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Heteroisotopic molecular behavior.
The Valence-Bond Theory of the Positronium Hydride

Flávia Rolim, Tathiana Moreira, and Jos´e R. Mohallem
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We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic
molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear
mass effects, but some interesting new features appears for short distances as well.

1 Introduction

In theory of diatomic molecules, the concepts of homo and
hetero nuclearity have been developed in a natural way, to
recognize whether a molecule is made up of equal or dif-
ferent atoms, respectively. Since atoms differ from each
other by their atomic chargeZ, which is contained in the
potential energy part of the Hamiltonian operator, the Born-
Oppenheimer (BO) theory of molecules [1], based on a
clamped-nuclei electronic Hamiltonian, is sufficient to ac-
count for these features and to explore all the consequences
of point group symmetries displayed by the electronic wave-
functions. Any further features yielded by coupling of
electronic and nuclear motion are treated as non-adiabatic
effects, whose calculations involve many BO states [1].
For polyatomic molecules, the concept and terminology of
”equivalent atoms ” are introduced, meaning units of the
same chemical element that transform among each other by
symmetry operations (for example, the two hydrogen atoms
in the water molecule).

On the other hand, recent developments have shown that
a variational adiabatic (non-BO) approach for the electronic
problem is able to account for another property of atoms,
their massM (the isotopic effect), in a somewhat analogous
way of Z [2]-[6]. This introduces the idea of homo and
heteroisotopic molecular behavior. For example, being D
the symbol for deuterium, H2O and D2O are homoisotopic
but HDO is heteroisotopic, the last one having its symmetry
broken fromC2v to Cs [6]. The consequent isotope shifts,
dipole moments and new spectroscopical transitions, are real
and measurable [7].

This new way of symmetry classification of molecules
may look strange, however, as it is generated by kineti-
cal terms of the total Hamiltonian, instead of by a rigid
framework of nuclear charges. Furthermore, for typical
molecules, the effects are too small to be visualized in elec-
tronic density maps, as usually done in the common homo
and heteronuclear cases. The theoretical signature of sym-
metry breaking is just the non-commutability of some sym-
metry operators with the adiabatic Fock operator [6].

Fortunately, there is the singular case of the positronium

hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as
an extreme homonuclear but heteroisotopic isotopomer of
H2. The large difference between the proton and positron
masses yields a considerable asymmetry, that stimulates us
to investigate how it affects the electronic distribution, in
comparison with the common heteronuclear case (which
we call here theZ − M analogy). As a matter of fact,
Saito [8] has already pointed out that the electronic den-
sity of HPs, obtained from four-body correlated calcula-
tions, shows a visual approximate molecular behavior, but
this kind of approach can give no further structural details,
however. We are, on the other hand, interested in explor-
ing possibleZ − M analogy effects with a theory in which
the ”nuclear ” (proton and positron) and electronic motions
are adiabaticaly separated, that is, with the same theoretical
treatment used with standard isotopomers, in order to better
understand their isotopic properties.

It is well known that the valence-bond (VB) theory is
appropriate to analyse in detail the bonding of a typical di-
atomic molecule. Particularly for a heteronuclear one, a
mixed covalent-ionic behavior of the wavefunction points to
a polarization of the electronic distribution toward the more
electronegative atom, measured by the relative value of the
linear coefficient of the ionic structure. Furthermore, the ex-
ponents of the atomic orbitals measure the effective charge
of each nucleus felt by the electrons and become indicative
of the same above effect, as well. Classical chemical con-
cepts as, for example, electronegativity, have immediate in-
terpretation in terms of the VB output.

Here, we check whether a VB calculation of HPs is able
to study the consequences of its mass asymmetry on the
electron distribution and deeply explore theZ − M anal-
ogy. This is done in the following section.

2 The valence-bond theory of HPs

2.1 Methodology

Atomic units (au) and conventional notation are used
throughout. Our approach to include the finite nuclear mass
effects in molecular electronic structure calculations [2]-[4]
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has been to look for electronic wavefunctionsΦk that are
eigenfunctions of the total Hamiltonian, instead of the BO
one, that is,

HΦk = εkΦk. (1)

Different from the common adiabatic approximation [9],
that corrects just the electronic energy (or the potential en-
ergy curves, PEC), this approach allows the electronic wave-
functions to account for the nuclear motion as well. A
product wavefunction is assumed for any statek, that is,
Ψk = Φkχk, whereχ is a nuclear wavefunction. The so-
lution of equation (1) is done in a variational sense, which
explains the terminology ”variational adiabatic ”. Further
approximations are explained bellow.

The system,ABe−e−, is treated as being heteroiso-
topic, which means here that the positive nucleiA (H+) and
B (e+), separated by the distanceR, have different masses,
MA andMB (MB = 1ua), but the same charge,Z = +1
au.

For the definition of our electronic basis, we consider
a covalent (Heitler-London, HL), and two ionic VB struc-
tures, so that a spatial symmetric state can be written as the
superposition

Φk = ck1 [a(1)b(2) + a(2)b(1)]

+ck2a(1)a(2) + ck3b(2)b(2). (2)

Here,a andb are normalized1s orbitals centered on nu-
clei A andB, with exponentsζA andζB, respectively, being
all the linear and non-linear parameters dependent onR. To
save notation, we refer, in what follows, to the HL,A-ionic
andB-ionic structures, with obvious meaning, and call this
set the VB basis.

We first attempt to solve equation (1) to obtain the PECs

Uk(R) = εk(R) +
1
R

.

On this level, the problem has been treated, in our lab-
oratory, within a modified-electron-mass approach [2],[3],
which works well for one and two-electron homonuclear di-
atomic molecules. For more complicated systems we re-
sorted to an empirical correction [4] for which a model
Hamiltonian has been developed later [10]. Summarizing
the prescription of ref. [4], first assume that for an electron
occupying the atomic orbitala centered on a nucleusA with
massMA, the finite nuclear mass correction (FNMC) to its
energy is (unormalized),

QA =

〈
a(1)

∣
∣−∇2

1

∣
∣ a(1)

〉

2MA
. (3)

This correction is exact for an isolated non-relativistic
hydrogenic atom. For a polyatomic molecule, the FNMC
is accomplished by considering the BO hamiltonian in the
standard formHBO =

∑
i h(i) + 1

rij
, where theh(i) are

one-electron hamiltonians, and obtaining its matrix elements
in the electronic basis. Wherever a term like〈a |h| a〉 ap-
pears in any of these matrix elements, a correction like (3) is
added to it, provided that terms originated by symmetriza-
tion of a VB structure contribute just once. This procedure

assures that the corrections will be properly placed in the
hamiltonian matrix. In the present case, the ground state
(gs) correction with wavefunction (2), becomes simply

Q = c2
1(QA + QB) + c2

2(2QA) + c2
3(2QB)

+c1c2QA 〈a|b〉 + c1c3QB 〈b|a〉 . (4)

Note that if the one-electron atoms are set apart, only the
first term survives and the correction becomes exact. For fi-
niteR, the correction performs quite well, as shown in refs.
[3],[4]. The same result of equation (4) could be obtained
with the model Hamiltonian for the FNMC [10] as well.

The atomic orbitals and the linear coefficients are opti-
mized in order to minimize the adiabatic electronic energy,

εk(R) = εBOk
(R) + Qk(R), (5)

which yields the PECs for each statek. The results of equa-
tions (4) and (5) express our approximate solution of equa-
tion (1).

2.2 The VB basis

Before concerning the complete expansion of the wavefunc-
tion in the VB basis, it is interesting to verify how this non-
orthogonal basis can be devised. Our treatment resembles
an old one by Zener [11] for ionic molecules, but with some
additional complications due to the need of variational de-
termination of each state (see bellow). We ignore for while
theB-ionic structure, since, in view of the smaller energy of
the corresponding dissociation products, H++ Ps−, it must
not correspond to a low-lying state of the system. On the
contrary, the HL structure and theA-ionic structure are ex-
pected to correlate to lower states of HPs.

With just the HL structure as the electronic wavefunc-
tion, the FNMC (4) becomesQ = QA + QB, and a vari-
ational calculation of the PEC yields curve1 of Fig. 1A. It
advances the dissociation of the system in H + Ps, giving
the exact separated-atom (SA) energy,E(∞) = −0.74973
au. With theA-ionic structure, the correction isQ = 2QA

and curve2 is obtained, which advances the dissociation in
H−+Ps+, with the independent particle approximation en-
ergy of E(∞) = −0.53858 au. Curve1 must thus cor-
relate better to the electronic ground state. As a matter of
fact, both curves, corresponding to non-orthogonal states,
mimic the ground state, for intermediate values ofR. In the
united-atom (UA) limit, the HL structure tend to imitate the
ionic one, which is far more appropriate to this limit, so that
the curves close approach and cross (not an actual crossing,
however).

This study justifies our chosen VB basis. It advances two
equally important structures, the HL being the one that must
dominate the wavefunction at large distances, theA-ionic
being dominant at small distances and the mixing of them
accounting for most of the bonding features. TheB-ionic
structure, centered one+, is included for the sake of com-
pleteness of our description and to increase the variational
character of the wavefunction.
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Figure 1.A- Potential energy curves for the1) covalent and2) A-
ionic electronic states of HPs,B- Potential energy curves for the1)
ground bonding and2) first excited state of HPs.

In some extent, this behavior of the VB basis is analo-
gous to that reported for typical ionic molecules [11],[12], in
which no effects of nuclear motion are considered, however.
In spite the two atoms having the same nuclear charge and
just one electron each, the mass effects advances theA-ionic
structure as fundamental in the description of the electronic
gs of HPs.

2.3 Calculations with the full VB basis

We next diagonalize the hamiltonian in the full VB basis,
obtaining three electronic statesΦk, each one generating a
PEC. They are obtained with simultaneous optimization of
the parametersck1, ck2, ck3, ζA andζB for each value ofR,
to get the minimum of the gs PEC at eachR. An immediate
effect is the uncrossing of the first two lower curves, shown
in Fig. 1B. The lower curve becomes the bonding1

∑
g state

of HPs, and the second correlates with higher states having
H− as a dissociation product (there are other states of in-
termediate energy between them, corresponding to orbital
excitations of the H and Ps atoms in the SA limit).

We then solve the nuclear equation,

[− ∇2
R

2µAB
+ Uk(R) − E]χk(R) = 0,

for the bound state nuclear wavefunctionχ1(R) and the cor-
responding energyE1. Although the minimum of the PEC
is around1.3 au, we cannot speak here of an equilibrium
position, due to positron delocalization. The nuclear wave-
function displays this feature, spreading on a larger range
of distances in comparison with H2, and lead to an average
proton-positron distance of〈R〉 = 3.34 au. In view of this
behavior, we consider the bonding distance as lying in the
range3 ≤ R ≤ 4 au.

The energy for theS bound state of HPs isE =
−0.7889 au [13]. We obtainedE1 = −0.7668 au with
the reduced mass of the nuclei (µAB), andE1 = −0.8070
au with the empirical reduced mass of the atoms (µat

AB =
( 1

MA+1 + 1
MB+1 )−1). Some researchers have pointed a con-

nection between non-adiabatic effects and a reduced mass
variable withR [14],[15],[9],[16]. When we use an empiri-
cal average reduced mass defined as

µave
AB =

c2
1µ

HL
AB + c2

2µ
ionA
AB + c2

3µ
ionB
AB

c2
1 + c2

2 + c2
3

,

with µHL
AB = µat

AB, µionA
AB = ( 1

MA+2 + 1
MB

)−1,
etc., we get a very reasonable energy of−0.7879 au.
For the pair annihilation rate, calculated with the for-
mula Γ = −50.47 〈Ψ |δ(−→r e+ −−→r e− |Ψ〉 [17], we get
2.42 x 109 s−1, which compares well with the accepted
value of2.32 x 109 s−1 [18]. However, the point here is
not to get accurate calculations of properties, which could
not be attained with our n¨aive wavefunction anyway. These
results serve only to lend reliability to theZ − M analogies
we are looking for.

The expansion coefficients, shown in Fig. 2, confirm the
mixed covalent-ionic behavior of the ground and excited
electronic states. Particularly for the gs (coefficientsck1),
we note the expected predominance of theA-ionic structure
at small distances and of the covalent one at large distances,
both of them being important at bonding distances, with
close analogy with the typical ionic molecule case. On the
other hand, the coefficient of theB-ionic structure is very
small for any value ofR. This feature is not a surprise since
we do not expect the clustere−e+e− (stable, with energy of
−.262 au) to be relevant in the bonding of HPs.

Another interesting outcome is the behavior of the or-
bital exponents, or effective charges, for the ground state,
Fig. 3. They are measures of the size of the atomic orbitals
and of screening effects. The exponentζB of the isolated Ps
atom is already half of thee+ charge, due to reduced mass
effects. The orbitala, with exponentζA, presents an anal-
ogous variation withR as for H2 [19]. From large values
until R � 2 ua, ζB shows a regular behavior as well. We
can identify the effective charges around0.9 au for the pro-
ton and0.6 au for the positron (at large distances they are
exactly1. and0.5 respectively, the last one already includ-
ing reduced mass effects). In spite the real charges being
both +1.0, the mass effects impose a behavior of the ef-
fective charges, mainlyζB, analogous to what happens in a
typical ionic molecule, withζA > ζB .
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Figure 2. Linear coefficients, in relative units, versus nuclear distance. Note that the vertical scales are not necessarily the same.

Figure 3. Orbital exponents versus nuclear distance. In the inset, the atomic orbitalb for some marked values of the nuclear distance. The
circles enclose90% of the electronic probability.
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For smaller values ofR, on the other hand, the behav-
ior of ζB becomes singular. Close toR = 3.0 au it starts
growing up critically, before falling down to the expected
UA limit. The explanation is that the corresponding strong
contraction of the orbitalb centered one+, illustrated in
the inset of Fig. 4, is necessary in order to the positron to
cross the electronic cloud of the H atom and the electrons
to change their motion, and adapt to the orbital of the com-
posite nucleus H++ e+. In this process, the system must
change its dimensional scale, from the scale of an exotic
diffuse positronic molecule to that of a typical atom. This
behavior seems to have no analog in any other typical ionic
molecules, and is a major difference encountered between
HPs and typical systems (in fact, a test on HeH+ did not
show such effect). This is a singular consequence of the
asymmetric behavior of the electronic distribution of HPs
being caused by nuclear mass differences, instead of charge
differences.

Most illustrative results are the graphs of the electronic
densities on the molecular axis, shown in Fig. 4, and the cor-
responding contour maps in a plane that contains the axis, in
Fig. 5, for some values ofR. They give an idea of the dy-
namical formation of the system from the constitutive atoms.
The electronic densities show a typical chemical bonding
profile, with well defined peaks on the nuclei and a valley
between them. The contour maps are shown for different
situations, from the SA to the UA limits. TheR = 3.0
map is typical of the HPs bonding distance. TheR = .25
map corresponds to the more extreme contraction of orbital
b. ForR = 0.1 it seems that the system had almost become
the UA atom, with spherical symmetry. With due care to
the different scales of the figures, the reader can note the di-
mensional change from the exotic molecule to the UA typ-
ical atom (realize also that the real dimension is inversely
proportional to the dimension of the pictures). For distances
aroundR = 1.0 au, the contour maps are analogous of those
of diatomic molecules with disparate nuclear charges [20].
These kind of molecules present a strong ionic behavior re-
flected in a large contribution of the ionic structure in the
VB wavefunction. In this region, the Ps atom seems to loose
its identity in the complex, which suggested the next appli-
cation.

2.4 The topology of the electronic density

A modern analysis of molecular structure is the topological
study of the electronic density, developed mainly by Bader
and collaborators [20]. The gradient field of the electronic
densityρ is characterized by regions (basins) separated by
surfaces of

−→∇ρ = 0. These basins are identified as “topo-
logical atoms”. We use this technique to investigate whether
the positronium atom keeps its identity in the HPs complex,
for different values ofR. The gradient of the gs electronic
density

−→∇ρ =
−→∇Φ∗

1Φ1, with electronic wavefunction (2), is

easily obtained in elliptical coordinates, yielding the graphs
in Fig. 6. Once again, typical heteronuclear behavior comes
out at bonding distances, with the topological Ps atom occu-
pying a smaller basin than the topological H atom, shown in
theR = 3.6 au graph. In this kind of analysis, a signature
of chemical bonding is the appearance of a critical point be-
tween atomsA andB, which is present in our system from
R = 3.0 au to much larger values. ForR smaller than this
value, corresponding to the region where the Ps orbital start
contracting, the critical point disappear, which constitutes a
further indication that for these distances the system has a
singular behavior, and seems to mean that the topological Ps
does not exist anymore. This is expressed in theR = 1.45
au graph, where no critical point appears and no clear divi-
sion of the basins can be devised between the nuclei.

3 Further discussion

The variational adiabatic approximation to the molecular
problem introduces the finite nuclear masses into the elec-
tronic Hamiltonian. The mass asymmetry is able to gen-
erate symmetry breaking phenomena analogous to charge
asymmetry. This considerations lead us to the concepts of
homo and heteroisotopic molecules (accordingly, we might
be tempted to propose the replacement of the usual terms
“homo and heteronuclear” by “homo and heteroatomic”,
but the terminology is already firmly established).

The results obtained here with VB theory, that show
HPs somewhat as an ionic molecule in the bonding region,
impose a modification in the way we face the very con-
cept of molecular structure. In a sense, it seems that we
should decouple the symmetry properties of the electronic
distribution from the idea of a rigid nuclear geometry, since
these properties look the same, no matter they are estab-
lished by charge or mass effects. On the contrary, these ef-
fects seem to be interchangeable. In atomic physics we find
an analogous feature. The Hamiltonian of an one-electron
atomH = −∇2

2µ − Z
r can be changed to the scaled form

Hesc = µH = −∇2

2 − ζ
r , with ζ = µZ, that is, a mass-

scaled Hamiltonian describes an atom of fixed center and
different charge,ζ.

In view of these considerations, it becomes much eas-
ier to interpret some properties of isotopomers, as for ex-
ample, the dipole moment of HD. From the BO theory, it
has its source in complicated non-adiabatic couplings of
electronic, vibrational and rotational states [21]. From the
present point of view, the dipole moment is a consequence
of the asymmetric electronic distribution, generated by finite
nuclear mass effects. Other properties will be more easily
interpreted on this basis as well.
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Figure 4. Electronic densities on the molecular axis for some values of the nuclear distance.

Figure 5. Maps of the electronic densities in a plane containing the molecular axis, for some values of the nuclear distance.
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Figure 6. Field lines of the gradient of the electronic density for
two inter-nuclear distances. The point in black in theR = 3.6 au
curve is the critical point.

References

[1] M. Born and K. Huang, Dynamical theory of crystal lattices
(Oxford University Press, New York, 1956).

[2] J. R. Mohallem, J. Phys. B: At Mol. Opt. Phys.32, 3805
(1999).

[3] J. R. Mohallem, F. Rolim and C. P. Gonc¸alves, Mol. Phys.99,
87 (2001).

[4] C. P. Gonc¸alves and J. R. Mohallem, Theor. Chem. Acc.110,
367 (2003).

[5] C. P. Gonc¸alves and J. R. Mohallem, Chem. Phys. Lett.367,
533 (2003).

[6] C. P. Gonc¸alves and J. R. Mohallem, Chem. Phys. Lett.380,
378 (2003).

[7] A. de Lange, E. Reinhold and W. Ubachs, Int. Rev. Phys.
Chem.21, 257 (2002).

[8] S. L. Saito, Nucl Instr and Meth in Phys Res B171, 60
(2000).

[9] See, for example, N. C. Handy and A. M. Lee, Chem. Phys.
Lett. 252, 425 (1996).

[10] J. R. Mohallem, J. Mol. Struct. Theochem, in press.

[11] C. Zener, Proc. Roy. Soc. Ser. A137, 696 (1932).

[12] R. S. Berry, J. Chem. Phys.27, 1288 (1957).

[13] A. M. Frolov and V. H. Smith, Jr, Phys. Rev. A55, 2662
(1997).

[14] W. Meyer, P. Botschwina, and P. Burton, J. Chem. Phys.84,
891 (1986).
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