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Semiexible Polymer in a Strip
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We study the thermodynamic properties of a semiexible polymer con�ned inside strips of widths
L � 9 de�ned on a square lattice. The polymer is modeled as a self-avoiding walk and a short-range
interaction between the monomers and the walls is included through an energy � associated with
each monomer placed on one of the walls. Also, an energy �b is associated with each elementary
bend of the walk. The free energy of the model is obtained exactly through a transfer matrix
formalism. The pro�le of monomer density and the force on the walls are obtained. We notice that
as �b is decreased, the range of values of � which the density pro�le is neither convex nor concave
increases, and for suÆciently attracting walls (� < 0) we �nd that in general the attractive force is
maximum for �b < 0, that is, for situations where the bends are favored.

I Introduction

Polymers are often modeled as self- and mutually avoid-

ing walks placed on a lattice, and much has been learned

about their thermodynamic properties through such

models [1, 2]. Grand-canonical models of this kind,

where the number of monomers incorporated into the

chain is allowed to uctuate controlled by an activity

z = exp(�=kBT ), display a phase transition at some

value of the activity (for in�nite chains, that is, in the

polymer limit). This transition is discontinuous in the

one dimensional case d = 1 [3], and continuous for

d > 2. Rather precise estimates of the critical value of z

were found in two dimensions through transfer matrix

calculations [4] and series expansions [5]. Also, exact

values for the critical exponents are available in this

case [6].

More recently, properties of such models on lattices

limited by walls have attracted much interest [7], follow-

ing studies of magnetic models in the same situation [8].

The short range interaction between the wall and the

polymer may be introduced by associating a Boltzmann

factor ! = exp(��=kBT ) with each monomer placed on

the wall, so that � < 0 corresponds to attracting walls

while repulsive walls are described by � > 0. The grand-

canonical partition function for a model of a single chain

is

Y (x; !) =
X

zN!Nw ; (1)

where N is the number of monomers in the chain, the

sum is over all con�gurations of the chain with the ini-

tial monomer placed on the wall, and Nw � N stands

for the number of monomers located on the wall. Such a

model shows interesting features, and even in the limit

where the self avoidance constraint is neglected (the so-

called ideal chains) one �nds that for suÆciently large

values of ! > !0 the surface polymerization transition

will occur at a lower value of the activity z than the

one in the bulk [9]. The point (z0; !0) in the phase di-

agram where the bulk (also called ordinary) transition

line meets the surface transition line is called the ad-

sorption transition point. In two dimensions, such mod-

els have been studied through transfer matrix calcula-

tions [10] and series expansions [11]. Additional walls

may be added, con�ning the polymer inside a strip, slab

or pore [7], and the force applied on the walls in such

situations is of interest even from the point of view of

applications of polymers as adhesives [12]. The model

of ideal chains con�ned in a slab has been studied in

the past [12, 13], and it was found that the force on

the walls is attractive if ! exceeds the adsorption value

!0. In the case of self-avoiding chains con�ned in a

strip on the square lattice, transfer matrix calculations

show that attractive forces appear for ! below !0 [13].

Also, the pro�le of the monomer density inside the strip

was obtained [14], and, unlike what happens for ideal

chains, for a self-avoiding chain pro�les which are nei-

ther convex nor concave are found for a range of values

of !. Finally, similar techniques have also been applied

to shed light on the scaling behavior of such models for

strips with periodic boundary conditions (cylinders) as
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the width of the strips becomes large [15].

Another generalization of the original polymer

model is to introduce an energy associated with the

operation of bending the chain. On hypercubic lat-

tices, the elementary bends will always be at right an-

gles, and an energy �b may be associated with each of

them. This semiexible polymer problem (also called

persistent or biased walks), has been studied some time

ago [16, 17, 18]. Recently, this model has attracted re-

newed interest , since it may describe some relevant

aspects in the protein folding problem [19]. The ther-

modynamic properties of the model have been stud-

ied on the Bethe lattice [20] and, equivalently, in the

Bethe approximation [21]. The end-to-end distance of

semi-exible chains on Bethe and Husimi lattices was

obtained [22]. In this paper we study the thermody-

namic behavior of a semiexible polymer con�ned in-

side a strip. The partition function of the model may

be written as

Y (x; !) =
X

zN!Nw!Nb

b ; (2)

where Nb is the number of elementary bends in the con-

�guration and !b = exp(��b=kBT ) is the Boltzmann

factor associated with each elementary bend and the

sum is over all con�gurations of the chain. We de-

�ne a transfer matrix for the model and obtain the

grand-canonical partition function in the thermody-

namic limit, determined by the largest eigenvalue of this

matrix. In order to be able to obtain the distribution

of monomers in the transverse section of the strip, we

de�ne a position dependent activity for the monomers.

Also, the force applied by the polymer on the walls is

calculated, as a function of the width of the strip, !

and !b. All thermodynamic properties are calculated

at the polymerization transition, that is, at the value

of the activity of a monomer for which the number of

monomers incorporated into the polymer diverges.

In section II the model is de�ned in detail and its

solution is presented. The results we �nd for the ther-

modynamic behavior of the model are shown in section

III as well as �nal conclusions and discussions.

II De�nition of the model and its

solution

The self avoiding chain is constrained inside a strip of

widthm de�ned on the square lattice in the (x; y) plane,

so that 0 � x � m. The chain runs through the whole

strip, from y ! �1 to y ! +1. We may de�ne a

transfer matrix for the problem following a prescription

proposed by Derrida, in a way to take into account the

self-avoidance constraint exactly [4]. The connectivity

properties of all vertical bonds of the chain arriving at a

line y0 from below are speci�ed through the indication

of

1. The (unique) bond connected to the initial

monomer of the chain (placed in y ! �1)

through a path lying entirely below the line y0
(passing though sites with y < y0);

2. The pairs of bonds connected to each other

through a path lying entirely below the line y0.

In Fig. 1 the �ve con�gurations for the case m = 2 are

depicted, and a portion of the chain placed inside the

strip is shown with each con�guration indicated. Con-

�gurations 1 and 3, as well as 4 and 5, are related to

each other by reection symmetry. We de�ne column

dependent activities zi, i = 1; 2; :::na(m) according to

this reection symmetry, as indicated also in Fig. 1.

The number of activities na(m) is equal to m=2+ 1 for

even values of m and (m+ 1)=2 for odd values of m.
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Figure 1. a) The �ve connectivity con�gurations for m = 2.
b) Portion of the chain, with the number of each connectiv-
ity con�guration indicated.

For a �xed connectivity con�guration of a set of

m+ 1 vertical bonds arriving at the line y0, the possi-

ble con�gurations of the set of vertical bonds arriving
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at y0+1 may be obtained, as well as the contribution to

the partition function from the sites comprised between

both sets of vertical bonds. This contribution will be

given by

!
Nb;y0

b

na(m)Y
i=1

z
Ni;y0

i

where Ni;y0 is the number of monomers with activity zi
in line y0 and Nb;y0 is the number of elementary bends

in this line. These contributions, shown for a particular

example in Fig. 2, de�ne a line of the transfer matrix.

For m = 2 the transfer matrix will be given by

T =

0
BBBB@

z2 z1z2!
2
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2
2!

2
b z1z

2
2!

2
b 0
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2
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2
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2
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Figure 2. Contributions to the �rst line of the transfer ma-
trix for the case m = 2. The connectivity con�gurations are
indicated following the enumeration adopted in Fig. 1.

The grand canonical partition function of the

model,considering periodic boundary conditions in the

y direction, will be given by

� = (Tr)TNy ; (4)

where Ny is the total length of the strip in the y di-

rection, so that the total number of sites is given by

Ns = Ny(m + 1). The number of monomers with ac-

tivity zi is

Ni =
zi
�

@�

@zi
; (5)

and the total number of monomers in the chain will be

N =

na(m)X
i=1

Ni: (6)

The fraction of monomers placed at column x is

�(x) =
Nx+1

(2� Æx;m=2)N
; (7)

where x = 0; 1; : : : ; na(m)�1 and �(x) = �(m�x). The

Kronecker delta in the denominator contributes only for

even values of m.

In the thermodynamic limit Ny ! 1 the partition

function 4 is dominated by the largest eigenvalue of the

transfer matrix �1, so that � � �
Ny

1 and in this limit

Ni = Ny
zi
�1

@�1
@zi

: (8)

The �rst order polymerization transition in the �nite

strip will take place when the thermodynamic poten-

tial

 = �kBT ln(�) (9)

is equal to the one for the empty lattice  0 = 0. Thus,

since in the thermodynamic limit we have

 =Ns = �kBT (m+ 1) ln(�1) (10)

the polymerized phase will coexist with the non-

polymerized phase for �1 = 1. Therefore, all thermo-

dynamic quantities below will be calculated for zi =

z; i = 1; : : : ; na(m) � 1 and z(na(m)) = !z, where the

activity z is then �xed at the coexistence value zc so

that, for a given value of !b, we have �1 = 1.

Finally, the force applied on the walls is given by

F =
1

a

�
@�

@m

�
z;!;!b

; (11)

where a is the lattice parameter and positive values cor-

respond to attractive forces. An adimensional force per

monomer at the coexistence may be then de�ned as

f =
Fa

kBTN
=
�
�
@�
@m

�
z;!;!b

z
�
@�
@z

�
m;!;!b

=
1

zc

�
@zc
@m

�
!;!b

: (12)

Since our results correspond to integer values of m, the

force f was estimated making the discrete approxima-

tion

f(m+ 1=2; !; !b) �
2

zc(m+ 1; !; !b) + zc(m;!; !b)

�[zc(m+ 1; !; !b)� zc(m;!; !b)]:

(13)

A simple calculation may be performed in the limit

of rigid rods !b = 0, where bends are not allowed.

In this limit the transfer matrix is diagonal of size

(m + 1) � (m + 1). For ! > 1 all monomers are on

the walls, for ! = 1 they are uniformly distributed,

whereas for ! < 1 an uniform distribution in the sites

away from the walls is found. As expected, in this limit

the force on the walls vanishes. In the numerical results

below we consider !b � 1.



J�urgen F. Stilck 937

III Numerical results and con-

clusion

The transfer matrices for the model were obtained ex-

actly for strips of widths ranging from 3 to 9. After

using the reection symmetry, the sizes of the matrices

are, respectively, equal to 6, 16, 38, 100, 256, 681, and

1805. We obtained the density pro�le at the coexis-

tence condition for values of ! and !b mostly between

1 and 3.
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Figure 3. Density of monomers as function of ! for a strip
with m = 9. (a) corresponds to !b = 2 and (b) to !b = 3.
Curves are for di�erent values of x and �(x) = �(m�x). At
! = 1 the highest density corresponds to the center of the
strip (x = 4 and x = 5) and the density decreases monoton-
ically outwards, being lowest at the wall (x = 0 and x = 9).
At ! = 3 the density pro�le is convex in both cases, with
the maximum density located on the walls.

For neutral walls (! = 1) the density pro�le is al-

ways concave, with a higher density in the center. This

may be understood since the region away from the walls

is favored entropically. As ! becomes larger, monomers

on the walls are energetically favored, so for suÆciently

large values of ! a convex density pro�le is expected.

For ideal exible chains (!b = 1), at the adsorption

value ! = 4=3 the density pro�le is at for all sites

which are not on the walls [12, 14]. Such a at tran-

sition pro�le is not observed for self-avoiding chains,

where convex pro�les are separated from concave ones

by an interval of values of !, located well below the

adsorption transition value, where the pro�le is neither

convex nor concave. This interval is quite narrow for

exible chains [14]. In Fig. 3 the densities are plotted

as functions of ! for two values of !b. It is clear that as

!b is increased, favoring bends, the interval of values of

! with a pro�le without well de�ned convexity grows.

The values of ! below which the density pro�le is

concave (!1)and those above which the pro�le is con-

vex (!2) are plotted in Fig. 4 as functions of !b for

two values of m. As is apparent the range with no de-

�ned convexity grows with !b in a nearly linear way.

As a general rule, we found that as !b is increased from

1, the �rst pair of densities to cross, destroying con-

cavity, is always correspondent to the columns which

are �rst and second neighbors to the walls. Also, the

last crossing, which turns the pro�le convex, is between

densities corresponding to the columns at the wall and

the neighbor columns. In the limit !b ! 1 we found

that !2 !1.
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Figure 4. Boltzmann weights below which the density is
concave (lower curves) and above which it is convex (upper
curves) for m = 6 (dashed curves) and m = 9 (full curves).

Finally, we calculated the force per monomer on the

walls for pair of widths m, m+ 1, using expression 13.
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As already found for exible self-avoiding chains [13],

attractive forces appear for suÆciently large values of

!. Fig. 5 shows results for the force as a function

of ! for some values of !b. The origin of attractive

forces in the system are portions of the chain limited

by monomers adsorbed on opposite walls. Thus, as ex-

pected, the curves f � ! display a maximum, because

the force vanishes as ! ! 1, since in this limit such

\bridge" segments are absent.
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Figure 5. Force per monomer on the walls as function of !
for (a) !b = 1, (b) !b = 2, (c) !b = 3, and (d) !b ! 1.
Results shown are for m = 8:5.

In Fig. 6 the maximum force per monomer (with re-

spect to !) is plotted as a function of !b. It is apparent

that the maximum of these curves is located at !b > 1,

and thus we conclude that polymers for which bends

are somewhat favored give rise, in general, to larger at-

tractive forces than exible ones. As !b is increased,

the maximum attractive force occurs at higher values

of !

The force per monomer as a function of the width

of the strip m, for ! above a threshold, shows a stable

equilibrium point at very low separationm1 and an un-

stable equilibrium point at a larger separation m2 [13].

The force is attractive in the interval m1 < x < m2.
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Figure 6. Maximum force per monomer on the walls for
m = 6:5 (full line), m = 7:5 (dotted line), and m = 8:5
(dashed line) as functions of !b. Arrows indicate the maxi-
mum force for !b !1.

The stable equilibrium point m1(!; !b) is found in

the range 0:5 � m1 � 1:5, showing little variation as

a function of the Boltzmann factors, as long as ! is

larger than the threshold value. The unstable equilib-

rium point m2(!; !b) shows a rather strong monotonic

dependence on both variables, being an increasing func-

tion of ! and a decreasing function of !b.

In conclusion, we may summarize the behavior of

semiexible chains con�ned inside strips observing that

as the presence of elementary bends in the chains is

favored, the range of values of ! for which the density

pro�le has no de�ned convexity grows. Also, the largest

attractive forces are found for !b > 1, that is, when the

bending of the chains is favored. It should be noticed

that the nonmonotonic behavior observed for the ten-

sion as a function of the width of the strip, with two

equilibrium points, happens in a regime where the �nite

size scaling behavior has not yet been reached [13].
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