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The compressible magnetohydrodynamic Kelvin-Helmholtz instability occurs in two varieties, one
that can be called incompressible as it exists in the limit of vanishing compressibility (primary
instability), while the other exists only when compressibility is included in the model (secondary
instability). In previous work we developed techniques to investigate the stability of a surface
of discontinuity between two di�erent uniform ows. Our treatment includes arbitrary jumps of
the velocity and magnetic �elds as well as of density and temperature, with no restriction on the
wave vector of the modes. Then it allows stability analyses of complex con�gurations not previously
studied in detail. Here we apply our methods to investigate the stability of various typical situations
occurring at di�erent regions of the front side, and the near anks of the magnetopause. The
physical conditions of the vector and scalar �elds that characterize the equilibrium interface at the
positions considered are obtained both from experimental data and from results of simulation codes
of the magnetosheath available in the literature. We give particular attention to the compressible
modes in con�gurations in which the incompressible modes are stabilized by the magnetic shear. For
con�gurations of the front of the magnetopause, which have small relative velocities, we �nd that the
incompressible MHD model gives reliable estimates of their stability, and compressibility e�ects do
not introduce signi�cant changes. However, at the anks of the magnetopause the occurrence of the
secondary instability and the shift of the boundary of the primary instability play an important role.
Consequently, con�gurations that are stable if compressibility is neglected turn out to be unstable
when it is considered and the stability properties are quite sensitive on the values of the parameters.
Then compressibility should be taken into account when assessing the stability properties of these
con�gurations, since the estimates based on incompressible MHD may be misleading. A careful
analysis is required in each case, since no simple rule of thumb can be given.

I Introduction

The Kelvin-Helmholtz Instability (KHI) can occur in
laboratory and astrophysical plasmas when two (or
more) regions are in relative motion. Other properties
of the plasma (like magnetic �eld, density and tempera-
ture) may also change across the transition layer. These
changes modify the stability and other properties of the
modes, thus complicating analysis. The KHI may occur
at the terrestrial magnetopause, the boundary that sep-
arates the interplanetary magnetic �eld (IMF) present

in the magnetosheath, and the geomagnetic �eld inside
the magnetosphere. The relative motion is generated
by the solar wind owing through the magnetosheath.
The ow velocity and the magnetic �eld are assumed
parallel to the transition layer, and the magnetic �eld
may change its direction (magnetic shear) and its mag-
nitude across the transition. The low frequency magne-
tohydrodynamic (MHD) modes shall be our main con-
cern here since their instability may produce large-scale
turbulence. The KHI is considered a major source of
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anomalous transport of momentum from the solar wind
into the magnetosphere, and a cause of viscous drag at
the magnetopause. This is so particularly during peri-
ods of northward IMF, when the reconnection of mag-
netic lines is less likely to occur. We shall not consider
other unstable modes that can also arise close to, and
inside the magnetopause, in frequency ranges higher
than those treated by MHD. These modes lead to mi-
croscopic turbulence that a�ects the transport proper-
ties of the plasma at smaller wavelengths. We shall also
neglect dissipative e�ects so that our treatment shall be
based on ideal MHD. The KHI at the magnetopause has
been examined since the 1950's, and a large literature
has grown on this subject. We quote here some recent
reviews [?], [?], [?] among several others.

The theory of the KHI for arbitrary geometry is
exceedingly complicated, but fortunately in many cir-
cumstances, the wavelength of the perturbation is very
small as compared to the curvature radii of the tran-
sition layer. Then the problem can be treated in a
plane slab geometry, in which the unperturbed quanti-
ties (density �, pressure p, magnetic �eld B and mass
ow velocity u) depend only on the y coordinate (per-
pendicular to the transition layer). A di�erential equa-
tion for the linear MHD perturbations of strati�ed plas-
mas [?], and its generalization to include the e�ect of
gravity [?], can be used as a starting point to investigate
these problems.

If the wavelength of the perturbation is large as
compared to the thickness of the transition layer, we
can ignore the structure of the transition and assume it
is a mathematical surface (at y = 0) separating two in-
�nite, uniform plasma regions. The problem can then
be treated by means of standard normal mode anal-
ysis. The equations of ideal MHD and the parame-
ters of the con�guration do not involve either a fre-
quency or a length scale. Therefore the theory only
predicts the (complex) phase velocity v of the pertur-
bation (v = !=kt), as a function of the parameters of
the plasma, of the mass velocities of the uniform regions
and of the wavenumber kt � (kx; 0; kz) of the pertur-
bation of the interface. Then an algebraic dispersion
relation is obtained, whose roots yield v.

Within the incompressible MHD approximation
(IMHD) it is possible to derive a simple formula for
the phase velocity. Because of this, the IMHD result
is often employed in space physics to interpret the ob-
served data and to examine the stability of the con-
�guration. Sometimes the tacit assumption is made
that the compressibility e�ects thus neglected should
(if any) improve stability. This assumption is based on
well known theorems (see for example [?]) derived from
a variational principle, according to which compress-
ibility leads to a positive contribution to the energy of
the plasma and so tends to stabilize it. However, these
results cannot be applied here, since due to the presence
of mass ow the plasma can sustain perturbations with

a negative energy density that can lead to instability.
This is a consequence of the transformation properties
of the energy density W of a perturbation of wavenum-
ber kt and frequency ! under Galilean transformations.
Let the primes denote the quantities calculated in the
reference frame of the plasma that moves with a veloc-
ity u � (ux; 0; uz) with respect to the observer, and the
quantities without primes refer to the observer frame.
Then we haveW 0=!0 =W=!. Notice that the Doppler-
shifted frequency in the plasma frame !0 = ! � u � kt
can be negative if uk = u �kt=kt is suÆciently large (the
phase velocity in the plasma frame is then v0 = v�uk).
Since W 0 is always positive, the energy density of the
perturbation as measured in the laboratory frame is
then negative. A negative energy density perturbation
may lead to instability if it couples to a positive energy
density perturbation, since both can grow without an
external source of energy.

In IMHD, the instability arises from perturbations
of the interface that are exponentially damped in both
plasma regions (like surface gravity waves in water).
The penetration depth of these perturbations is equal
to their wavelength 2�=kt. The instability occurs when
uk exceeds a critical value ui (see below), such that
their energy density (in the laboratory frame) is pos-
itive in one region and negative in the other. These
perturbations grow because energy is transferred across
the interface from the negative energy density region to
the other, and remains localized as it can not be trans-
ported away across the magnetic �eld. This instabil-
ity will be called primary KHI. Notice that the Alfv�en
wave only transports energy along the �eld lines, and
does not participate in the KHI if the transition region
has a vanishing thickness.

The essential di�erence between IMHD and com-
pressible MHD (CMHD) is that in the latter there are
perturbations (the fast and slow magnetosonic waves)
that propagate in the bulk of the plasma and trans-
port energy across the magnetic �eld (see for example
[?]) Consequently, the e�ect of compressibility on the
Kelvin-Helmholtz instability is complex, leading to the
stabilization of certain perturbations, the destabiliza-

tion of others, and the occurrence of modes that have
no analogue in IMHD and that may lead to new insta-

bilities. Let us briey discuss the basic physics involved.

Consider �rst the primary KHI. Due to compress-
ibility, if uk is suÆciently large the perturbation may
be able to propagate in both regions as fast magne-
tosonic waves. When this happens, the perturbation is
stable, and it is seen by the observer as a pair of fast
magnetosonic waves radiated away from the interface.
One of these waves has a negative, and the other a pos-
itive energy density [?], [?]. In this way, perturbations
that are unstable according to IMHD are stabilized by
compressibility. However, in addition to this large-uk
stabilization, there is another e�ect of compressibility
on the primary KHI, namely that the critical value uc
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for the onset of the instability is lowered (uc � ui).
This is a destabilizing e�ect, since perturbations that
are stable according to IMHD become unstable when
compressibility is taken into account. As we shall show
later, this e�ect is important in the magnetopause. The
penetration depth of the unstable modes is also a�ected
by compressibility, and is no longer given by 2�=kt.

Yet, there are further e�ects of compressibility. Due
to the existence of the slow magnetosonic waves new

kinds of perturbations of the interface are possible, that
have no counterpart in IMHD. Some of these perturba-
tions are stable evanescent oscillations, and other are
slow magnetosonic waves in both regions (radiation of
a pair of slow magnetosonic waves). However, some of
these new perturbations may be unstable. These new
instabilities (called secondary KHI) are found in inter-
vals of uk that correspond to stable perturbations ac-
cording to IMHD. They lie totally, or partially, below
the critical value uc for the onset of the primary KHI.
The occurrence of the secondary KHI is an additional
destabilizing e�ect of compressibility. The growth rate
of the secondary modes is usually small. However, we
shall see that these modes cannot be ignored, since in
some con�gurations of the magnetopause they are the
only unstable modes present.

A substantial contribution to the understanding of
the compressibility e�ects on the Kelvin-Helmholtz in-
stability was given by Miura and Pritchett [?]. How-
ever, these e�ects have not yet been fully explored for
general con�gurations with density and temperature
discontinuities as well as magnetic �eld shear, such as
those occurring in the magnetopause. For an exten-
sive revision of the literature and of the main results
on this subject, see refs. [?], [?]. Recently, we have
developed techniques [?], [?], [?] to analyze the stabil-
ity of an interface separating two uniform ows, with
arbitrary jumps in the velocity, magnetic �eld, density
and temperature, and with no restrictions on the wave
vector of the perturbation.

The content of this paper is as follows. In Section
II we outline the basic theory. In Section III we ex-
plain the techniques for analyzing the dispersion rela-
tion and the characteristics of the unstable modes. Sec-
tion IV discusses the secondary KHI. A useful graphical
technique that simpli�es the complexity of the stability
analysis is given in Section V. The physical parameters
used in the applications to the magnetopause stability
are introduced in Section VI. The results for two exam-
ples, (i) a model of the front side magnetopause, and
(ii) an event observed at the near equatorial ank of
the magnetopause are given in Section VII. We deter-
mine the stability of these con�gurations, and study
the unstable modes that may occur in them. The
�nal remarks are in Section VIII. We conclude that

the e�ects of compressibility may introduce important
changes with respect to the predictions of IMHD.

II Theory

We consider two semiin�nite, uniform plasma regions in
relative motion. The geometry of the problem is shown
in Fig. 1. Region 1 (y > 0), moves with a constant
velocity u01, and region 2 (y < 0) moves with a con-
stant velocity u02. The velocities u01 and u02 and the
magnetic �elds B1 and B2 are parallel to the interface
(suÆxes i = 1; 2 denote quantities pertaining to region
1 and 2, respectively). At the interface, p, �, and B

can have arbitrary discontinuities, subject to the equi-
librium condition
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Figure 1. Geometry of the problem.

We shall assume ideal CMHD and consider the lin-
ear adiabatic perturbations of this con�guration. Since
the growth rate of the instability does not depend
on u01 and u02 separately, but only on their di�erence
2u = u01 � u02, we use a reference frame moving with
the average velocity u0 = (u01 + u02)=2. In this frame
u1 = u = uex, u2 = �u, and � is the angle between
u and the wavenumber kt � (kx; 0; kz) of a perturba-
tion whose frequency is !; the phase velocity is then
v = !=kt. Once the phase velocity of the perturbation
is found, we can obtain its value in the observer frame
by means of the Galilean transformation v0 = v � u0k.

The (Doppler-shifted) frequencies in the plasma
frames are !1 = !�ukkt in region 1 and !2 = !+ukkt
in region 2, and the corresponding phase velocities are

v1 = v � uk ; v2 = v + uk (2)

We shall denote by  i the angles between Bi and
kt, and by 'i the angles between Bi and u. The angle
between kt and u is �, so that uk = u cos�. We employ
the following notation:
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Ai =
Bip
4��i

= Alfv�en velocity ; Si =

r
pi
�i

= Sound velocity( = 5=3) (3)

di =
p
A2
i + S2i ; ai = Ai cos i ; bi = (AiSi=di) cos i (4)
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; withRe(�i) > 0 ; or Im(�i) > 0 if Re(�i) = 0 (6)

d

In each one of the uniform regions, the general form
of the perturbation is

�i = ei(ktx�!t)(Cie
�kt�iy +Die

kt�iy) (7)

In this formula, �i denotes the y-component of the dis-
placement, and Ci and Di are constants. The penetra-
tion depth of the perturbation in region i is proportional
to 1=Re(�i).

When Re(�i) = 0, it can be recognized that eq.
(6) is the dispersion relation for the fast and slow
magnetosonic waves in a semiin�nite uniform moving
plasma; their wave vector is (kx; kt Im(�i); kz). When
Re(�i) 6= 0, eq. (6) is the dispersion relation for evanes-

cent perturbations, and of course in this case the am-
plitudes of the exponentially growing perturbations (D1

and C2) in eq. (7) must vanish since the plasma extends
to (+ or �) in�nity.

The boundary conditions at y = 0 (continuity of �
and of the normal stress) couple the perturbations of re-
gions 1 and 2. The coupling leads to a matrix equation
that relates the amplitudes Ci, Di:

�
C1

D1

�
=

�1
2�1(v21 � a21)

�
T S
S T

� �
C2

D2

�
(8)

Here

c
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1
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2

1
�a2

1
)
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2

2
�a2

2
)
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d

The matrix equation (8) may be used to investi-
gate many problems involving localized modes as well as
the reection and transmission of magnetosonic waves.
Since unstable modes and stable surface oscillations
have Re(�1;2) 6= 0, we must have C1 = D2 = 0 and
then the corresponding dispersion relation is

T =
�1(v

2
1 � a21)

�1
� �2(v

2
2 � a22)

�2
= 0 (10)

The propagating modes have Re(�1;2) = 0, so that
there is no restriction on the Ci, Di. In this case, the
conditions T = 0 and S = 0 determine the poles and the
zeros of the reection coeÆcient. Notice that the sign of
the y-component of the group velocity of magnetosonic

waves may be di�erent from the sign of Re(�1;2). Then
one must examine the group velocities in each region,
to ascertain which of these conditions yields the dis-
persion relation for radiation of a pair of waves, or for
the total transmission of waves (and their time-reversed
processes).

III Classi�cation of the modes

To investigate the roots of the dispersion relation (10)
it is useful to introduce a polynomial P associated to it.
It is obtained by taking the numerator of the product
TS, thus eliminating the square roots:

c

P = �21d
2
1(v

2
1 � a21)

2(v21 � b21)(v
2
1 � q21)(v

2
1 �m2

1)� �22d
2
2(v

2
2 � a22)

2(v22 � b22)(v
2
2 � q22)(v

2
2 �m2

2) (11)
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Clearly, the roots of P = 0 encompass the solu-
tions of T = 0 ( 'true' roots) as well as those of S = 0
('spurious' roots), and we must discard the latter when
we look for localized modes. Accordingly, we call 'true
branch' (T) the set of solutions of T = 0, and 'spurious
branch' (S) the solutions of S = 0. The T branch and
the S branch consist of several pieces (that we call 'seg-
ments'), each of which is a continuous manifold in the
parameter space of the problem. They are arranged in
such a way that any given T segment is bounded by one
or more S segments (and vice-versa). Let us consider a
root v (real or complex) of P that belongs to a certain
segment Tj . If the parameters change, v moves along
Tj until eventually it arrives to the boundary between
Tj and a segment Sl of S. As it crosses this boundary,
v ceases to belong to the true branch and becomes spu-
rious. It is important to notice that the T-S boundaries
occur only for v real, at the points where �1;2 = 0;1.
This is fortunate, since it simpli�es considerably the
analysis of the topology of the T and S branches.

A convenient way to visualize the real roots of the
dispersion relation (10) and so unravel the topology of
the T and S branches is to use a graphical method intro-
duced by Chandrasekhar [?]. This method takes advan-
tage of the fact that the problem of �nding the roots v
of P = 0 is equivalent to solve for v1 and v2 the coupled
equations

P (v1; v2) = 0 (12a)

v2 = v1 + 2uk (12b)

From any given solution (v1; v2) of the system (12),
one can obtain a root v = (v1 + v2)=2 of P = 0. The
real solutions of this system can be easily found graph-
ically in a (v1; v2) diagram, as the intersections of the
line L given by (12b) with the curves that are obtained
solving the bicubic (in v1 and v2) equation (12a) for v2.

In Fig. 2 we show a typical Chandrasekhar dia-
gram, corresponding to the plasma con�guration (d)
investigated in Section VII (notice that the scale of v2
is di�erent from that of v1 for convenience in drawing).
It suÆces to consider a single quadrant, since the curves
v2 = v2(v1) are symmetrical under reections on both
axes. In Fig. 2, the lines v2 = v1 and v2 = �v1 rep-
resent the v- and uk- axes (except from a scale factorp
2).

The perturbation in the region i (i = 1; 2) is a slow
magnetosonic wave if bi � jvij � mi, and a fast magne-
tosonic wave if qi � jvij. It is evanescent if 0 � jvij � bi
or mi � jvij � qi (we shall call the latter the 'slow' and
'fast' evanescent perturbations, not to be confused with
the slow and fast magnetosonic waves). A real root be-
longs to the T branch if Sign(v21�a21) 6= Sign(v22�a22) (i.
e., if jv1j < a1 and jv2j > a2, or jv1j > a1 and jv2j < a2);
otherwise, it belongs to the S branch.
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Figure 2. Chandrasekhar diagram for the con�guration of
case (d) (Section VII) and  1 = 150Æ. The �ne dashed
lines labeled (left to right) �q1, �a1, �m1, �b1 and q2,
a2, m2, b2 (top to bottom) mark the boundaries where the
perturbation changes its character.

Both the T and S branches must be considered for
the y-propagating modes (radiated or totally transmit-
ted magnetosonic waves). It can be shown that all the
roots of this type in the second and fourth quadrants of
the (v1; v2) diagram correspond to radiation and those
in the �rst and third quadrant to total transmission.
According to these criteria we can classify the branch
segments shown in Fig. 2. The true evanescent seg-
ments are represented by solid curves (labeled T1, T

0
1,

T2), the spurious evanescent segments by gray dotted
curves (labeled S1, S2, S3, S

0
3), and the radiation seg-

ments by gray solid lines (labeled R1, R
0
1, R2, R3, R

0
3).

For any given uk there are �ve pairs of roots of
P (v) = 0. Two pairs are always real, and are uninter-
esting for us since they are always spurious, or corre-
spond to totally transmitted modes (they do not appear
in Fig. 2 since they lie in the �rst and third quadrants).
One root of a third pair lies on the curve formed by the
segments labeled with the suÆx 3 in Fig. 2 (S3, R3,
S03, R

0
3), or on its continuation in the �rst quadrant.

The other root of this pair is found on a symmetrical
curve lying in the third and fourth quadrants. This
pair of roots is also uninteresting, since they are always
either spurious or propagating modes. The remaining
two pairs of roots, labeled A, A0 and B, B0, are impor-
tant to us since they can be unstable. For the value
of uk represented in Fig. 2 all these roots are real and
represent stable surface oscillations, since the points lie
on the segments T01 and T2, respectively.

If we consider a larger value of uk, the line L must
be displaced upwards, parallel to itself. Then the points
B, B0 move on the segment T2 until they coalesce for
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uk = ud2 when L is tangent to T2. For uk > ud2 the
roots vB , vB0 are complex conjugate, but they still be-
long to the T branch (since roots can pass to the other
branch only for v real). Then uk = ud2 corresponds
to marginal stability, and one of the roots vB , vB0 is
unstable for uk > ud2 (the other is damped). This in-
stability persists until uk = ud6, when L is tangent to
the segment R2. Then ud6 corresponds also to marginal
stability, and for uk > ud6, vB , vB0 are stable radiation
modes. On the other hand, if one considers values of
uk larger than that represented in Fig. 2, the points
A, A0 move along T01 and eventually pass into the seg-
ments R1, R

0
1, and then vA, vA0 correspond to radiation

modes.
Let us now consider smaller values of uk. As uk is

reduced, L moves downwards. The points B, B0 move
on T2 until they pass into S2. It can be shown that
for uk > 0, no new instability arises from the roots
vB , vB0 . On the other hand, the points A, A0 move
along T01 until they coalesce for uk = ud3. When this
happens, the double root vA = vA0 is marginally stable.
For ud1 < uk < ud3 we have instability, and vA, vA0 , are
complex conjugate. Marginal stability is again achieved
at uk = ud1. For uk < ud1 the points A, A

0 move along
T1 until they pass into S1. No other instability related
to vA, vA0 occurs for uk > 0. Using diagrams like Fig. 2
it is possible to investigate the stability of any con�gu-
ration of interest. However, this method is unpractical,
since we need a new diagram for each orientation of kt,
and in addition, we cannot determine the growth rate
of the unstable modes.

In the case shown in Fig. 2 there are two unstable
intervals (for uk > 0). The �rst (in order of increasing
uk) involves vA, vA0 and occurs for ud1 < uk < ud3.
The second occurs for ud2 < uk < ud6, and involves
vB , vB0 . This result is due to the special choice of pa-
rameters of Fig. 2. In general, there can be up to six

positive values of uk corresponding to signi�cant (i.e.,
belonging to the T branch) double roots of P (v) = 0,
that we label ud1; :::; ud6. Correspondingly, there can
be up to three unstable intervals, namely

ud1 < uk < ud3 secondary interval A (13a)

ud2 < uk < ud4 secondary interval B (13b)

ud5 < uk < ud6 primary interval (13c)

As the parameters are varied, it may happen that the
pair (ud3, ud5), or the pair (ud4, ud5), coalesces and be-
comes complex. In the �rst case, the secondary inter-
val A merges with the primary interval. In the second
case, the secondary interval B merges with the primary
interval (as in Fig. 2). In addition the secondary in-
tervals (13a, b) may also overlap partially or totally.
The secondary intervals can be extremely narrow for
some values of the parameters, in particular they vanish
when the perturbations are utes in either region 1 or
2. For negative uk, a completely symmetrical result is
obtained, in which the signs of ud1; :::; ud6 are changed,
the inequalities (13a-c) are reversed, and the roles of the
root pairs (A, A0) and (B, B0) are exchanged. There
are no simple formulae for ud1; :::; ud6.

To �nd the double roots vd1; :::; vd6 of P (v) and the
corresponding uk values ud1; :::; ud6 we must solve nu-
merically for (u; v) the system

P (u; v) = 0 ; @P (u; v)=@v = 0 (14)

and discard the roots belonging to the S branch. The
unstable intervals can then be mapped in the parameter
space of the con�guration (see Section V).

IV The secondary Kelvin-

Helmholtz instability

With the help of diagrams like Fig. 2 it is easy to un-
derstand the role of the compressibility on the KHI.
As Si increases, bi and mi approach ai, and qi in-
creases without bound, so that in the incompressible
limit (S1; S2 ! 1) the secondary unstable intervals
disappear, and we are left only with the primary un-
stable interval, that now extends to in�nity. The sec-
ondary KHI is then a consequence of compressibility,
as well as the large uk stabilization of the primary KHI
at ud6. It is enlightening to see in more detail the ori-
gin of the secondary KHI. Notice that P (v1; v2) can be
written in the form

c

P (v1; v2) = S21S
2
2Pinc(v1; v2) + S21P1(v1; v2) + S22P2(v1; v2) + P3(v1; v2) (15)

In (15),
Pinc(v1; v2) = (v21 � a21)(v

2
2 � a22)[�

2
1(v

2
1 � a21)

2 � �22(v
2
2 � a22)

2] (16)
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and P1, P2, P3, are polynomials whose coeÆcients are
functions of a1, a2, A1, A2, �1 and �2. Then, in the
limit S1; S2 !1, if we assume that v1;2 remain �nite,
eq. (12a) reduces to Pinc = 0, whose solutions are:

v1 = �a1 (16a)

v2 = �a2 (16b)

v2 = �
r
a22 �

�1
�2
(v212 � a21) (16c)

v2 = �
r
a22 +

�1
�2
(v212 � a21) (16d)

c

These solutions yield, respectively, the roots

v = va1� = uk � a1 (17a)

v = va2� = �uk � a2 (17b)

v = vK� = uk
�1 � �2
�1 + �2

�
p
(a21�1 + a22�2)(�1 + �2)� 4u2k�1�2

�1 + �2
(17c)

v = vS� = uk
�1 + �2
�1 � �2

�
p
(a21�1 � a22�2)(�1 � �2) + 4u2k�1�2

�1 � �2
(17d)

d

The roots (17a) and (17b) are stable, and correspond
to Alfv�en waves propagating in regions 1 and 2, respec-
tively. The roots (17c) have been discussed by Axford
[?],[?], Chandrasekhar [?] and Southwood [?]. They
yield the incompressible (primary) Kelvin-Helmholtz
instability for

jukj > ui =
1

2

r
�1�2
�1 � �2

(a21�1 + a22�2) (18)

Finally, the roots (17d) are spurious.
Some of the roots (17a� d) can coincide for special

values of uk. For example, when

uk = uD =
1

2
(a1 + a2) (19)

the roots va1�, va2+, vK� (� or + according to the sign
of a21�1 � a22�2) and vS� coincide and their value is

v = vD =
1

2
(�a1 + a2) (20)

This degeneracy corresponds to the point D1 (v1 =
�a1, v2 = �a2), where the lines (16a � d) cross. It
can be veri�ed that ui � uD, and that the equal-
ity holds only for a21�1 � a22�2 = 0. Let us now as-
sume that S1; S2 are large, but �nite. Then the term
S21P1(v1; v2) + S22P2(v1; v2) in (15) can be treated as
a small perturbation that couples the degenerate roots
va1�, va2+, vK+ (or vK�), vS�. It can be shown that
part of the degeneracy is removed, and some roots ac-
quire an imaginary part. The unstable modes so arising

(secondary KHI) have no analogue among the purely
incompressible modes. It is interesting to observe that
this instability appears around uk � uD, that is, in a
range of uk that is stable according to IMHD, since it
lies below ui.

In addition to D1, there are three other points where
degeneracy of the roots (17a � d) occurs, namely D2

(u = �uD, v = �vD), D3 (u = vD, v = uD) and D4

(u = �vD, v = �uD). The removal of the degeneracy
at D2 due to compressibility leads to overstable modes
like at D1. On the other hand, the removal of the de-
generacies at D3 and D4 does not lead to instabilities.

V Stability diagrams

The problem of �nding the localized eigenmodes is
straightforward, if tedious, since we must calculate nu-
merically the roots of the polynomial P (of degree ten),
that depends on seven independent parameters. Six of
them characterize the plasma con�guration; they can
be taken as the ratios rb = B2=B1, rs = S2=S1 and
rd = �2=�1, the magnitude u of the relative velocity,
and the angles '1 from B1 to u, and � from B1 to B2

(magnetic shear angle). The remaining is the angle  1
from B1 to kt, and identi�es the perturbation we are
considering.

Notice, however, that P (and its roots) depends on
u only through the combination

uk = u cos� = u cos( 1 � '1) (21)
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Accordingly, we shall represent the results of the anal-
ysis by means of diagrams in which we plot the growth
rate Im(v) of the unstable modes as functions of  1
and uk, keeping �xed the remaining parameters (rb, rs,
rd, �) that determine P . An example is the stability
diagram shown in Fig. 3, in which we have drawn a
contour plot of Im(v) for the parameters of a case in-
vestigated in Section VI (case (d), rb = 1:5, rs = 2:67,
rd = 0:117, � = �80Æ). In Fig. 3 we have also drawn
the curve u = ui( 1) that gives the marginal stability
condition (18) according to the incompressible model.
All the points of the stability diagram above ui( 1) cor-
respond to instability according to IMHD. Notice that
the contour plot does not refer to a unique plasma con-
�guration, since we have not yet speci�ed u and '1.
Then it can be used for all the con�gurations having
the same values of rb, rs, rd and �. This is a distinct
advantage since with a single graph we can study the ef-
fects of changing the magnitude of the relative velocity
and its orientation with respect to the magnetic �eld.

In Fig. 3, we can see the main e�ects of com-
pressibility: the large-uk stabilization and the small-uk
destabilization of the primary instability, and the pres-
ence of the secondary instability in uk intervals that
are stable according to IMHD. It should also be men-
tioned that for uk appreciably larger than ui( 1) (i. e.,
not very close to it) the growth rates calculated with
CMHD are always smaller than those calculated with
IMHD (17c).

To investigate a particular con�guration by means
of the stability diagram we must draw the curve C given
by eq. (21), that depends on the two remaining pa-
rameters (u, '1) that characterize it. Following C we
�nd the value of Im(v) for this con�guration, for any
perturbation characterized by the angle  1. Since the
problem is invariant under the transformation (v ! �v,
uk ! �uk), it suÆces to calculate the contour plot for
uk � 0; of course, we must then draw the curve C0 given
by uk = �u cos� in addition to C.

In the example shown in Fig. 3 we see that the
con�guration described by C and C0 (u = 1:7A1, '1 =
�89:9Æ) is stable according to IMHD, but is unstable

if compressibility is taken into account. The unstable
modes occur in the (approximate) range 40Æ �  1 �
50Æ and they belong to the secondary KHI. Their max-
imum growth rate is small (Im(v) � 0:04A1), but sig-
ni�cant. It can be observed that other con�gurations
with the same values of rb, rs, rd and � can be more un-
stable. The extreme of Im(v) in Fig. 3 is � 2:115A1; it
occurs for  1 � 25Æ and uk � 5A1, a value that requires
a very large u.

The meaning of the large-uk stabilization can be
clari�ed by means of an example. Let us consider in
Fig. 3 a hypothetical con�guration with u = 10A1 and
'1 = �89:9Æ. The new curves Cn and C0n are similar
to C and C0, only scaled by the factor 10=1:7. Part of
Cn (for 45Æ �  1 � 113Æ) lies in the upper part of the

stability diagram (uk > ud6) corresponding to stable
perturbations: these are the large-uk modes stabilized
by compressibility. However, this con�guration is un-
stable, since Cn and C0n pass through the unstable part
of the diagram (actually, its most unstable modes have
Im(v) very close to the extreme value for the diagram).
Clearly, con�gurations having very large u are always
unstable, although large-uk stabilization may occur for
some modes.

0.2 0.4 0.6 0.8 1
y1/p

2.5

5

7.5

uk/A1

C
C’

Cn

Cn'
ui

Figure 3. Stability diagram for case (d) of Section VII. The
lines C and C0 correspond to the values of uk of the con�gu-
ration, given by eq. (21). The contours of Im(v) are spaced
by 0:2A1. The large white areas at the top and bottom of
the diagram correspond to stable perturbations.

A few comments must be made concerning stabil-
ity diagrams like Fig. 3. To draw them we calculate
the roots of the dispersion relation at discrete points of
a grid in the ( 1; uk) plane. Sometimes, at the same
point ( 1; uk) there are two unstable roots (this hap-
pens when the secondary intervals A and B overlap,
or when any one of them overlaps parts of the pri-
mary interval). In these instances we show only the
larger Im(v). The secondary intervals are very narrow
in some ( 1; uk) regions, and may not show up, due
to the coarseness of our grid (for the same cause some
contours appear wavy in Fig. 3). Nothwithstanding
these drawbacks, stability diagrams are extremely use-
ful tools, since they provide an economical and fast way
for �nding the most interesting domains in parameter
space. It is then possible to perform more precise and
detailed calculations in these regions only, with con�-
dence that we shall not miss anything relevant.
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VI Parameters of magnetopause

con�gurations

Before discussing the application of the theory to the
magnetopause, it is convenient to review how the pa-
rameters used in our formulae can be obtained from
the theoretical models or from spacecraft data. We as-
sume that the outside region (as seen from the Earth) is

region 1. In the applications, the parameters of the con-
�guration (the ow velocities u01 and u

0
2 and the angles

 B1;u0

1
and  B1;u0

2
from B1 to u

0
1 and u

0
2, respectively)

are given in a reference frame at rest with respect of
the Earth. In our theory we use a reference frame mov-
ing with the average velocity u0 = (u01 + u02)=2, then
u1 = u, u2 = �u, with u = (u01 � u02)=2. In what
follows, all velocities are given in km/s. We employ the
following formulae:

c

u =
1

2

q
u021 + u022 � 2u01u

0
2 cos �u ; u0 =

1

2

q
u021 + u022 + 2u01u

0
2 cos �u ; �u =  B1;u

0

2
�  B1;u

0

1
(22)

'1 =  B1;�u
0

1
+ Sign(sin�u)arccos

�
u01 � u02 cos �u

2u

�
(23)

d

The angle Æ from u to u0 is given by

Æ = Sign(sin �u)arccos

�
u021 � u022
4uu0

�
(24)

In eqs. (23) and (24) the factor Sign(sin �u) is needed to
obtain the correct determination of '1 and Æ. Finally,
the phase velocity of the perturbation in the Earth's
frame is given by

v0 = v � u0 cos( 1 � '1 � Æ) (25)

To consider the remaining parameters we must dis-
cuss separately the theoretical and spacecraft data.

Data derived from theoretical models

The conditions for the excitation of the Kelvin-
Helmholtz instability on the dayside magnetopause
were recently investigated in two papers. One, by Miura
[?], reports numerical MHD simulations on the devel-
opment of the instability, starting from hyperbolic tan-
gent pro�les of the unperturbed �eld quantities. One
of the main results is that the magnetopause appears
to be more KH unstable for northward IMF conditions
than for southward pointing magnetic �elds. However,
the choice of parameters for the simulations is more
adequate for the analysis of near ank con�gurations

rather than dayside proper. The second paper [?] is
based on a linear incompressible theory, and speci�-
cally addresses the distribution of the KH activity over
the magnetopause surface. Charts of KHI growth rates,
relying on input parameters provided by a MHD code
that simulates the physical conditions of the frontside
magnetosheath, are given. One of the main results is
that under northward IMF conditions, the KH activity
is restricted to some well de�ned regions of the mag-
netopause. Even when the IMF is due north, the ac-
tivity decreases as the latitude increases from the mag-
netopause equator. In an third paper [?] the latitude
dependence of the KHI is examined with a linear in-
compressible theory based on hyperbolic tangent pro-
�les, using our incompressible theory for a tangential
velocity discontinuity.

The data used here are given in Tables 1 and 2.
Those of Table 1 (also used in [?]) proceed from ref.
[?] and were calculated with the magnetosheath model
of ref. [?], which is also described in [?]. The IMF
is assumed to point exactly north. The positions are
at equator, middle latitude, and high latitude, along a
meridian about 3 hours east of noon. The main di�er-
ence among these positions is the increase of the local
magnetic shear angle.

Table 1. Parameters of con�gurations of the front of the magnetopause according to the model.

Case Latitude fu0 fb fd rb  B1;u
0

1
�

(a) low 0:2352 1:1994 0:7502 1:2670 90Æ 0Æ

(b) intermediate 0:2568 1:0875 0:7387 0:8935 81Æ 6Æ

(c) high 0:2945 1:0055 0:7259 0:5288 92Æ 21Æ
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Table 2. Additional parameters of con�gurations of the front of the magnetopause (rs has been calculated to
satisfy the equilibrium condition, velocities are in km/s).

Case Latitude u1 fs rd rs A1

(a) low 500 1:2 0:1 1:81 692
(b) intermediate 500 0:463 0:1 4:75 633
(c) high 500 0:463 0:1 7:00 589

We have in this case u02 = 0, then u = u0 = u01=2,
'1 =  B1;u

0

1

and v0 = v � u0 cos( 1 � '1). The
model provides  B1;u

0

1
, the shear angle �, the ratio

rb = B2=B1, as well as the following quantities:

fu0 = u0=u1 ; fb = B1=u1
p
4��1 ; fd = �1=�1

(26)

In (??), u1 and �1 are the velocity and the density
of the solar wind, far from the interaction region.

Because the magnetosheath model does not provide
magnetospheric values for temperature and density, Ta-
ble 2 complements the set of parameters needed in the

theory. We assume u1 = 500 km/s and use typical val-
ues of the density ratio and of the temperatures in both
regions, often observed in spacecraft crossings of the
magnetopause (expressed as rd = �2=�1, rs = S2=S1
and fs = S1=u1). Clearly rd, rs and fs must sat-
isfy the equilibrium condition (1). In terms of the f
's and r's this implies 2fdf

2
s (1 � rdr

2
s) = f2b (r

2
b � 1).

So we �rst assign rd and fs, and then use this rela-
tion to calculate rs. Since r

2
s must be positive, we need

f2s > f2b (r
2
b � 1)=2fd. When rb > 1 (as in case (a)

below) this condtion sets a lower bound on fs.
Using the data of Tables 1 and 2 we then �nd

c

u = fu0

u1
2

; A1 =
u01fb

fu0

p
fd

; A2 = A1rb
p
rd ; S1 =

u01fs
fu0

; S2 = rsS1 (27)

d
and from these quantities we calculate the remaining
parameters of our theory.

Spacecraft data

At the anks of the magnetopause, the magne-
tosheath ow is supersonic and the e�ects of compress-
ibility on the KHI are expected to be important. We
shall examine a con�guration at the near equatorial
magnetopause at dusk, observed by Interball/tail dur-
ing the event of January 11, 1997. This was at the tail of
a coronal mass ejection passing Earth, during which the
dynamic pressure of a high density solar wind strongly
compressed the magnetosphere. As a consequence, In-

terball/tail was for some time in the magnetosheath,
and reentered the magnetosphere, after the dynamic
pressure returned to lower values. During the cross-
ing of the magnetopause, from magnetosheath to low
latitude boundary layer, the spacecraft measured the
physical parameters necessary for a stability analysis.
A detailed study of the event is given in ref. [?], to-
gether with a discussion of the Kelvin-Helmholtz insta-
bility, based on an incompressible model. We intend to
revisit that con�guration with our compressible theory.
The interface that we shall consider is that between the
magnetosheath and the low latitude boundary layer.

Table 3. Parameters of the January 11, 1997 event (spacecraft data, velocities are in km/s).

Case u01 u02 MA;1 MS;1 rb rd  B1;u0

1

 B1;u0

2

�

(d) 300 105 5:0 2:0 1:5 0:117 �100Æ �120Æ �80Æ
(e) 300 105 5:7 2:0 1:5 0:117 �100Æ �120Æ �80Æ

Table 4. Calculated parameters of the January 11, 1997 event (velocities are in km/s).

Case u '1 u0 Æ rs A1

(d) 102:3 �89:0 200:1 �15:3 2:67 60
(e) 102:3 �89:9 200:1 �15:3 2:67 53
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In the �rst line of Table 3 we give the parameters
of the event (we use the de�nitions MA;1 � A1=u

0
1,

MS;1 � S1=u
0
1). The second line contains the param-

eters of a hypothetical con�guration with a slightly
larger value of MA;1, to ascertain the e�ect of this
change.

We must recognize that owing to measurement un-
certainties, the spacecraft data do not comply with the

equilibrium condition (1) at the interface. To emend
this aw, we replaced the measured rs (that is the
less reliable datum) by the value derived using the re-
maining data in the equilibrium condition, expressed as
2M2

A;1(1� rdr
2
s) = M2

S;1(r
2
b � 1).

The expressions of u, u0, '1, Æ and v
0 are given by

eqs. (22)-(25), and the remaining quantities we need
are:

c

A1 = u01=MA;1 ; A2 = A1rb
p
rd ; S1 = u01=MS;1 ; S2 = rdS1 (28)

d

We now investigate the stability of these con�gura-
tions of the magnetopause.

VII Stability of some magne-

topause con�gurations

Con�gurations near the front of the magne-

topause

In the low latitude case (a) there is no magnetic
shear, so that the ute modes are unstable, both in
the incompressible limit and if compressibility is taken
into account. In Fig. 4 we compare the growth rate ob-
tained with the compressible model with that predicted
by IMHD (eq. 17c). It can be noticed that there is no
signi�cant di�erence. An increase of the relative veloc-
ity by a factor of 3-4 does not change this conclusion.

0.46 0.48 0.5 0.52 0.54

0.02

0.04

0.06

�y1/p

Im (V )/A1

Figure 4. Growth rate of the unstable modes of the low
latitude con�guration (case (a)). The results of CMHD and
IMHD are shown with full lines and gray dashed lines, re-
spectively. The two narrow bands of the secondary instabil-
ity near  1 = 0:48� and  1 = 0:52� are barely discernible
as their growth rates are very small.

The intermediate and high latitude cases are sta-
ble when compressibility is taken into account, a result

that coincides with the predictions of IMHD. In Fig.
5 we show the stability diagram for the high latitude
parameters. We can see the lowering of the critical
value uc, due to compressibility (already mentioned in
Section I). This e�ect is of no consequence for the con-
�guration (c) owing to the low relative velocity, but it
may be relevant for con�gurations with a large relative
velocity (say, u � 1:5A1).

0.2 0.4 0.6 0.8 1
y1/p

0.5

1

1.5

2

uk /A1

C

ui

Figure 5. Stability diagram for the parameters of the high
latitude case. The curve C corresponding to the con�gura-
tion indicates that case (c) is stable.

A con�guration in the near ank of the magne-

topause

The stability diagram corresponding to these pa-
rameters is shown in Fig. 3. It can be appreciated
that this con�guration is stable according to the IMHD
model, but is unstable when compressibility is taken
into account. Moreover, this instability corresponds
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to the secondary modes, which have no counterpart in
IMHD. The growth rate of the instability is small, but
signi�cant, as can be seen in Fig. 6.

0.22 0.24 0.26 0.28

0.02

0.04

0.06

y1/p

Im(V )/A1

Figure 6. Growth rate of the secondary modes for case (d).

When the line C of the con�guration passes close
to the marginal stability line for the primary modes,
as happened in this case, the stability properties of
the con�guration are very sensitive to slight changes
of the parameters. This can be appreciated in Fig. 7,
in which we show the growth rate of the instability,
for a slightly di�erent orientation of the relative veloc-
ity u with respect to the magnetic �eld ('1 = 75:5Æ

instead of 89:9Æ). It can be noticed that this change
produces a fourfold increase of the growth rate of the
secondary instability (and a shift towards larger  1).
The primary instability is also present now, although
its growth rate is much smaller than that of the sec-
ondary modes. This is due to the small-uk destabiliza-
tion phenomenon, since the modi�ed con�guration is
still stable according to IMHD.

0.3 0.35 0.4

0.1

0.2

y1/p

Im (V )/A1

Figure 7. E�ect of a change of the orientation of the rela-
tive velocity with respect to the magnetic �eld. The �gure
represents the growth rate for case (d), with '1 = 75:5Æ

instead of 89:9Æ. Note the primary modes centered around
 1 � 0:15�.

If we change the relative velocity, keeping the re-
maining parameters �xed (as if the solar wind had been
slightly faster at that event), the line C of Fig. 3 shifts

upwards, and the primary instability becomes domi-
nant for a 30% (or larger) increase of u.

In Fig. 8 we show the stability diagram for case
(e), where MA;1 di�ers from case (d) by 14%. The ef-
fect of this change is to increase the growth rate of the
secondary instability with respect to the results of Fig.
6. This modi�ed con�guration is stable according to
IMHD.
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ui

1

Figure 8. Stability diagram for the parameters of the event
of January 11, 1997. The curve C corresponds to the con-
�guration of case (e).

VIII Conclusions

Compressibility a�ects the Kelvin-Helmholtz instability
by changing the unstable domains of the modes already
present in the incompressible model as well as their
growth rate. Modes with large uk (the projection of the
relative velocity on the wave vector of the perturbation)
are stabilized. At the same time the lower boundary of
the unstable uk interval shifts downwards, thus destabi-
lizing perturbations that are stable according to IMHD,
for uk < ui (the critical value for marginal incompress-
ible instability). On the other hand, the growth rate of
the unstable modes above ui is reduced by compress-
ibility. In addition, compressibility introduces new un-
stable modes (the secondary modes) that do not exist
in IMHD, and that occur for uk below ui. For these
reasons, compressibility may play an important role in
determining the stability of con�gurations with a rela-
tive velocity of the order of ui.

For con�gurations of the front of the magnetopause,
which have small relative velocities, the IMHD model
gives reliable estimates of their stability, and com-
pressibility e�ects do not introduce signi�cant changes.
However, compressibility must be taken into account
when assessing the stability properties of con�gurations



Brazilian Journal of Physics, vol. 32, no. 4, December, 2002 957

at the anks of the magnetopause. As shown in Section
VII, in these cases the occurrence of the secondary in-
stability and the shift of the boundary of the primary
instability play an important role. Then, con�gurations
that are stable if compressibility is neglected turn out to
be unstable when it is considered. In these situations,
the stability properties are quite sensitive on the val-
ues of the parameters. The estimates based on IMHD
may be misleading, and a careful analysis is required in
each case, since no simple rule of thumb can be given.
In these respects the stability diagrams introduced in
Section V may prove useful, since a single graph allows
to visualize the e�ect of changing the magnitude and
orientation of the relative velocity.
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