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Comparing the Mori Formalism and the Green Function Methods

A.S.T. Pires and M.E. Gouvêa
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Using a simple model described by a Hamiltonian of fermions coupled to bosons, we show that the relaxation
function calculated via a low temperature approximation to the Mori memory function is similar, at least to
lowest order, to the relaxation function calculated using a Green function formalism.

The analytical calculation of dynamic properties of
many-body systems is, in general, a difficult task to accom-
plish and most of the theoretical models that have been pro-
posed to take account of this job involve – in despite of the
high degree of complexity of the calculations usually re-
quired – some approximations and/or are restricted to a lim-
ited range of temperatures or wave-vectors. One of the most
useful methods for studying the dynamics of a many-particle
system is the memory function method proposed by Mori[1]
in 1965. That method is based on a generalized Langevin
equation, and is a generalization of the projection-operator
technique proposed by Zwanzig [2]. Mori’s method is phys-
ically appealing because it can show how two different time
scales, slow and fast, can possibly arise from Hamiltonian
systems and how transport coefficients can be related to the
interaction energy [1,3]. The method leads to an expres-
sion for the Laplace transform of the autocorrelation func-
tion in the form of a continued fraction involving static and
dynamical quantities. One of the drawbacks of the method
is that the related static properties are not calculated as part
of the whole procedure but, rather, are assumed to be known
from ab initio. However, the main problem of the proce-
dure seems to be the absence of a prescription on how to
cut the continued fraction expansion in which the memory
function is expanded. Several approximations, or recipes
for a reasonable cut, have been proposed in the literature for
the calculation of the memory function [3,4], and the relax-
ation function so obtained has been successfully compared
to experimental data [5,6], and to results obtained by us-
ing other methods [7]. Although there is a great number of
applications of Mori’s method, only a few discussions con-
cerning the essence of the method and the validity of the re-
sults obtained whit a particular approximation scheme have
appeared in the literature [3,8]. A particularly useful ap-
proximation to the method, in the low temperature regime,
was introduced by some authors [9,10] almost two decades
ago; we will refer to this scheme as the low temperature ap-
proximation of Mori’s method (LTMM). In the LTMM, the
memory function, formulated as a relaxation function, is de-
coupled in the mode-mode approximation. One of the inter-
esting aspects of the approximation is the fact that it yields

all frequency moments exact up to first order in temperature.
As it is well known, another very important method to

treat low temperature quantum models is the perturbation
theory in terms of Green functions [11]. Obviously, each of
these two theoretical models, LTMM and Green functions,
has its own advantages and drawbacks, and, also, the choice
of which method shall be adopted depends, strongly, on the
specific features of the problem to be studied. There are,
however, some models where these two methods can be ap-
plied requiring, basically, the same amount of analytical cal-
culation. Therefore, it is interesting to compare the results
obtained by using these two methods.

The aim of this paper is not to propose a new method to
treat many-body Hamiltonians, neither to establish limits of
validity for each of the two methods discussed here. As we
show in the following, these two methods, despite having
different characteristics, can lead to the same result. This
conclusion is important because it is known how to check
the accuracy of a result obtained by using the Green function
method up to a certain order: being a perturbative approach,
all one has to do is to go one step further obtaining higher
order diagrams. However, the LTMM does not have this per-
turbative character and one of the ways to test its validity is
by comparison to other methods: this is what is done in this
work.

Our discussion will be based on the results obtained for
the following Hamiltonian

H =
∑

q

[
ω1(q)a†qaq + ω2(q)b†qbq

]

+
∑
p,q

g(p, q)a†p+qap(bq + b+
−q) + c.c. (1)

For simplicity, we will consider a one-dimensional problem,
but the calculations can be easily extended to any number
of dimensions. This Hamiltonian can be the prototype for
several models. For instance, ifaq is a fermion operator
and bq is a boson operator, Hamiltonian (1) can be used
to describe the electron-phonon coupling, as used by Rice
and Str̈assler[12] in their theory for a quasi-one-dimensional
band conductor. This same choice foraq and bq makes
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Hamiltonian (1) also suitable to describe a chain of spins
with s = 1/2 coupled to phonons, as required for the under-
standing of the spin-Peierls transition [13]. Ifaq andbq are
both boson operators, we can have an exciton-photon sys-
tem that can be applied, for example, to the study of energy
transport by excitons [14]. It is important to notice that our
model Hamiltonian does not include terms with four inter-
acting operators.

It is important to emphasize that the discussion done
here is not restricted to Hamiltonians as simple as the one
defined by (1). In fact, if we wanted to apply one of the
two methods, Green function or LTMM, to a more general
spin Hamiltonian, the first step would always be to write
the operators of that Hamiltonian in terms of creation and
annihilation operators. The final product of this procedure,
would be a Hamiltonian involving an harmonic part and an-
harmonic interaction terms – Hamiltonian (1) is just a sim-
ple especimen of this kind. More complicated Hamiltonians
would require more troublesome calculations, but the kind
of conclusion we are looking for in this paper will remain
the same.

In order to compare the results obtained by using the
LTMM and the Green function methods, we will use these
two methods to obtain the relaxation function related to op-
eratorbq. Obviously, the same calculations and conclusions
will apply to operatoraq. We start by defining aphonon
variable

φq =
1√

2ω2(q)

(
bq + b†q

)
, (2)

and calculate the relaxation function given by

R(q, ω) =
1
2π

∫ ∞

−∞
dt e−iωt (φq(t), φ−q(0)) , (3)

using, first, the memory function formalism. In (3),
(A(t), B) is the inner product of two operatorsA andB,
defined as

(A(t), B) =
1
β

∫ β

0

〈eλHA†(t)e−λHB〉dλ , (4)

where the brackets〈 . 〉 denote the usual thermal average,
andβ = 1/kBT is the Boltzmann factor. In the following,
the Boltzmann constantkB will be taken as equal to1.

Following Mori’s procedure [1,3], the relaxation func-
tion is written as

R(q, ω) =
1
π

(φq, φ−q) 〈ω2
q 〉Σ”(q, ω)

[
ω2 − 〈ω2

q 〉+ ωΣ′(q, ω)
]2 + [ωΣ”(q, ω)]

,

(5)
where

〈ω2
q 〉 =

(
φ̇q, ˙φ−q

)

(φq, φ−q)
, (6)

is the second frequency moment andΣ
′
(q, ω) andΣ”(q, ω)

are, respectively, the real and imaginary parts of the memory
functionΣ(q, ω), which is the Laplace transform ofΣ(q, t),

defined by

Σ(q, t) = − Mq(t)(
φ̇q, ˙φ−q

) , (7)

Mq(t) =
(
QL2φq, e

−iQLQtQL2φ−q

)
. (8)

In the expressions above,φ̇ is the time derivative of theφ
operator

φ̇q = iLφq = [φq,H] , (9)

whereL is the Liouville operator. TheQ operator appearing
in the definition of the memory function, Eq. (8), is a pro-
jection operator that projects out any terms proportional to
φq andφ̇q [1,3].

It has to be emphasized that Eq. (5) for the relaxation
function is exact. However, the evaluation of the memory
function as given by Eq. (8), involves theexp(−iQlQt)
term whose exact calculation requires the solution of the the
many-body problem directly. Therefore, it is necessary to
introduce some degree of approximation at this point. Ayk
[9] and Reiter and co-workers[10] proposed an approxima-
tion scheme (LTMM) which is correct up to first order in
temperature. In their approach, the exponential of Eq. (8),
QLQ, is replaced by the normal time evolution operatorL
giving

Mq(t) ≈ (QL2φq, e
−iLT QL2φ−q). (10)

The calculation of this approximate expression for the mem-
ory function is done according to the following recipe: we
start by using the Liouville operator to calculateL2φq.
Then, we expandL2φq in terms of boson operators retain-
ing, only, the linear and quadratic terms. The operation of
Q on this expansion erases the terms linear inφq. At last,
we use the quadratic part of the Hamiltonian to calculate the
time evolution and expectation values of the operators.

More insight about the physical meaning of this approxi-
mation can be obtained if we takeΣ(q, z), the Laplace trans-
form of the time dependent memory function, and use the
following expression
(
z2 − 〈ω2

q 〉
)
Σ(q, z) =

(
z2 − 〈ω2

q 〉
)
Λ(q, z)+zΛ(q, z)Σ(q, z).

(11)
This expression is exact in the frequency space [15]. Here,
Λ(q, z) is given by

Λ(q, z) =

(
QL2φq, (z − L)−1QL2φ−q

)

(Lφq, Lφ−q)
. (12)

Using Eq. (11), we can write

Σ(q, z) = Λ(q, z) +
z

z2 − 〈ω2
q 〉

Λ2(q, z) + · · · (13)

Thus, we see that the replacementQLQ → L is, in fact, a
weak coupling approximation.

Now, we perform the calculation of the relaxation func-
tion for Hamiltonian (1) in the LTMM context, following the
recipe steps. Using the equation of motion (9), we find, after
a straightforward calculation,

L2φq = ω2(q)φq + 2
√

2ω2(q)
∑

p

g(p, q)a+
p ap+q. (14)
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Inserting (14) into (10), we find

Mq(t) = 8ω2(q)
∑

p

g2(p, q)
(
a+

p−qap, a
+
p (t)ap−q(t)

)
.

(15)
Using Eq. (4), we finally arrive at

Mq(t) =
∑

p

A(p, q)e−iΩ−(p,q)t, (16)

where

A(p, q) =
8ω2(q)g2(p, q)

Ω−(p, q)
(np − np−q) , (17)

Ω−(p, q) = ω1(p)− ω1(p− q). (18)

In Eq.(17),np denotes the usual occupation number. If the
operatorbq in Hamiltonian (1) is a boson,np = (eβω1(p) −
1)−1, and ifbq represents a fermion,np = (eβω1(p) + 1)−1.

The calculation of the denominator of (7),(φ̇q, ˙φ−q), is
done by using the identity(Ȧ, Ḃ) = −i〈[Ȧ, B]〉. We easily
obtain (φ̇q, ˙φ−q) = 1. Then, using Eqs. (7) and (16) we
obtain the final expression for the memory function

Σ(q, ω) = −
∑

p

A(p, q)
ω − Ω−(p, q)

. (19)

The calculation of the second moment, Eq. (20), can also be
done directly and gives

〈ω2
q 〉 = (φq, φ−q)

−1 = ω2(q), (20)

which is, according to (1), the phonon frequency.
The Green function treatment for Hamiltonian (1) is

standard [11-13] and, for this reason, we will present only
the final result. The first non-vanishing correction, in a
perturbation expansion, appears in the second order, and is
given by

D(q, ω) =
1

ω2 − ω2
2(q) + Σ̃(q, ω)

, (21)

where the irreducible phonon self-energyΣ̃(q, ω) is defined
by

Σ̃(q, ω) = −
∑

p

B(p, q)
ω − Ω−(p, q)

, (22)

with
B(p, q) = Ω−(p, q)A(p, q). (23)

The relationship betweenD(q, ω) and the relaxation
function is well known and is given by

R(q, ω) = − 1
πω
Im D(q, ω), (24)

whereIm D(q, ω) denotes the imaginary part ofD(q, ω).
Using (24), we can write the relaxation function as

R(q, ω) =
1

πω

Σ̃”(q, ω)[
ω2 − ω2

2(q) + Σ̃′(q, ω)
]2

+
[
Σ̃”(q, ω)

]2 ,

(25)

whereΣ̃
′

andΣ̃” represent, respectively, the real and imag-
inary parts of the phonon self-energy,Σ̃.

Using the fact that the term(φq, φ−q)ω2(q) in the nu-
merator of Eq. (5) is equal to the unity, we see that Eqs. (5)
and (25) have the same form if we replaceωΣ in Eq. (5)
by the functionΣ̃ appearing in (25). Comparing Eqs. (19)
and (22), we see thatωΣ would be identical tõΣ if we had
ωA(q, k) = Ω−A(q, k). Thus, there would be no difference
between the two results obtained here if, in the numerator of
(22), we could replaceΩ− by ω. However, it can be seen
that, in the summation to be done in Eq.(22), the main con-
tribution comes from the region ofω ≈ Ω−, and, then, the
replacementω → Ω− can be considered as a good approxi-
mation.

At this point, it is relevant to make some comments
about the Green function method and the interchange ofΩ
andω. Lets, then, consider the harmonic part of Hamilto-
nian (1)

H =
∑

q

ω2(q)b†qbq, (26)

because this Hamiltonian can be treated exactly. The (exact)
relaxation function for the operatorφq defined in Eq. (2) is
given by

R(q, ω) = 2
ω

ω2(q)
1

ω2 − ω2
2(q)

. (27)

However, if we apply the Green function technique to obtain
the relaxation function for (26), we obtain

R(q, ω) = 2
ω2(q)

ω

1
ω2 − ω2

2(q)
. (28)

It is important to emphasize that both expressions, (27) and
(28), are exact. In this case, theδ-function allows us to in-
terchangeω andω2(q). In Hamiltonians like (1), with other
interaction terms,ω2(q) has to be replaced byΩ− in the ex-
pression for the relaxation function. Due to the interaction
terms, the peak linewidth becomes finite but is very narrow
allowing us to interchange the two frequenciesω → Ω− be-
cause the main contribution comes from the region around
the peak.

We have thus shown that, for Hamiltonian (1), the mem-
ory function formalism, in the context of LTMM, at least to
lowest order in the calculation, gives the same result as the
Green function technique. The same conclusion holds true
if we had considered a relaxation function involving theaq

operators.
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