expansion reference state
used for obtaining a stochastic equation for the distribution
of the granular degrees of freedom.

4 Elimination of fast degrees of free-
dom

The exact Liouville-like equation, Eq. 8, is unmanageable
and can only be made tractable by eliminating the micro-

scopic (fast) degrees of freedom through an averaging pro-
cess [21]. Thus, our goal is to find an effective equation for
the reduced granular distribution:

W(χT,t) =
∫

dχI ρ(χT,χI,t) (11)

We use the method of eliminating the fast variables [14,
21]. The idea is to consider some naturally occurring small
parameter that sets the time-scale differences. In previous
models for granular systems, that role was played by the
mass ratioε =

√
µ
m [12] reflecting the large number of

atoms constituting a grain. However, for a realistic granular
steady-state, the parameterε has to be modified in order to
take into account that the granular temperature

Tg ≡
〈

p2

3m

〉

obeysTg À kBT . Since

P 2

m
∼ mv2

g ∼ Tg, and
π2

µ
∼ µξ̇2 ∼ kBT,

the parameterε ∼ vg

ξ̇
∼

√
µ
m

Tg

kBT sets the time scale sep-
aration for the granular gas. A typical value for it is of the
order10−3 whereas for previous models [12] it was of the
order of10−9. The Liouville equation can be rewritten in
a way that makes explicit the role ofε, associated with the
slow part ofL [12]

∂tρ = L(0)ρ + εL(1)ρ, (12)

where
L(0) = LI +∇ξNφ · ∇πN
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and

L(1) = LT +∇rNφ · ∇pN +
1
2
ξ2∇pN · ∇pN .

In order to average over the fast degrees of freedom, we
define a projection operatorP, projectingρ onto the fast
variables, and its complementQ = 1 − P. The projection
operator must satisfy [14] (see appendix)

PL(0) = 0 and L(0)P = 0. (13)

A solution is given by the projection operatorP acting
upon a dynamical variableg ≡ g(χT,χI,t) as

Pg = %̃(r,χI)

∫
dχ′I g(χT,χ′I,t) (14)

where%̃ is a function of the form of Eq. 9:

%̃(r,χI) ≡ e−β(HI+φ)

∫
dχI e−β(HI+φ)

,

where we see that
∫

dχI %̃(r,χI) = 1.
The following identities guarantee that the condition

given by Eq. 13 is satisfied:
∫

dχI (LI +∇ξN φ · ∇πN ) ≡ 0

and
(LI +∇ξN φ · ∇πN )%̃ = 0

We multiply Eq. 12 on the left byP and also byQ in
order to obtain

∂tPρ = εPL(1)Pρ + εPL(1)Qρ, (15)

∂tQρ = QL(0)Qρ + εQL(1)Pρ + εQL(1)Qρ. (16)

By using the fact that the projectors obey

P2 ≡ P, PQ = QP = 0, and Q2 ≡ Q,

we can write

∂ty = εAy + εBz, (17)

∂tz = Ez + εCy + εDz, (18)

where

y = Pρ, z = Qρ,

A = PL(1)P, B = PL(1)Q, C = QL(1)P,

D = QL(1)Q, E = QL(0)Q.

By switching to the slow time scales = εt we obtain

∂sy = Ay + Bz, (19)

∂sz = 1
εEz + Cy + Dz. (20)

We use an expansion forz as a function of the parameter
ε

z = z(0) + εz(1) + ε2z(2) + · · · (21)

and substitute it forz in Eq. 20. By grouping terms of equal
order inε we have

Ez(0) = 0, (22)

∂sz
(0) = Ez(1) + Cy + Dz(0). (23)

From above, we obtain the solution forz(0) andz(1):

z(0) = 0 andz(1) = −E−1Cy. (24)

By substituting the expression forz(1) in Eq. 19, we ob-
tain an equation fory

∂sy = Ay − εBE−1Cy. (25)

Now, it is necessary to compute the right hand side of
the equation above. The first term is given by:

c

Ay = PL(1)y = %̃(r,χI)(LT + 〈∇rNφ〉o · ∇pN + Mζ∇pN · ∇pN)W(χT,t), (26)

where〈∇rN φ〉o =
∫

dχI ρ̃∇rN φ. In order to find the second term, we need to calculate

Cy = QL(1)Py

= {%̃(r,χI)}{LT + Mζ∇pN · ∇pN }W(χT,t)

+W(χT,t)Q{LT%̃(r,χI)}+∇pN W(χT,t) · Q{%̃(r,χI)∇rN φ}, (27)

where the first term of the right hand side cancels identically. By writingLT explicitly in the second term we obtain

W(χT,t)Q{LT%̃(r,χI)} = W(χT,t)Q{(−PN

m · ∇rN )%̃(r,χI)} = W(χT,t){−PN

m · ∇rN %̃(r,χI)}

It is easy to show that [12]
∇rN %̃(r,χI) = −β%̃(r,χI)∇̂rN φ

where

Â(χT,χI,t) ≡ A(χT,χI,t)−
∫

dχI %̃(r,χI)A(χT,χI,t).
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Hence
W(χT,t)Q{LT%̃(r,χI)} = W(χT,t)β%̃(r,χI)

PN

m · ∇̂rN φ,

and
Cy = %̃(r,χI)∇̂rN φ · {β PN

m +∇pN }W(χT,t). (28)

In order to operateB ontoCy, we writeB in a suitable way

B ≡ PL(1)Q
≡ %̃(r,χI)

∫
dχI (LT +∇rN φ · ∇pN + Mζ∇pN · ∇pN )Q

≡ %̃(r,χI)(LT +∇rN φ · ∇pN )
∫

dχIQ+ %̃(r,χI)

∫
dχI∇rN φ · ∇pNQ.

Using that ∫
dχIQ ≡ 0,

we obtain

B ≡ %̃(r,χI)

∫
dχI∇̂rN φ · ∇pNQ. (29)

Therefore

BE−1Cy = %̃(r,χI)

∫
dχI ∇̂rN φ · ∇pNQE−1%̃(r,χI)∇̂rN φ · {β

PN

m
+∇PN}W(χT,t) (30)

where the inverse operator ofE can be written as [12, 21]

E−1 = −
∫ ∞

0

eτL(0)
dτ

By substituting this into Eq. 30, we have

BE−1Cy = −%̃(r,χI)

∫
dχI

{∫ ∞

0

dτ %̃(r,χI)∇̂rN φ eτL(0)†∇̂rN φ

}
: ∇pN {β

PN

m
+∇PN}W(χT,t)

(31)

SinceL0† = (LI +∇ξN φ · ∇πN )† = −(LI +∇ξN φ · ∇πN ), we obtain

BE−1Cy = −%̃(r,χI)Γ(rN ) : ∇pN {β
PN

m
+∇PN}W(χT,t) (32)

where

Γ(rN ) =
∫ ∞

0

dτ〈∇̂rN φ e−τL(0)∇̂rN φ〉0. (33)

Adding up the results above, and switching back to the time-scalet = εs, we obtain a Fokker-Planck equation for the
reduced granular distribution

∂tW(χT,t) = ε(LT + 〈∇rN φ〉o · ∇pN + Mζdp · ∇pN )W(χT,t)

+ε2Γ(rN ) : ∇pN {β
PN

m
+∇PN}W(χT,t). (34)

The equation above can be expressed in a more convenient form as [12]

∂tW(χT,t) = ε(LT + 〈∇rN φ〉o · ∇pN + Mζ∇pN · ∇pN )W(χT,t)

+
1
2
ε2

∑

ik

γik r̂ik r̂ik(∇pi −∇pk
){(∇pi −∇pk

) + β
(pi − pk)

m
}W(χT,t), (35)

where, for short-ranged potentials, the radial friction coefficient is given by [1,15,22]

γik ≡
∫ ∞

0

dτΓ(rik,rik,τ) =
∫ ∞

0

dτ〈∇̂rik
φ[e−τL(0)

]∇̂rik
φ〉0 (36)
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Eq. 35 has the same form as the one obtained by
Schofield and Oppenheim [12], except for a new energy-
injecting term. This fact shows their coherence anda poste-
riori justifies their use in deriving the behavior of a system
of grains withTg À kBT [15]. We have now established
the correct form for the basic equation of our model and
can proceed to study some of their physical properties. The
Fokker-Planck equation 35 is the starting point for the hy-
drodynamic analysis. Its validity is based on the separation
of internal and granular time-scales given by the condition
that the parameterε has to be small. However, in order to de-
rive, from Eq. 35, the hydrodynamic equations appropriated
for the granular steady-state, we need a few more physical
assumptions, concerning the rate of energy dissipation, the

number density of the system and the rate of energy feeding.

5 BBGKY Hierarchy

In the following we simplify the notation by lettingxn stand
for (rn,pn). We define the reduced distributions below

f (n) =
N !

(N − n)!

∫
dχn+1 . . . dχNW(χT,t). (37)

By integrating Eq. 35 and using the definition of Eq. 37,
we can compute the equations for the one-particle density
f (1) and pair densityf (2). Forf (1) that reads [12]:

c

∂

∂t
f (1) +

1
m

p1 · ∇r1f
(1) =

∫
dx2(∇r12U(r12) + ∇̂r12φ(r12)) · ∇p1f

(2)

+
∫

dx2γ12 r̂12 r̂12(∇p1
2 +

β

m
∇p1p1 − β

m
∇p1p2)f (2)

+Mζ
∂2

∂2p1
f (1). (38)

Similarly for f (2) [12]:

∂

∂t
f (2) = −

2∑

i=1

pi

m
· ∇rif

(2) − (∇r12U(r12) + ̂∇r12φ(r12)) · (∇p1 −∇p2)f
(2)

+γ12 r̂12 r̂12(∇p1 −∇p2)(∇p1 −∇p2 +
β

m
(p1 − p2)f (2)

−
∑

i=1,2

∫
dx3(∇ri3U(ri3) + ∇̂ri3φ(ri3)) · ∇pif

(3)

+
∑

i=1,2

∫
dx3γi3 r̂i3 r̂i3(∇pi −∇p3 +

β

m
(pi − p3))f (3)

+Mζ(
∂2

∂2p1
f (2) +

∂2

∂2p2
f (2)) (39)

We shall estimate the order of magnitude of each term in both Eqs. 38 and 39). We assume the distribution to be uniform,
that isf (n) ≡ f(p), we obtain [12]

∂

∂s
f (1) = −n∗L1f (2) + n∗θN1f (2) −K1f (1) + n∗θMζ

∂2

∂2p1
f (1) (40)

where

K1 =
p1

m

∂

∂r1

L1 =
∫

dx2F12
∂

∂p1

N1 =
∫

dx2γ12 r̂12 r̂12 : (
∂

∂p1
− ∂

∂p2
)(

∂

∂p1
− ∂

∂p2
+ β(p1 − p2))

and

∂

∂t
f (2) = −K2f (2) − I2f (2) + θM2f (2) − n∗L2f (3) + n∗θN2f (3)

+n∗θMζ(
∂2

∂2p1
f (2) +

∂2

∂2p2
f (2)) (41)
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with

K2 =
P1

m

∂

∂r1
+

P2

m

∂

∂r2

I2 = F12
∂

∂P1
+ F21

∂

∂P2

M2 = γ12r̂12 r̂12 : (
∂

∂p1
− ∂

∂p2
)(

∂

∂p1
− ∂

∂p2
+

β

m
(p1 − p2))

L2 =
∫

dx3F13
∂

∂p1
+

∫
dx3F23

∂

∂p2

N2 =
∫

dx3γ13 r̂13 r̂13 :
∂

∂p1
(

∂

∂p1
+

β

m
(p1 − p3))

+
∫

dx3γ23r̂23 r̂23 :
∂

∂p2
(

∂

∂p2
+

β

m
(p2 − p3))

d

In the next section we use the time-scale separation
method in order to obtain an inelastic Boltzmann equation
for the granular gas in the democratic vibration regime.

6 Time-scale separation

We shall express the distribution functions as depending im-
plicitly on the variablet trough explicit variables [23]τ0, τ1,
τ2, τ3, τ4, . . . , defined by

τ0 = s, τ1 = θs, τ2 = n∗s, τ3 = θ2s, τ4 = n∗θs, . . .

Then, the time derivative becomes

∂

∂s
=

∂

∂τ0
+θ

∂

∂τ1
+n∗

∂

∂τ2
+θ2 ∂

∂τ3
+n∗θ

∂

∂τ4
+ · · · (42)

The distributionsf (n) will be expanded perturbatively
as

f (n) = fn
0 + θfn

1 + n∗fn
2 + θ2fn

3 + n∗θfn
4 + · · · . (43)

We substitute equations (42) and (43) into (38) and col-
lect terms to the correct order in the small parameters ob-
taining

c

∂

∂τ0
f1
0 = −K1f1

0 = 0

∂

∂τ1
f1
0 +

∂

∂τ0
f1
1 = 0

∂

∂τ2
f1
0 +

∂

∂τ0
f1
2 = −L1f2

0

∂

∂τ3
f1
0 +

∂

∂τ1
f1
1 +

∂

∂τ0
f1
3 = 0

∂

∂τ4
f1
0 +

∂

∂τ2
f1
1 +

∂

∂τ0
f1
4 +

∂

∂τ1
f1
2 = −L1f2

1 + N1f2
0 + Mζ

∂2

∂2p1
f1
0

(44)

d

Similarly for (39)

∂

∂τ0
f2
0 = −(K2 + I2)f2

0 = −H2f2
0 (45)

∂

∂τ1
f2
0 +

∂

∂τ0
f2
1 = −K2f2

1 − I2f2
1 + M2f2

0 (46)

For τ0 we impose the initial condition

fs≥1
iÀ1 = 0 e fs≥2

0 =
N !

Ns(N − s)!

∏
s

f1
0 (47)

By canceling the secular terms (forτ →∞) we obtain

f1
1 = f1

3 = 0,
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∂

∂τ0
f1
2 =

∂

∂τ0
f1
4 = 0.

The following consistency equations must be satisfied

∂

∂τ2
f1
0 = −L1f2

0 (48)

∂

∂τ4
f1
0 = −L1f2

1 + N1f2
0 + Mζ

∂2

∂2p1
f1
0 (49)

The solutions for the Eqs. 45 and 46 are respectively

f2
0 (τ0) = e−H2τ0f2

0 (0) (50)

f2
1 (τ0) = e−H2τ0

∫ τ0

0

dλeH2λM2e−H2λf1
0 f1

0 (51)

7 The Boltzmann collisional term

Whenτ0 →∞, we obtain from Eqs. 48 and 50

∂

∂τ2
f1
0 = −L1S12f

1
0 f1

0 (52)

whereS12 = limτ0→∞e−H2τ0 . Using the definitions ofL1

andS12, we obtain

∂

∂τ2
f1
0 =

∫
dx2dp2F12

∂

∂p1
S12f

1
0 f1

0 (53)

Using the property

K2S12f
1
0 f1

0 = I2S12f
1
0 f1

0 para τ0 →∞,

yields

∂

∂τ2
f1
0 =

∫
dx2dp2

(p1 − p2)
m

∂

∂x12
S12f

1
0 f1

0 .

Making use of the Bogoliubov’s scheme integration[23]

∂

∂τ2
f1
0 =

∫
dp2

| p1 − p2 |
m

∫
bdbdε

∫
dx

∂

∂x
S12f

1
0 f1

0 ,

we finally obtain the collisional term

c

∂

∂τ2
f1
0 =

∫
dp2dΩ

| p1 − p2 |
m

σ(Ω)(f1
0 (p′1)f

1
0 (p′2)− f1

0 (p1)f1
0 (p2)), (54)

d

whereσ(Ω) = bdbdε [24] andp′1 andp′2 are the momenta of
grains before the collision that generatep1 andp2.

8 The dissipative contribution and
the energy feeding term

Equation (49) gives us

∂

∂τ4
f1
0 = −L1S12

∫ ∞

0

dλeH2λM2e−H2λf1
0 f1

0

+N1S12f
1
0 f1

0 + Mζ
∂2

∂2p1
f1
0 (55)

The first term on the right hand side of the equation
above is negligibly small whenτ0 → ∞. It is due to the
application of operatorL1S12 to the integral [23]. Hence,
by using explicitly the operatorN1, the above equations be-
comes

c

∂

∂τ4
f1
0 =

∫
dx2dp2γ12 r̂12r̂12 :

∂

∂p1

( ∂

∂p1
+

p1 − p2

mkBT

)
S12f

1
0 f1

0 + Mζ
∂2

∂2p1
f1
0 . (56)

We can write this last equation as a Fokker-Planck equation

∂

∂τ4
f1
0 =

∂

∂p1

∫
dx2dp2γ12 r̂12

r̂12 · (p1 − p2)
mkBT

S12f
1
0 f1

0

+
∂

∂p1

∂

∂p1
:
∫

dx2dp2γ12 r̂12 r̂12S12f
1
0 f1

0 + Mζ
∂

∂p1

∂

∂p1
f1
0

(57)

At low dissipation, we can approximate [22]

S12f
1
0 f1

0 = S12f
1
0 (p1)f1

0 (p2)

≈ f1
0 (p1)f1

0 (p2)e
− φ12

kBTg(τ4) , (58)
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whereφ12 is the elastic potential energy between grains. We define the granular temperatureTg by

Tg =
1

3mkB
< p2 > .

At the low density, low dissipation limit, the distribution is nearly Gaussian:

f1
0 (p) ≈ n

( 1
2πmTg(τ4)

)3/2

. (59)

The inelastic contribution is then

∂

∂τ4
f1
0 =

1
mkBT

∂

∂p1
(f1

0p ·A) +
∂

∂p1

∂

∂p1
: (f1

0A) + Mζ
∂

∂p1

∂

∂p1
f1
0 (60)

whereA is given by [22]

A ≈ 4πσ2

3

∫ ∞

0

dr γ(r) e
− φ12

kBTg(τ4) ∝ T
3
5

g , (61)

for a Hertzian potentialφ12.
The dissipative contribution reads

∂

∂τ4
f1
0 = A

∂

∂p1
· [ ∂

∂p1
+

1
mkBT

p1]f1
0 + Mζ

∂

∂p1
· ∂

∂p1
f1
0 . (62)

We finally obtain the Inelastic Boltzmann Equation:

∂f1
0

∂t
=

∫
dp2dΩ

| p1 − p2 |
m

σ(Ω)(f1
0 (p′1)f1

0 (p′2)− f1
0 (p1)f1

0 (p2))

+ A
∂

∂p1
· [ ∂

∂p1
+

1
mkBT

p1]f1
0 + Mζ

∂

∂p1
· ∂

∂p1
f1
0 (63)

d

The form of Eq. 63 is slightly different from the one used
in reference [25]. However, a similar form has been pro-
posed recently for a driven elastic hard sphere model that re-
produces the physics of an inelastic GG [26]. These distinct
equations should reproduce the same physics in the limit of
a low density, low dissipation GG. We will check this in the
next section.

9 Homogeneous Cooling State - HCS

By turning off the energy source, the granular temperature
will tend to zero [27]. For an initially homogeneous system,

the non-Gaussian velocity distribution has been obtained for
systems with constant coefficients of restitution [28]. How-
ever, this is an approximation that becomes invalid as insta-
bilities develop [29]. Since our model shows a velocity de-
pendent coefficient of restitution, we need to study whether
these instabilities are indeed present at long times, or disap-
pear as shown for systems with velocity dependent coeffi-
cients of restitution [25].

9.1 Sonine Polynomials Expansion

Eq. 63 is the starting point for the asymptotic analysis. We
express it in terms of the velocity:

c

∂

∂t
f(v1) =

∫
dv2dΩ | v1 − v2 | σ(Ω)(f(v′1)f(v′2)− f(v1)f(v2))

+
A

mkBT

∂

∂v1
· v1f(v1), (64)

whereMξ = 0 and kBT
Tg

≈ 0.
We assume that the distribution scales with the granular velocityv0 as [1]

f(v, t) =
n

v3
0

f̃(c, t) (65)
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where

c =
v
v0

, n =
∫

dvf(v, t), σ̃ =
σ(Ω)
σ2

0

, (66)

σ0 being the granular diameter andv0 ≡ v0(t) is given byTg(t) = 1
2mv2

0(t).
We obtain

− 1
v2
0

d v0

d t

(
3 + c · ∂

∂c

)
f̃ +

1
v0

∂

∂t
f̃ =

µ2

3

(
3 + c · ∂

∂c

)
f̃ +

1
v0

∂

∂t
f̃ = nσ2

0I(f̃ , f̃), (67)

where
I(f̃ , f̃) = I1(f̃ , f̃) + I2(f̃),

and

I1(f̃ , f̃) =
∫

dc2dΩ | c1 − c2 | σ̃(Ω)(f̃(c′1)f̃(c′2)− f̃(c1)f̃(c2)), (68)

I2(f̃) =
A

nσ2
0mv0kBT

∂

∂c1
·
[
c1f̃(c1)

]
. (69)

d
The approximations obey

mv2
0

kBT
¿ 1, A ¿ nσ2

0mv0kBT.

The functionf̃(c, t) will be expanded by means of So-
nine polynomials

f̃(c, t) = φ(c)

{
1 +

∞∑
p=1

ap(t)Sp(c2)

}
,

where

φ(c) =
1

(2π)
3
2
e−

c2
2 .

We define the coefficients

µn = −
∫

dc |c|n I(f̃ , f̃). (70)

these will be useful in the sequence.

9.1.1 Calculation ofµ2

In this case, the term corresponding toI1(f̃ , f̃) cancels out
due to the symmetry of the integrand [24]:

∫
dc c2 I1(f̃ , f̃) = 0.

The second term does contribute toµ2:

µ2 = −
∫

dc c2 I2 =
3A

nσ2
0mv0kBT

, (71)

where we used< O >=
∫

dc f̃ O ⇒ < c2 >= 3
2 .

9.1.2 Calculation ofµ4

From the definition:

µ4 = −
∫

dc c4 Ĩ(f̃ , f̃) = −
∫

dc c4
[
Ĩ1(f̃ , f̃) + Ĩ2(f̃)

]
.

(72)

We use the results in Ref. [25] to obtain

−
∫

dc c4 I1(f̃ , f̃) = 4
√

2π
{

a2 +
1
32

a2
2
}

, (73)

and

−
∫

dc c4 I2(f̃) = 15(1 + a2)
A

nσ2
0mv0kBT

. (74)

The coefficientµ4 then reads

µ4 = 4
√

2π
{

a2 +
1
32

a2
2
}

+ 15(1 + a2)
A

nσ2
0mv0kBT

.

(75)

9.2 Long-time behavior

The granular temperatureTg ≡ 1
2mvo(t)

2 satisfies [25]

dTg

dt
= −1

3
nσ2

0mv3
0µ2 = −2

3
BTgµ2 = −2

A

m

Tg

kBT
, (76)

whereA = γ Tg
3/5 andB = v0(t)nσ2

0 .
Expressing Eq. 76 as a function of the variableu =

Tg/Tgo, whereTgo is the initial granular temperature, we
obtain

d

dt
u = −2γ

m

T
3
5

go

kBT
u8/5. (77)

The solution is given by

u = (1 +
t

τo
)−5/3, v0 =

√
2Tg0

m

(
1 +

t

τo

)−5/6

(78)

where

τo =
5mkBT

6γT
3/5
go

.

It is the equivalent of Haff’s law [27] for systems with ve-
locity dependent coefficients of restitution. The time depen-
dence ofa2 is given by [25]:
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d

dt
a2 =

4
3
Bµ2(1 + a2)− 4

15
Bµ4

=
4
3
nv0σ

2
0

3A

nσ2
0mv0kBT

(1 + a2)

− 4
15

nv0σ
2
0

[
4
√

2π
{

a2 +
1
32

a2
2
}

+ 15(1 + a2)
A

nσ2
0mv0kBT

]

= −16
15

nv0σ
2
0

√
2π

{
a2 +

1
32

a2
2
}

. (79)

d

The equation above agrees with Eq. (53) from the first
article on Ref. [25]. Rewriting Eq. 79 as a function ofu
gives us

d

dt
a2 + c2

{
a2 +

a2
2

32

} (
1 +

t

τo

)−5/6

= 0, (80)

where

c2 =
32
15

nσ2
0

√
2πTg0

m
.

At this order of approximation, the solution is given by

a2(t) =
a2(0)

(
1 + a2(0)

32

)
e
c2τ0

(
1+ t

τ0

) 1
6

− a2(0)
32

(81)

⇒ a2(t →∞) → 0.

The system tends to exhibit a Gaussian velocity distri-
bution at long-times, as it becomes more elastic [25]. The

cooling state for low densities and low dissipation is thus
well described by Eq. 63.

10 Steady-state

We now check the validity of our model against the results
obtained from the inelastic Boltzmann-Enskog method [25]
at the low density, low dissipation limit.

10.1 Collision operators

When the GG is acted upon by an energy-feeding mecha-
nism, such as the democratic model defined earlier(Mζ >
0), a steady-state distribution tends to develop at the point
where the rate of energy injection equals the rate of energy
dissipation. The Dissipation-Vibration operator is given by

c

I2(f̃) =
A

nσ2
0mv0kBT

∂

∂c1
·
[
c1f̃(c1)

]
+

Mζ

nσ2
0m2v3

0

∂

∂c1
· ∂

∂c1
f̃ . (82)

At the steady state, the granular temperature is a constant and
∫

dcc2 I2(f̃) = 0 ⇒ 0 =
A

nσ2
0mv0kBT

∫
dcc2 ∂

∂c
·
[
cf̃

]
+

Mζ

nσ2
0m2v3

0

∫
dcc2 ∂

∂c
· ∂

∂c
f̃ ,

giving the steady-state value

Tg(∞) =
(

MζkBT

3γ

) 5
8

,

where we usedA = γT
3
5

g .
Thus, the operatorI2 can be put on the convenient form:

I2(f̃) =
MζT

− 3
2

g

2nσ2
0

√
2m

{
2

(
Tg

Tg(∞)

) 8
5 ∂

∂c1
·
[
c1f̃(c1)

]
+

∂

∂c1
· ∂

∂c1
f̃

}
,

d
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10.2 Distribution Tail

It is important to understand the behavior of distribution on
the limit of largest velocities [1]. We shall studyI(f̃ , f̃) =
I1(f̃ , f̃) + I2(f̃), whenc À 1, separately. In order to deter-
mine the behavior of the system at large velocities we will
follow the Ansatz

f(c) ∼ e−ϕ(t) c. (83)

For I1, we shall use the well known form [1]

I1(f̃ , f̃) ≈ −πcf̃ . (84)

For I2, we notice that

∂

∂c
· ∂

∂c
f̃ = −2ϕ

c
f̃ + ϕ2f̃ ,

and
∂

∂c
· (cf̃) = 3f̃ − ϕcf̃ .

The operatorI2(f̃) thus becomes

I2(f̃) ≈ − Mζ

nσ2
0

√
2mTg(∞)

8
5
T

1
10

g ϕ c f̃ ,

for c À 1.
For all values ofc, we have

µ2

3
(3 + c · ∂

∂c
)f + B−1 ∂

∂t
f = I(f̃ .f̃),

In the limit of largec, and using

∂

∂t
f = −dϕ

dt
c f̃ ,

we derive an equation that allows us to calculateϕ (at high-
est order onc):

c

−µ2

3
ϕcf̃ −B−1 dϕ

dt
c f̃ = −cf̃

[
π +

Mζ

nσ2
0

√
2mTg(∞)

8
5
T

1
10

g ϕ

]
,

⇒ dϕ

dt
= −

[
nσ2

0µ2 − 3Mζ√
2mTg(∞)

8
5
T

1
10

g

] (
2Tg

9m

) 1
2

ϕ + πnσ2
0

(
2Tg

m

) 1
2

= πnσ2
0

√
2
m

T
1
2

g . (85)

d

The solution for the equation above is given by

ϕ(t) = ϕ(0) + πnσ2
0

√
2
m

∫ t

0

dt′ T 1/2
g (t′). (86)

Since

lim
t→∞

Tg(t) = Tg(∞) =
(

MζkBT

3γ

) 5
8

> 0,

the integral in Eq. 86 diverges as

lim
t→∞

∫ t

0

dt T 1/2
g ∼ t →∞. (87)

Thus,

lim
t→∞

ϕ(t) ∼ t →∞. (88)

The result above shows that the overpopulation of the
velocity tails will decrease with time, as was shown previ-
ously in Ref. [25].

11 Conclusions

The main motivation for the present work is to reformulate a
first-principles approach to the stochastic behavior of a gran-
ular gas [12], done previously in the context of a cooling
granular system, in order to include an energy feeding mech-
anism, in this case, the democratic model [1]. We believe
this to be important since the results obtained in Ref. [12]
have been successfully applied to describe the inelastic be-
havior of grains during a collision [15] and to derive the hy-
drodynamics of dilute granular gases [22].

Technically, we eliminate the fast (internal) degrees
of freedom from the most general Liouville-like Master-
Equation for the complete system. That is in fact a Liouville
equation plus an energy-feeding term coupling the system
to a thermal bath. A naturally occurring small parameter
setting the time-scales is (typically) in this case

ε ≡
√

m

µ

kBT

Tg
∼ 10−3 ¿ 1.

The expansion leads to a Fokker-Planck equation that incor-
porates the energy feeding term, and shows to be consistent,
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in form, with the one obtained previously [12]. In order to
study the granular hydrodynamic from it, we use the time-
extension method [23] and obtain, as a consistency condi-
tion, a modified Boltzmann Equation appropriate for low
density, low dissipation limit. Comparing with Ref. [25],
we re-obtain the Sonine expansion results in lower order in
density and dissipation, as expected. We also study the dis-
tribution’s large velocity dependence for the cooling state
and the constant energy steady-state and conclude that the
results are consistent, on the correct approximation order, to
the ones obtained by rather different methods [25].

In summary, the method satisfactorily describes the
physics of inelastic, energy-fed systems at the low density,
low dissipation limit. The stochastic equations obtained are
consistent with the ones obtained by other methods, thus
being able to serve as a basis for other theories describing
flowing granular systems.
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