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Nonlocal Description of the Nuclear Interaction

L. C. Chamon1, B. V. Carlson2, L. R. Gasques1, D. Pereira1, C. De Conti2, M. A. G. Alvarez1,
M. S. Hussein1, M. A. Cândido Ribeiro3, E. S. Rossi Jr.1, and C. P. Silva1

1. Departamento de F́ısica Nuclear, Instituto de F́ısica da Universidade de São Paulo,

Caixa Postal 66318, 05315-970, São Paulo, SP, Brazil

2. Departamento de F́ısica, Instituto Tecnológico de Aerońautica,
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Extensive systematizations of theoretical and experimental nuclear densities and of optical potential strengths
extracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented. The
energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of
the interaction. The systematics indicates that the heavy-ion nuclear potential can be described in a simple
global way through a double-folding shape, which basically depends only on the density of nucleons of the
partners in the collision. The possibility of extracting information about the nucleon-nucleon interaction from
the heavy-ion potential is investigated.

I Introduction

The optical potential plays a central role in the description of
heavy-ion collisions, since it is widely used in studies of the
elastic scattering process as well as in more complicated re-
actions through the DWBA or coupled-channel formalisms.
This complex and energy-dependent potential is composed
of the bare and polarization potentials, the latter containing
the contribution arising from nonelastic couplings. In prin-
ciple, the bare (or nuclear) potential between two heavy ions
can be associated with the fundamental nucleon-nucleon in-
teraction folded into a product of the densities of the nuclei
[1]. Apart from some structure effects, the shape of the nu-
clear density along the table of stable nuclides is nearly a
Fermi distribution, with diffuseness approximately constant
and radius given roughly byR = r0 A1/3, whereA is the
number of nucleons of the nucleus. Therefore, one could ex-
pect a simple dependence of the heavy-ion nuclear potential
on the number of nucleons of the partners in the collision.

The elastic scattering is the simplest process that occurs
in a heavy-ion collision because it involves very little re-
arrangement of matter and energy. Therefore, this process
has been studied in a large number of experimental inves-
tigations, and a huge body of elastic cross section data is
currently available. The angular distribution for elastic scat-
tering provides unambiguous determination of the real part
of the optical potential only in a region around a particular
distance [2] hereafter referred as the sensitivity radius (RS).
At energies close to the Coulomb barrier the sensitivity ra-
dius is situated in the surface region. In this energy region,
the systematization [3, 4] of experimental results for poten-

tial strengths at the sensitivity radii has provided an univer-
sal exponential shape for the heavy-ion nuclear potential at
the surface region.

In a recent review article [2] the phenomenon of rain-
bow scattering was discussed, and it was emphasized that
the real part of the optical potential can be unambiguously
extracted also at very short distances from heavy-ion elastic
scattering data at intermediate energies. However, differ-
ently from the case for the surface region (low energy), a
systematization of potential strengths at the inner distances
has not been performed up to now, probably because the
resulting phenomenological interactions have presented sig-
nificant dependence on the bombarding energies. Several
theoretical models have been developed to account for this
energy-dependence through realistic mean field potentials.
A recent model [5, 6, 7, 8] associates the energy-dependence
of the heavy-ion bare potential with nonlocal quantum ef-
fects related to the exchange of nucleons between target and
projectile. Using this model, we have realized [8] a system-
atization of potential strengths extracted from elastic scat-
tering data analyses, considering both: low (near-barrier)
and intermediate energies. The systematics confirms that
the heavy-ion nuclear potential can be described in a very
simple global way.

II The nuclear densities

According to the double-folding model, the heavy-ion nu-
clear potential depends on the nuclear densities of the nu-
clei in collision. Thus, a systematization of the potential
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requires a previous systematization of the nuclear densities.
We adopt the two-parameter Fermi (2pF) distribution (Eq.
1) to describe the nuclear densities.

ρ(r) =
ρ0

1 + exp
(

r−R0
a

) (1)

In our theoretical calculations, the charge distribution of the
nucleus (ρch) has been obtained by folding the proton distri-
bution of the nucleus (ρp) with the intrinsic charge distribu-
tion of the proton in free space (ρchp)

ρch(r) =
∫

ρp(~r′) ρchp(~r − ~r′) d~r′ , (2)

where ρchp is an exponential with diffusenessachp =
0.235 fm. In an analogous way, we have defined the mat-
ter density of the nucleus by folding the nucleon distribu-
tion of the nucleus with the intrinsic matter distribution of
the nucleon, which is assumed to have the same shape of
the intrinsic charge distribution of the proton. For conve-
nience, the charge and matter distributions are normalized
to the number of protons and nucleons, respectively.

In order to systematize the heavy-ion nuclear densi-
ties [8], we have calculated theoretical distributions for a
large number of nuclei using the Dirac-Hartree-Bogoliubov
(DHB) model [9]. We have also used the results of previous
systematics for charge distributions [10, 11], extracted from
electron scattering experiments, as a check of our DHB re-
sults. Along the table of stable nuclides, the diffuseness for
the nucleon and matter densities spread around the average
valuesān = 0.50 fm and ām = 0.56 fm, respectively.
A small dispersion of about0.025 fm around these aver-
age values is expected due to effects of the structure of the
nuclei. We have determined the radiiR0 for the 2pF distri-
butions assuming that the corresponding root-mean-square

radii should be equal to those of the theoretical (DHB) den-
sities. The nucleon and matter densities give very similar
radii, which are well described by the following linear fit:

R0 = 1.31 A1/3 − 0.84 fm. (3)

Due to effects of the structure of the nuclei, theR0 values
spread around this linear fit with dispersion of0.07 fm.

III The double-folding potential

The double-folding potential has the form [1]

VF (R) =
∫

ρ1(r1) ρ2(r2) vNN (~R− ~r1 + ~r2) d~r1 d~r2 ,

(4)
whereR is the distance between the centers of the nuclei,ρi

are the respective nucleon distributions, andvNN (~r) is the
effective nucleon-nucleon interaction. The success of the
folding model can only be judged meaningfully if the effec-
tive nucleon-nucleon interaction employed is truly realistic.
The most widely used realistic interaction is known as M3Y
[1, 2], which can usually assume two versions: Reid and
Paris.

The six-dimensional integral (Eq. 4) can easily be solved
by reducing it to a product of three one-dimensional Fourier
transforms [1], but the results may only be obtained through
numerical calculations. In order to provide analytical ex-
pressions for the folding potential, we consider, as an ap-
proximation, that the range of the effective nucleon-nucleon
interaction is negligible in comparison with the diffuseness
of the nuclear densities. In this zero-range approach, the
double-folding potential can be obtained from:

c

vNN (~r) ≈ V0 δ(~r) ⇒ VF (R) =
2πV0

R

∫ ∞

0

r1 ρ1(r1)

[∫ R+r1

|R−r1|
r2 ρ2(r2) dr2

]
dr1. (5)

d

The Fermi distribution may be represented, with precision
better than 3% for anyr value, by:

ρ0

1 + exp
(

r−R0
a

) ≈ ρ0 C

(
r −R0

a

)
, (6)

C(x ≤ 0) = 1− 7
8
ex +

3
8
e2x , (7)

C(x ≥ 0) = e−x

(
1− 7

8
e−x +

3
8
e−2x

)
. (8)

This approximation is particularly useful in obtaining ana-
lytical expressions for integrals that involve the 2pF distribu-
tion. If both nuclei have the same diffusenessa, the double-
integral (Eq. 5) can be solved analytically using the approx-
imation represented by Eq. 6, and the result expressed as a
sum of a large number of terms, most of them negligible for
a ¿ R0. Rather simple expressions can be found after an
elaborate algebraic manipulation:

c

VF (R ≤ R2−R1 +a) ≈ V0 ρ01 ρ02
4
3
πR3

1

{
1 + 9.7

(
a

R1

)2

−
[
0.875

(
R3

2

R3
1

− 1
)

+
a

R1

(
2.4 +

R2
2

R2
1

)]
e−(R2−R1)/a

}
,

(9)
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VF (R2 −R1 + a ≤ R ≤ R1 + R2) ≈ V0 ρ01 ρ02

4
3
πR3

(
1

1 + ζτ

){
τ2

[
3
8

+
τ

4
+ ζ

τ2

16

]
+ 2.4 η2

[
1− 5

8
η − ζτ2 +

(
5
4
η − 1

2

)
eε +

(
1 +

5
8
η

)
e−(ε+2R1/a)

]}
, (10)

VF (R ≥ R1 + R2) ≈ V0 ρ01 ρ02 πa2 R g(τ) (1 + s/a) e−s/a , (11)

d

wheres = R − (R1 + R2), R = 2R1R2/(R1 + R2),
ζ = R/(R1 + R2), τ = s/R, η = a/R, ε = s/a, R1

and R2 are the radii of the nuclei (hereafter we consider
R2 ≥ R1). The functiong is given by:

g(τ) =
1 + τ + τ2ζ/3 + η + (η + 1/2) e−ε

1 + ζτ
. (12)

We define the reduced folding potential at the surface
region by:

Vred(s ≥ 0) =
VF

ρ01 ρ02 πa2R g(τ)
. (13)

Taking into account Eqs. 11 and 13, the reduced potential
can be represented by the following system-independent ex-
pression:

Vred(s ≥ 0) ≈ V0 (1 + s/a) e−s/a . (14)

However, it is not clear that one can find a simple form for
such a system-independent quantity at inner distances from
Eqs. 9 and 10. In Section V, the reduced potential is useful
for addressing the potential strength systematization. Thus
we defineVred for s ≤ 0 through the following trivial form:

Vred(s ≤ 0) = V0 . (15)

The end of this section is devoted to the study of the
effect on the folding potential of a finite range for the ef-
fective nucleon-nucleon interaction. The tri-dimensional
delta function,V0 δ(~r), can be represented through the limit
σ → 0 applied to the finite-range Yukawa function

Yσ(r) = V0
e−r/σ

4πrσ2
. (16)

Fig. 1 shows a comparison of folding potentials in the zero-
range approach (Eq. 5) with the result obtained (from Eq. 4)

using an Yukawa function for the effective nucleon-nucleon
interaction. The finite range is not truly significant at small
distances, and can be accurately simulated at the surface,
within the zero-range approach, just by slightly increasing
the diffuseness of the nuclear densities.
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Figure 1. Double-folding potentials for 2pF distributions with dif-
ferent diffuseness values (a) that may represent the16O + 58Ni
system. The potentials have been calculated in the zero-range ap-
proach (ZR) or with a finite-range (FR) Yukawa function for the
effective nucleon-nucleon interaction.

IV Nonlocal description of the
nucleus-nucleus interaction

When dealing with nonlocal interactions, one is required to
solve the following integro-differential equation

c

− ~
2

2µ
∇2Ψ(~R) + [VC(R) + Vpol(R, E) + ıWpol(R,E)]Ψ(~R) +

∫
U(~R, ~R′) Ψ( ~R′) d ~R′ = EΨ(~R) . (17)

d

VC is the Coulomb interaction assumed to be local.Vpol and
Wpol are the real and imaginary parts of the polarization po-
tential and contain the contribution arising from nonelastic
channel couplings. The corresponding nonlocality, called
the Feshbach nonlocality, is implicit through the energy-
dependence of these terms.U(~R, ~R′) is the bare interaction

and the nonlocality here, the Pauli nonlocality, is solely due
to the Pauli exclusion principle and involves the exchange of
nucleons between target and projectile.

Guided by the microscopic treatment of the nucleon-
nucleus scattering [12, 13, 14, 15, 16], the following ansatz
is assumed for the heavy-ion bare interaction [6]
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U(~R, ~R′) = VNL

(
~R + ~R′

2

)
1

π3/2b3
e−(|~R− ~R′|/b)2

,

(18)
whereb is the range of the Pauli nonlocality. Introduced
in this way, the nonlocality is a correction to the local
model, and in theb → 0 limit Eq. 17 reduces to the usual
Schr̈oedinger differential equation. The range of the non-
locality can be found throughb ≈ b0m0/µ [17], where
b0 = 0.85 fm is the nucleon-nucleus nonlocality param-

eter [12],m0 is the nucleon mass, andµ is the reduced mass
of the nucleus-nucleus system.

The relation between the nonlocal interaction and the
folding potential is obtained from [6]

VNL(R) = VF (R) . (19)

Due to the central nature of the interaction, it is convenient
to write down the usual expansion in partial waves, and the
integro-differential equation can be recast into the following
form [8]:

c

~2

2µ

d2u`(R)
dR2

+
[
E − VC(R)− Vpol(R, E)− ıWpol(R,E)− `(` + 1)~2

2µR2

]
u`(R) =

∫ ∞

0

V`(R, R′) u`(R′) dR′ . (20)

When confronting theory and experiment, one usually relies on the optical model with a local potential. This brings into light
the issue of extracting from Eq. 20 a local-equivalent (LE) potential

VLE(R, E) + ıWLE(R, E) =
1

u`(R)

∫ ∞

0

V`(R,R′) u`(R′) dR′ . (21)

d

The presence of the wave-function in Eq. 21 indicates
that the LE potential is complex and also`- and energy-
dependent. For neutron-nucleus systems, the LE potential
is only weakly`-dependent, and an approximate relation to
describe its energy-dependence has been obtained [12]. A
generalization of this relation for the ion-ion case is given
by [5, 6]:

VLE(R, E) ≈ VF (R) e−γ[E−VC(R)−VLE(R,E)] , (22)

with γ = µb2/2~2. The local-equivalent potential is quite
well described by Eq. 22 for anỳvalue [8], except at very
small distances (R ≈ 0) that are not probed by heavy-ion
experiments. At near-barrier energies,E ≈ VC(RB) +
VLE(RB), the effect of the Pauli nonlocality is negligible
andVLE(R, E) ≈ VF (R), but the higher the energy is, the
greater is the effect. At energies about200 MeV/nucleon
the local-equivalent potential is about one order of magni-
tude less intense than the corresponding folding potential

(see examples in Refs. [5, 6]).
In a classical physics framework, the exponent in Eq. 22

is related to the kinetic energy (Ek) and to the local relative
speed between the nuclei (v) by

v2 =
2
µ

Ek(R) =
2
µ

[E − VC(R)− VLE(R,E)] ; (23)

and Eq. 22 may be rewritten in the following form

VLE(R,E) ≈ VF (R) e−[m0b0v/(2~)]2 ≈ VF (R) e−4v2/c2
,

(24)
wherec is the speed of light. Therefore, in this context the
effect of the Pauli nonlocality is equivalent to a velocity-
dependent nuclear interaction (Eq. 24). Another possible
interpretation is that the local-equivalent potential may be
associated directly with the folding potential (Eq. 25), with
an effective nucleon-nucleon interaction (Eq. 26) dependent
on the relative speed (v) between the nucleons

c

VLE(R, E) = VF =
∫

ρ1(r1) ρ2(r2) vNN (v, ~R− ~r1 + ~r2) d~r1 d~r2 , (25)

vNN (v, ~r) = vf (~r) e−4v2/c2
. (26)

d

V Systematization of the nuclear po-
tential

As already mentioned, the angular distribution for elastic
scattering provides an unambiguous determination of the
real part of the optical potential in a region around the sen-

sitivity radius (RS). For bombarding energies above (and
near) the barrier, the sensitivity radius is rather energy-
independent and close to the barrier radius (RB), while at
intermediate energies much inner distances are probed. At
sub-barrier energies, theRS is strongly energy-dependent,
with its variation connected to the classical turning point;



242 Brazilian Journal of Physics, vol. 33, no. 2, June, 2003

this fact has allowed the determination of the potential in a
wide range of near-barrier distances,RB ≤ RS ≤ RB +
2 fm. With the aim of avoiding ambiguities in the potential
systematization, we have selected “experimental” (extracted
from elastic scattering data analyses) potential strengths at
the corresponding sensitivity radii, from works in which the
RS has been determined or at least estimated. In several ar-
ticles, the authors claim that their data analyses at interme-
diate energies have unambiguously determined the nuclear
potential in a quite extensive region of interaction distances.
In such cases, we have considered potential strength “data”
in steps of1 fm over the whole probed region.

The experimental potential strengths represent the real
part of the optical potential, which corresponds to the addi-
tion of the bare and polarization potentials. The contribution
of the polarization to the optical potential depends on the
particular features of the reaction channels involved in the
collision, and is therefore quite system-dependent. If this
contribution were very significant, it would be too difficult
for one to set a global description of the heavy-ion nuclear
interaction. In the present work, we neglect the real part of
the polarization potential and associate the experimental po-
tential strengths (VExp) with the bare interaction (VLE). The
success of our findings seems to support such a hypothesis.

In analysing experimental potential results for such
a wide energy range and large number of different sys-
tems, we consider quite appropriate the use of system-
and energy-independent quantities. We have removed
the energy-dependence from the experimental potential
strengths through the calculation of the corresponding fold-
ing potential strengths,VF−Exp, based on Eq. 22. The
system-dependence of the potential data set has then been
removed with the use of the experimental reduced potential,
Vred−Exp. Fors ≥ 0 this quantity was calculated from Eq.
13, and for inners values we have adopted the following
simple definition

Vred−Exp = V0
VF−Exp

VF−Teo
, (27)

with VF−Teo calculated through Eq. 5. The other useful
quantity is the distance between surfaces:s = RS − (R1 +
R2), whereRS is associated to the sensitivity radius, and
the radii of the nuclei have been obtained from Eq. 4.

In Fig. 2 (bottom), the experimental reduced potential
strengths are confronted with the theoretical prediction (Eqs.
14 and 15). The fit to the data in the inner region (s ≤ 0)
results unambiguously in the valueV0 = −456 MeV fm3,
and is quite insensitive to the diffuseness parameter. The
fit for s ≥ 0 is sensitive to both:V0 anda, and the cor-
responding best fit values area = 0.56 fm and the same
V0 found for the inner region. The standard deviation of
the data set around the best fit (solid line in Fig. 2 - bot-
tom) is 25%, a value somewhat greater than the dispersion
(20%) expected to arise from effects of the structure of the
nuclei [8]. We believe that the remaining difference comes

from two sources: uncertainties of the experimentally ex-
tracted potential strengths and the contribution of the polar-
ization potential that we have neglected in our analysis. We
point out that the best fit diffuseness value,a = 0.56 fm,
is equal to the average diffuseness found (Section II) for
the matter distributions and greater than the average value
(a = 0.50 fm) of the nucleon distributions. This is a con-
sistent result because we have calculated the reduced po-
tential strengths based on the zero-range approach (through
Eqs. 5, 13 and 27). As discussed in Section III, the effect
of a finite-range for the effective nucleon-nucleon interac-
tion can be simulated, within the zero-range approach, by
increasing the diffuseness of the (nucleon) densities of the
nuclei.
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Figure 2. Comparison between experimental and theoretical re-
duced potentials in the context of the zero-range (bottom) or finite-
range (top) approachs.

In order to characterize the importance of the Pauli
nonlocality, we have also obtained the reduced potential
strengths through calculations performed without the cor-
rection (Eq. 22) due to the energy-dependence of the LE po-
tential, i.e. associating the experimental potential strengths
directly with the folding potential. The quality of the cor-
responding fit is similar to that obtained with the nonlo-
cality, but theV0 anda parameters are significantly differ-
ent. In the next Section, we show that the values found
without considering the nonlocality,a = 0.61 fm and
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V0 = −274 MeV fm3, seem to result in an unrealistic
nucleon-nucleon interaction.

VI The effective nucleon-nucleon in-
teraction

After removing the energy-dependence of the experimental
potential strengths, the corresponding results are compatible
with the double-folding potential in the zero-range approach
(Eq. 5), provided that the matter densities of the nuclei be
adopted in the folding procedure instead of the nucleon den-
sities. In this section, we study the consistency of our results
for the nuclear potential in the case that the double-folding
model is treated in the more common interpretation: the nu-
cleon distributions and a finite-range nucleon-nucleon inter-
action are assumed in Eq. 4. With the purpose of keeping
the comparison between experimental and theoretical results
through the use of system-independent quantities, it is nec-
essary to change the definition of the experimental reduced
potential

Vred−Exp = Vred−Teo
VF−Exp

VF−Teo
, (28)

whereVF−Teo is now calculated through Eq. 4.Vred−Teo

is still obtained from Eqs. 14 and 15, with theV0 parame-

ter being associated to the volume integral of the effective
nucleon-nucleon interaction (actually, this same procedure
has also been adopted in the zero-range case)

V0 = 4π

∫
vNN (r) r2 dr . (29)

The effective nucleon-nucleon interaction should be
based upon a realistic nucleon-nucleon force, since our goal
is to obtain a unified description of the nucleon-nucleon,
nucleon-nucleus and nucleus-nucleus scattering. A realistic
interaction should match the empirical values for the volume
integral and root-mean-square radius of the nucleon-nucleon
interaction,V0 ≈ −430 MeV fm3 andrrms ≈ 1.5 fm,
that were extrapolated from the main features of the optical
potential for the nucleon-nucleus scattering atEnucleon =
10 MeV [1, 18, 19, 20]. The M3Y interaction has been de-
rived [1] with basis on theG-matrix for two nucleons bound
near the Fermi surface, and certainly is representative of
realistic interactions. In table 1 are presented the volume
integral and root-mean-square radius for several nucleon-
nucleon interactions used in this work, including the M3Y
at10 MeV/nucleon.

Table 1: The width, volume integral and root-mean-square radius for several effective nucleon-nucleon interactions considered
in this work.

Interaction σ or am (fm) V0 (MeV fm3) rrms (fm)
M3Y-Reid - - 408 1.62
M3Y-Paris - - 447 1.60

Yukawa 0.58 - 439 1.42
Gaussian 0.90 - 448 1.56

Exponential 0.43 - 443 1.49
Folding-type 0.30 - 456 1.47

The M3Y interaction is not truly appropriate for use
in the context of the nonlocal model, because it already
contains a simulation of the exchange effects included in
its knock-on term. Furthermore, according to the nonlocal
model the energy-dependence of the local-equivalent poten-
tial should be related only to the finite range of the Pauli
nonlocality, but the knock-on exchange term in the M3Y in-
teraction is also energy-dependent. Therefore, the use of the
M3Y in the nonlocal model would imply a double counting
of the energy-dependence that arises from exchange effects.
In Section IV, we have demonstrated that the LE potential is
identical with the double-folding potential for energies near
the barrier, which are in a region around 10MeV/nucleon.
In this same energy range, the folding potential with the
M3Y interaction have provided a very good description of
elastic scattering data for several heavy-ion systems [1].

Thus, we believe that an appropriate nucleon-nucleon inter-
action for the nonlocal model could be the M3Y “frozen”
at 10 MeV/nucleon [6], i.e. considering the parameters
of the Reid and Paris versions as energy-independent val-
ues. Fig. 2 (top) shows a comparison between experimental
and theoretical heavy-ion reduced potentials, in which the
“frozen” M3Y-Reid was considered for the nucleon-nucleon
interaction. We emphasize that no adjustable parameter has
been used in these calculations, but even so a good agree-
ment between data and theoretical prediction has been ob-
tained. The “frozen” M3Y-Paris provides similar results.

With the aim of investigating how much information
about the effective nucleon-nucleon interaction can be ex-
tracted from our heavy-ion potential systematics, we have
considered other possible functional forms for this effective
interaction. Besides the Yukawa function (Eq. 16), we have
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also used the Gaussian (Eq. 30) and the exponential (Eq.
31), which reduce to the tri-dimensional delta function in
the limit σ → 0,

Gσ(r) = V0
e−r2/2σ2

(2π)3/2 σ3
, (30)

Eσ(r) = V0
e−r/σ

8πσ3
. (31)

The fits to the heavy-ion potentials obtained with all these
functions are of similar quality and comparable with that for
the M3Y interaction. The resulting best fit widths (σ), vol-
ume integrals and corresponding root-mean-square radii are
found in table 1. All theV0 andrrms values, including those
of the M3Y, are quite similar. Also the “experimentally” ex-
tracted intensity of the nucleon-nucleon interaction in the
region1 ≤ r ≤ 3 fm seems to be rather independent of the
model assumed for this interaction (see Fig. 3).

In Section V, we have demonstrated that the major part
of the “finite-range” of the heavy-ion nuclear potential is re-
lated only to the spatial extent of the nuclei. In fact, even
considering a zero-range for the interactionvNN in Eq. 5,
the shape of the heavy-ion potential could be well described
just by folding the matter densities of the two nuclei. One

would ask whether the finite-range shape of the effective
nucleon-nucleon interaction can be derived in a similar way.
Thus, we have considered a folding-type effective nucleon-
nucleon interaction built from:
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Figure 3. The complete set of effective nucleon-nucleon interac-
tions considered in this work.

c

vNN (~r) ≈ vf (r) =
∫

ρm(r1) ρm(r2) V0 δ(~R− ~r1 + ~r2) d~r1 d~r2 =
2πV0

r

∫ ∞

0

r1 ρm(r1)

[∫ r+r1

|r−r1|
r2 ρm(r2) dr2

]
dr1 ,

(32)
d

whereV0 = −456 MeV fm3 as determined by the heavy-
ion potential analysis, andρm is the matter density of the
nucleon. Based on the intrinsic charge distribution of the
proton in free space, which has been determined by elec-
tron scattering experiments, we have assumed an exponen-
tial shape for the matter density of the nucleon

ρm(r) = ρ0 e−r/am . (33)

Of course,ρ0 andam are connected by the normalization
condition of the density. The integration of Eq. 32 results in

vf (r) =
V0

64 π a3
m

e−r/am

(
1 +

r

am
+

r2

3a2
m

)
. (34)

The folding-type and the M3Y interactions provide very
similar fits of the reduced heavy-ion potential strengths. The

folding-type nucleon-nucleon interaction results in realistic
volume integral and root-mean-square radius (see table 1),
and it is also quite similar to both versions of the M3Y in-
teraction in the surface region (see Fig. 3).

The folding-type interaction in the context of the nonlo-
cal model provides a very interesting unification between the
descriptions of the nucleus-nucleus, nucleon-nucleus and ef-
fective nucleon-nucleon interactions. This can be appreci-
ated through the comparison between Eqs. 24 and 26, with
the subtle detail thatVF (in Eq. 24) andvf (in Eq. 26)
can both be calculated by folding the matter densities in the
zero-range approach, and with the sameV0 value. There-
fore, the interaction between two nuclei (or nucleons) can
be obtained from

c

VLE(R) =
∫

ρ1(r1) ρ2(r2) V0 δ(~R− ~r1 + ~r2) e−4v2/c2
d~r1 d~r2 (35)

d

whereV0 = −456 MeV fm3, ρi are the matter densities,
andv is the relative speed between the nuclei (or nucleons).
All these findings seems to be quite consistent. However, the
best fit value obtained for the diffuseness (am = 0.30 fm)

of the matter density of the nucleon inside the nucleus is
considerable greater than that (achp = 0.235 fm) found for
the charge distribution of the proton in free space. This find-
ing is consistent with the swelling of the nucleon observed
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in the EMC effect [21], but should be contrasted with the
opposite picture of a smaller nucleon inside the nucleus as
advanced within the concept of color transparency [22].

VII Conclusion

The experimental potential strengths considered in the
present systematics have been obtained at the correspond-
ing sensitivity radii, a region where the nuclear potential
is determined from the data analyses with the smallest de-
gree of ambiguity. The Fermi distribution was assumed to
represent the nuclear densities, with parameters consistent
with an extensive amount of theoretical (DHB calculations)
and experimental (electron scattering experiments) results.
The potential data set is well described in the context of the
nonlocal model, by the double-folding potential in the zero-
range as well as in the finite-range approaches. The disper-
sion of the potential data around the theoretical prediction
is 25%, which is compatible with the expected effects aris-
ing from the variation of the densities due to the structure
of the nuclei. If the nonlocal interaction is assumed, the
heavy-ion potential data set seems to determine a few char-
acteristics of the effective nucleon-nucleon interaction, such
as volume integral and root-mean-square radius, in a model-
independent way.

The description of the bare potential presented in this
work is based only on two fundamental ideas: the folding
model and the Pauli nonlocality. We have avoided as much
as possible the use of adjustable parameters, and in the case
of the “frozen” M3Y interaction no adjustable parameters
were necessary to fit the experimental potential strengths.
Nowadays, the other important part of the heavy-ion interac-
tion, the polarization potential, is commonly treated within
a phenomenological approach, with several adjustable pa-
rameters which usually are energy-dependent and vary sig-
nificantly from system to system. The association of the
nonlocal bare potential presented in this work with a more
fundamental treatment of the polarization should be the next
step toward a global description of the nucleus-nucleus in-
teraction.

This work was partially supported by Fundação de Am-
paroà Pesquisa do Estado de São Paulo (FAPESP).
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