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We review the relation between the Maldacena conjecture, also known as AdS=CFT correspondence,
and the so-called holographic principle that seems to be an essential ingredient for a quantum gravity
theory. We also illustrate the idea of holography by showing that the curvature of the anti-de Sitter
space reduces the number of degrees of freedom making it possible to �nd a mapping between a
quantum theory de�ned on the bulk and another de�ned on the corresponding boundary.

I Introduction

The interest of theoretical physicists in studying quan-
tum �elds in anti de Sitter (AdS) space is not new[1].
In particular the question of the quantization of �elds
in this space circunventing the problem of the lack of
a Cauchy surface was addressed in[2, 3]. There was,
however, a remarkable increase in the attention devoted
to this subject since the appearance of the Maldacena
conjecture[4] (see [5, 6] for reviews) on the equivalence
(or duality) of the large N limit of SU(N) superconfor-
mal �eld theories in n dimensions and supergravity and
string theory in anti de Sitter spacetime in n+1 dimen-
sions also called AdS/CFT correspondence. This cor-
respondence was elaborated by Gubser, Klebanov and
Polyakov [7] and by Witten [8] interpreting the bound-
ary values of bulk �elds as sources of boundary theory
correlators.

The large scienti�c impact caused by Maldacena
work can be associated with (at least) two reasons:

� (i) It represents an explicit example of a holo-
graphic mapping between two quantum theories
that live in di�erent dimensions. That means: a
realization of the Holographic Principle.

� (ii) It also represents an important step in the
search for a string theory description of QCD that
would lead to a formulation for QCD at low ener-
gies (where perturbative calculations can not be
used because of the strong coupling)

As a remark let us mention that the large N limit
of SU(N) gauge theories was studied by 't Hooft a long
time ago. He considered an expansion in the parame-
ter 1=N were QCD gets a simpler form (planar digrams
dominate ! topological structure like strings) [9].

II Holographic principle

The original motivation for the holographic principle
was the study of black hole entropy. Let us start with
the following question: What happens with the entropy
of the Universe when some portion of matter (say a
rocket or anything else) is absorbed by a black hole?
Classicaly (we mean without quantummechanics) black
holes can only absorb particles. So, one could not asso-
ciate any temperature with them. Thus it would make
no sense to think that the black hole itself has some
entropy and the entropy of the Universe would not be
conserved when we throw some matter inside it.

Quantum e�ects however change this picture. The
thermal radiation found out by Hawking lead himself
and Bekenstein[10, 11] to develop a thermodynamical
model for black holes. Based on the analysis of the dy-
namics of black holes they found a generalised form of
the second law of thermodynamics where a black hole
has an entropy proportional to area of its horizon

SBH =
A

4~G
(1)

The generalized form of the second law of thermody-
namics reads:

�SBH + �SRest of Univ: � 0

One should be able to �nd a way of calculating this
entropy by summing up degrees of freedom of black
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holes. This is still an open problem because it would
depend essentially on the formulation of a satisfactory
quantum theory for gravity. There are however some
important results in this direction for example calcu-
lating black hole entropy using string theory as refs.
[12, 13].

An interesting consequence of eq. (1) is that it con-
trasts with our standard idea (without taking gravity
into account) that the entropy is an extensive quan-
tity. That means: entropy should be proportional to
the volume not to the area. This result lead 't Hooft
and Susskind to formulate the Holographic Principle:

\ Physics of a quantum system with gravity in some
volume V can be described in terms of degrees of
freedom that can be contained in its boundary".

The general idea is that some systems tend naturally
to black holes and for the others we can �nd processes
that transform them into black holes and increase their
entropy. So: the maximum entropy is limited by the
boundary area (in Planck units). That means: Quan-
tum mechanics plus gravity in 3 spatial dimensions is
equivalent to an image that can be mapped in a bidi-
mensional projection. The area of the boundary in
units of Planck area represents the maximum number of
degrees of freedom in the interior volume. It is presently
believed that a (candidate to ) quantum gravity theory
should satisfy this principle.

III Implementation of Malda-

cena conjecture

Soon after Maldacena's seminal article, Gubser , Kle-
banov and Polyakov[7] and Witten[8] have elaborated
the general conjecture showing how to calculate Phys-
ical quantities of a conformal theory in the bound-
ary of an anti-de Sitter (AdS) space in terms of a
bulk theory. In order to see how this correspondence
holds, let us �rst remind that an anti-de Sitter space
of n + 1 dimensions (AdSn+1 ) is a space of con-
stant negative curvature that can be taken as a Hy-
perboloid in a larger n+ 2 dimensional at space with
coordinates (X0; X1; :::; Xn; Xn+1) and metric �ab =
diag(+;�;�; :::;�;+):

(X0)2 + (Xn+1)
2 �Pn

i=1(Xi)
2 = �2 = constant ;

We can introduce coordinate systems inside AdS like
the global coordinates �; �;
i , more used before the
discovery of the AdS=CFT correspondence, de�ned by:

X0 = � sec � cos �

Xi = � tan � 
i

Xn+1 = �sec � sin �

where
Pn

i=1 

2
i = 1 ; 0 � � < �=2 ; 0 � � < 2�

Note that the time variable � is compact, so we must
\unwrap" it by actually considering the AdS covering
space (that means an in�nite set of copies of AdS spaces
in the � direction.

For the AdS/CFT correspondence the so called
Poincar�e coordinates (z ; xi ; t ) ( with z � 0) are
more usefull. They are de�ned by the relations

X0 =
1

2z

�
z2 + �2 + ~x 2 � t2

�

Xi =
�xi

z

Xn = � 1

2z

�
z2 � �2 + ~x 2 � t2

�

Xn+1 =
�t

z

and the corresponding measure reads

ds2 =
�2

z2

�
(dz)2 + (d~x)2 � (dt)2

�

The AdS boundary, where the Conformal Field Theory
is de�ned corresponds to the region z = 0 plus a point
at in�nity: z =1.

Witten[8] has interpreted the AdS=CFT correspon-
dence in terms of a holographyc mapping: boundary
values of �elds that have dynamics de�ned inside the
AdS space act as sources of correlation functions of
the boundary conformal �eld theory (CFT). The sim-
plest illustrative example is that of a scalar massless
�eld (massless) in AdS (more details can be found in
[7, 8, 16, 17]. Taking a scalar �eld in the bulk, with
boundary value

�(z ; xi ; t) ! �0(x
i ; t) as z ! 0 .

and conformal operators O (xi ; t) on the boundary, the
generator of correlation functions for this CFT opera-
tors (now: xi; t � x for simplicity)

Z [�0 ] = h exp
Z

dnx �0(x )O(x ) i

such that

Æ

Æ�0(x1 )

Æ

Æ�0(x2 )
Z [�0 ] = hO(x1 )O(x2 ) i
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where the �elds �0 act as sources will be calculated
from the on shell action I(�) for the bulk scalar �eld
Z[�0 ] () expf�I(�)g

Considering the action for a scalar �eld in curved
spacetime

L =
1

2

Z
dn+1x

p
g @�� @

�� ;

with equation of motion

r�r�� =
1p
g
@�

�p
g@��

�
= 0 :

we can relate the �eld in AdS bulk in terms of boundary
values:

�(z ; x ) = c

Z
dnx0

(z)n

((z)2 + (x � x0 )2 )
n�0(x

0) :

and write the on shell action as

I [�] = �cn

2

Z
dnx dnx0

�0(x
0)�0(x)

(x � x0 )2n

So we �nd, for example, the two point correlation func-
tion for the operators O(x)

hO(x)O(y )i � 1

(x � y )2n

as expected from conformal invariance.

Let us remark that the operators O of the CFT are not
in general scalar �elds but rather composite operators
whose conformal dimension depends on the dimension
of the space.

IV Counting degrees of freedom

in AdS space

Considering the geometry of AdS space in Poincare
coordinates we see that a hypersurface of area �A cor-
responding to �x1 :::�xn�1 at some small z = Æ will
generate a �nite volume �V if we move it along z till
z !1

�A =

Z
dn�1x

(z=�)n�1
=

�
�

Æ

�n�1
�x1 :::�xn�1

�V =

Z
dn�1x dz

(z=�)n
= �

�A

n� 1
:

This fact is illustrated in the �gure bellow.

�A �V

-

Æ
z

Figure 1.

If we associate (in a regularised way) degrees of free-
dom with volume cells of the space we see that we can
map the �V cells in area cells of �A. This reduction
of degrees of freedom associated with the fact that the
volume is proportional to the area should be reected
in a quantum theory in AdS . How can it be so? The
hint comes from the analisys of the Cauchy problem
in the AdS space considered in [2, 3]: massless parti-
cles can enter or left the AdS from spatial in�nity in
�nite times. So a consistent quantization (that means
a well de�ned Cauchy problem) requires a compacti�-
cation of the space. One has to add a surface at in�nity
where boundary conditions have to be imposed. (Like
the cover of a box: nothing enters or lefts the space).
These references considered global coordinates where
the boundary is the hypersurface � = �=2.

Now considering the Cauchy problem in Poincar�e
Coordinates, particles without mass may come from or
go to z ! 1 in a �nite time. But how can we com-
pactify the z coordinate that has in�nite range? The
answer [18, 19, 20] is that one needs to introduce an-
other coordinate chart ( z 0; xi; t) related to the original
one by

1

z0
=

1

Æ
� 1

z
(2)

were we take the range of the coordinates z as Æ � z �
R in order to avoid the singularity at the origin and
to stop the �rst chart at some arbitrarily large R. For
z0 we take and Æ � z0 � R0 where R0 = ÆR=(R � Æ)
in order to map the rest of the space. The two sets
must be compact because we need to impose boundary
conditions that match them togheter.

Now the \point at in�nity" in the z coordinate is
mapped at z0 = Æ

The important consequence of this representation of the
compact AdS space in terms of two compact coordinate
charts is that even in the Poincare coordinate chart the
�eld spectrum is discrete
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�(z; ~x; t) ==

1X
p=1

Z
dn�1k

(2�)n�1
zn=2 J�(upz)

Rwp(~k) J� +1(upR)
fap(~k) e�iwp(~k)t+i~k�~x + c:c:g (3)

d

The important consequence of this discretization of the
�eld spectrum is that it makes possible to �nd a one
to one mapping between bulk and boundary theories.
This would not be possible if the spectrum were conti-
nous. We can understand this by an analogy with the
fact that it is possible to �nd a one to one mapping of
an enumerable set of lines into one single line but it is
not possible to map (one to one) a plane and a line.
This is explained in [21] were an explicit mapping be-
tween scalar �elds in AdS space and scalar �elds on the
boundary is presented.
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