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A method for obtaining critical properties of physical systems is presented. Based on a recursive
relation involving a physical parameter of the system, it drives the system spontaneously to the
critical point, providing an eÆcient way to estimate critical properties. The method is illustrated for
several ferromagnetic Ising systems on well-known Bravais lattices. A �nite-size scaling approach
is performed, by applying the method on lattices of di�erent sizes. The eÆciency of the method is
con�rmed by evaluating critical temperatures, as well as critical exponents, that turn up to be in
good agreement with those available in the literature, with a relatively small computational e�ort.

I Introduction

Although statistical mechanics represents one of the
most successful physical theories nowadays, only a few
simple theoretical models have been solved exactly
within such a framework. The evaluation of thermal av-
erages, that are, in principle, to be performed over the
whole phase space, becomes a hard task in most of the
cases. As a consequence, many approximation meth-
ods have been proposed in order to deal with compli-
cated systems, characterized by many-interacting con-
stituents. Due to the recent improvements in computer
technology, the computer simulations [1, 2, 3, 4] became
nowadays one of the most important tools for study-
ing physical systems. Among many di�erent types of
computer simulations, one may single out the Monte
Carlo (MC) simulations, that are probably the most
commonly employed of all numerical simulations. The
MC method consists in performing the usual averages
of statistical mechanics over a restricted part of phase
space, i.e., only those con�gurations which contribute
signi�cantly to the thermal averages are considered;
such a procedure reduces a lot of computing time, in
such a way that one may study large { but �nite {
physical systems. In a standard MC simulation, each
dynamical variable (which may be de�ned on sites of
regular lattices) is visited either at random or in well-
de�ned sequences, to be afterwards updated according
to certain dynamical rules; depending on the size of the
sistem, a MC simulation may require a large compu-

tational e�ort. The main drawback of any numerical
simulation is that one is restricted to work with �nite-
size systems, and sometimes, the �nite-size e�ects may
disguise important physical results. A typical case is
when one is working with systems at criticality, where
in order to obtain reliable results, one needs to extrap-
olate the data obtained for �nite sizes to the in�nite-
size limit (the so-called thermodynamic limit). The
most commonly used extrapolation technique for sys-
tems exhibiting critical behavior is the �nite-size scal-
ing (FSS) approach [1, 2]. Through the FSS method
one is able to extract critical properties of a physical
system, e.g., critical exponents, from �nite-size data;
however, a good estimate of critical properties requires
a precise determination of the critical point. Although
some FSS methods are able to produce critical expo-
nents, as well as the location of the critical point, the
application of such a procedure becomes much simpler
if one knows a priori the location of the critical point.

An important step in the theory of critical phenom-
ena occurred through the concept of self-organized criti-
cality [5], according to which certain dynamical systems
evolve spontaneously towards the critical state, i.e., the
critical state is an attractor of the dynamics. Recently,
the concept of self-organized criticality has been applied
to the determination of critical properties in polymers
[6], percolation [7], and magnetic systems [8, 9, 10]. The
method uses an algorithm based on a recursive relation,

Xn+1 = Xn � � (Yn � Y �); (1)

involving two dimensionless variables (Xn; Yn), associ-
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ated with parameters of a given physical system. The
variables (Xn; Yn) change at each iteration step n, in
such a way that after a suÆcient number of steps, Xn

will converge to a stationary value X�, compatible with
the stationary value Y � � Y (X�), assumed by Yn. The
desired stationary state (X�; Y �) may be previously se-
lected by an appropriate choice of the quantity Y �; the
rate of convergence to the stationary state is controlled
by the parameter �. As an example, for a ferrromag-
netic system, such quantities may be related to the
temperature and magnetization [8, 9] (or to the tem-
perature and inverse of magnetic susceptibility [10]),
respectively; instead of controlling the temperature T ,
one may reach criticality by taking the magnetization
m! 0 (or the inverse of susceptibility 1=�! 0), which
is equivalent to approaching the critical temperature,
T ! Tc. It is important to mention that the idea of
keeping a physical parameter of the system, associated
with the critical state, close to a small positive value
(pushing the system automatically to the vicinity of
the critical point), has been guessed by Sornette et al.

[11], although it was not operationally worked out in
terms of a recursive relation.

In the present work we illustrate the algorithm
based on recursive relation (1) by applying it to the
ferromagnetic Ising model, de�ned on some well-known
Bravais lattices, namely, the square, triangular, honey-
comb and cubic lattices. In each case, the recursive ap-
proach is applied for several �nite sizes, and a FSS ap-
proach is performed. In spite of a small computational
e�ort, the critical temperatures and critical exponents
obtained are in good agreement with those available in
the literature. In the next section we describe the nu-
merical procedure. In section 3 we present and discuss
our results.

II The Numerical Procedure

Let us consider the nearest-neighbor interaction ferro-
magnetic Ising model, de�ned through the Hamilto-
nian,

H = �J
X
hiji

SiSj ; (2)

with J > 0 , and Si = �1 . The model will be stud-
ied on some well-known Bravais lattices, namely, the
square, triangular, honeycomb, and cubic ones. In each
case, several linear sizes L will be considered; the total
number of spins is N = L2, for the two-dimensional
lattices, and N = L3, for the cubic lattice.

For the present problem, the parameterX of Eq. (1)
will be related to the temperature, X � K = J=(kBT ).
The recursive method is carried out through several
steps, as described below [9, 10].

(a) One previously de�nes � (which controls the rate
of convergence) and Y � (which de�nes the desired sta-
tionary state to be accessed).

(b) At the �rst iteration, one chooses the initial
value K0. This will de�ne the range of parameters to
be investigated [(Kn; Yn) will vary from (K0; Y0) up to
(K�; Y �)].

(c) A particular initial con�guration is assigned to
the spin variables and the system is let to evolve dynam-
ically according to a given MC prescription. Herein,
we have used a single spin-ip updating, following the
Glauber dynamics [12], according to which,

c

Si(t+ 1) =

�
1 ; if zi(t) � pi(t)
�1 ; if zi(t) > pi(t)

when Si(t) = �1; (3a)

and

Si(t+ 1) =

�
�1 ; if zi(t) � 1� pi(t)
1 ; if zi(t) > 1� pi(t)

when Si(t) = 1: (3b)

d

In the equations above, zi(t) is a uniform random num-
ber in the interval [0; 1] and pi(t) is the probability

pi(t) = f1 + exp[�2hi(t)]g
�1; (4a)

where

hi(t) = K
X
j

Sj(t); (4b)

is the local �eld acting on site i, at time t , and for the
�rst iteration, K � K0 = J=(kBT0).

(d) After equilibration is attained (t0 MC steps)
one may calculate thermodynamic averages (associated
with the particular choice of K0) over t1 MC steps. To
improve the statistics, this procedure is repeated over
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Ns samples, i.e., Ns distinct sequences of random num-
bers. The average value Y0 is computed, and from Eq.
(1) one obtains K1.

(e) Steps (c) and (d) are performed for parameter
K1, and so on, in such a way that one gets, iteratively,
(K0; Y0)! (K1; Y1)! (K2; Y2) � � � .

(f) The process converges when Yn and Kn present
small oscillations around the values Y � [de�ned in step
(a)] and K� (the desired stationary value of the param-
eter K), respectively.

(g) After the stationary regime is attained, one may
consider a number �n of oscillations around (K�; Y �),
in order to get a statistics for the stationary tempera-
ture T �.

It is important to mention that Eq. (1) has two pa-
rameters to be adjusted a priori, namely, � and Y �, in
order to get a proper convergence of the recursive ap-
proach. The parameter � must be set to a small value;
for an appropriate choice of Y �, we found an optimal
value for �, below which K� does not change within
the error bars: � = 10�2. The choice of Y � is some-
what more subtle; it must be chosen according to the
desired stationary state. If one chooses Y as the order
parameter of the system, for achieving a convergence
towards criticality, Y � should be set to a small value
(typically, Y � = 10�2), whereas for a convergence to
a low-temperature state, Y � must be set close to its
maximum value. In each problem a few attempts are
required in order to �nd the appropriate Y �, in such a
way as to provide convergence to the desired stationary
state.

In the models investigated herein, one may choose
in Eq. (1), Yn � mn [8, 9] as the dimensionless mag-
netization per spin (m = N�1

P
ihSii, where h i stands

for a thermodynamic average). However, for physical
systems exhibiting strong �nite-size e�ects, e.g., dis-
ordered magnets, the magnetization may present pro-
nounced tails close to the critical temperature, and such
a choice may lead to a large error in the location of
the critical temperature. For cases like that, one may
choose Yn as the inverse of a quantity which diverges at
the critical temperature [10]; an appropriate quantity
may be the magnetic susceptibility,

� =
1

NkBT

(
h(
X
i

Si)
2i � h

X
i

Sii
2

)
: (5)

In the present work we estimated the stationary tem-
peratures T � by using Eq. (1) with Xn � Kn =
J=(kBTn) and Yn � 1=(J�n) as the dimensionless pa-
rameter associated with the magnetic susceptibility. In
the next section we present and discuss our results.

III Results and Discussion

For the results that follow, we have simulated the model
de�ned through Eq. (2) on two-dimensional lattices
(square, triangular, and honeycomb lattices) of linear
dimensions L = 20, 40, 50, and 60, and on cubic lattices
of linear sizes L = 10, 12, 14, and 16. At each iteration
n, our simulations always started with a completely or-
dered con�guration (all spins up) and a number of runs,
corresponding to a time t0 =

1

2
N MC steps, were dis-

carded before calculating averages. After that, we have
computed thermodynamic averages over t1 = N MC
steps. All simulations were repeated over Ns = 200
samples, i.e., di�erent sequences of random numbers.
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Figure 1. Evolution of the temperature [in units of the cor-
responding exact critical temperature (see Table 1)] with
the iteration step n, for di�erent choices of ��L, for the ferro-
magnetic Ising model on a square lattice of linear dimension
L = 20. Among the choices investigated, the optimal choice
corresponds to 1=(J��L) = 0:054, leading to the stationary
temperature T �

L=Tc = 1:0488 � 0:0022.

First of all, in order to �nd the stationary temper-
ature T �

L, associated with each linear size L of a given
lattice, it is important to determine with a good accu-
racy the stationary parameter Y �

L = 1=(J��L). In Fig.
1 we present the evolution of the temperature with the
iteration step n, for di�erent choices of ��L, for a square
lattice of linear size L = 20; the same is done for the
magnetic susceptibility in Fig. 2. From Figs. 1 and 2,
one sees clearly that there is an optimal value of ��L.
For choices above the optimal value, Eq. (1) will not
converge to the stationary values, in such a way that
the temperature will diverge [e.g., see the curve for the
choice 1=(J��L) = 0:050 in Fig. 1], whereas the mag-
netic susceptibility will go down after a �nite number
of iteration steps [e.g., see the curves for the choices
1=(J��L) = 0:050 (Fig. 2(a))
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Figure 2. Evolution of the dimensionless magnetic suscep-
tibility with the iteration step n, for some of the choices of
��L of Fig. 1, for the ferromagnetic Ising model on a square
lattice of linear dimension L = 20. (a) 1=(J��L) = 0:050;
(b) 1=(J��L) = 0:052; (c) 1=(J��L) = 0:054. Among
the choices investigated, the optimal choice corresponds to
1=(J��L) = 0:054.

and 1=(J��L) = 0:052 (Fig. 2(b))]. For choices below
the optimal value, Eq. (1) will converge to stationary
values that are not those associated with criticality; in-
deed, one �nds a convergence to temperature values
below the critical temperature [e.g., see the curves for
the choices 1=(J��L) = 0:056 and 1=(J��L) = 0:058 in
Fig. 1], whereas the susceptiblity will converge to values
that are lower than the one at criticality. The optimal
value of ��L should be the highest choice for which Eq.
(1) converges to the corresponding stationary values.
For the cases considered in Figs. 1 and 2, our clos-
est estimate to the optimal value is 1=(J��L) = 0:054,
which leads to a stable convergence up to iteration
step n = 104, as exhibited in Fig. 2(c). Such a
choice is associated with the stationary temperature
kBT

�
L=J = 2:380� 0:005, representing a discrepancy of

about 5% with respect to the well-known square-lattice
exact critical temperature (kBTc=J = 2:269185:::).
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Figure 3. Evolution of the temperature [in units of the cor-
responding exact critical temperature (see Table 1)] with
the iteration step n, for the ferromagnetic Ising model
on a honeycomb lattice of di�erent linear sizes L. Each
curve is produced by using the optimal choice for ��L.
The corresponding optimal choices of ��L, and the associ-
ated stationary temperatures are: 1=(J��L) = 0:050 and
kBT

�

L=J = 1:602 � 0:003 (L = 20); 1=(J��L) = 0:015 and
kBT

�

L=J = 1:563 � 0:004 (L = 40); 1=(J��L) = 0:011 and
kBT

�

L=J = 1:547 � 0:008 (L = 50); 1=(J��L) = 0:008 and
kBT

�

L=J = 1:543 � 0:008 (L = 60).

By carrying such a procedure for di�erent linear
sizes of the lattices considered herein, one may �nd sta-
tionary temperatures for each lattice size. In Fig. 3 we
exhibit the evolution of the temperature TL with the it-
eration step n for several sizes of a honeycomb lattice;
each curve of Fig. 3 is produced with its corresponding
optimal choice ��L. One sees that the stationary tem-
perature approaches the exact critical temperature for
increasing lattice sizes. Therefore, one may extrapolate
the �nite-size stationary temperatures T �

L to the limit
L!1, in order to �nd the stationary temperatures in
the thermodynamic limit, T �. The results obtained in
Fig. 3, for the honeycomb lattice, are extrapolated to-
wards the thermodynamic limit in Fig. 4. Our extrap-
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olated stationary temperatures are presented in Table
1 for the lattices considered herein. One sees that two
of our extrapolations (honeycomb and cubic lattices)
agree, within the error bars, with the values available in
the literature, whereas for the other two cases (square
and triangular lattices), we �nd a small discrepancy

(less than 1%) with respect to the well-known exact val-
ues. Considering the modest lattice sizes investigated,
the accuracy of the temperatures estimated in Table 1
show the potential of the recursive approach presented
herein.

Table 1

Square Triangular Honeycomb Cubic
Lattice Lattice Lattice Lattice

kBT
�=J 2:251� 0:006 3:605� 0:007 1:518� 0:006 4:509� 0:016

kBTc=J 2:269185::: 3:640956::: 1:518651::: 4:511525� 0:000003
jT � � Tcj=Tc 0.0054 0.0080 { {

Table 1: The dimensionless stationary temperatures (kBT
�=J), obtained by an extrapolation of several �nite-

size estimates (kBT
�
L=J) to the limit L ! 1, for the ferromagnetic Ising model on di�erent Bravais lattices, are

compared with the critical temperatures (kBTc=J) available in the literature. For the two-dimensional lattices the
critical temperatures kBTc=J are known exactly [13], whereas for the cubic lattice, we have used the estimates of
Ref. [14]. For the honeycomb and cubic lattices, our extrapolated stationary temperatures agree, within the error
bars, with the critical temperatures in the literature; for the square and triangular lattices, our estimates, including
the error bars, are slightly smaller than the values of the literature. In each case, the relative discrepancy of T �

(taking into account the error-bar range) with respect to the critical temperature (jT ��Tcj=Tc) is given (up to four
decimal digits).

0 0.01 0.02 0.03 0.04 0.05
1/L

1.49

1.51
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1.59

1.61

kBT
*

L/J

Figure 4. Extrapolation of the �nite-size stationary temper-
atures T �

L, calculated through the recursive-search method,
to the L ! 1 limit, for the ferromagnetic Ising model on
a honeycomb lattice. The extrapolated stationary temper-
ature is kBT

�=J = 1:518 � 0:006.

Let us now consider the calculation of critical ex-
ponents through the present method; there are two
straightfoward ways to carry out such a computation,
as we mention below.

(i) For a given system size, one may evaluate the op-
timal value for ��L and consequently the corresponding
stationary temperature T �

L, as described above. Then,
one may compute the critical exponent associated with
a given thermodynamic property by investigating how
such a thermodynamic property behaves when one ap-
proaches the stationary temperature T �

L. By repeating
such a procedure for di�erent system sizes, one may
compute critical exponents for di�erent sizes and carry

out an extrapolation to the limit L ! 1. This ap-
proach has been applied successfully for pure [9] and
site-diluted [10] ferromagnetic Ising models, showing
that the recursive method de�ned by Eq. (1) ap-
proaches criticality through the correct thermodynamic
path.

(ii) By knowing the optimal value for ��L, one de-
liberatily chooses a ��L above such an optimal value.
Obviously, there will be no convergence of the recur-
sion relation in Eq. (1), and if one starts the iteration
from a suÆciently low temperature, the desired tem-
perature range { including the critical region { may be
completely explored. In this case, the recursive rela-
tion of Eq. (1) is used in marginal way, determining
the sequence of temperatures at which the susceptibil-
ity will be computed. By repeating such a procedure
for di�erent lattice sizes, one may obtain the critical
exponents, as well as the stationary temperatures, in
the thermodynamic limit, by implementing a standard
FSS approach [1, 2].

In the present work we shall consider procedure (i)
for the location of the critical point, i.e., for computing
stationary temperatures, and procedure (ii) for com-
puting both stationary temperatures and critical ex-
ponents. In Figs. 5 and 6 we exhibit the magneti-
zation and magnetic susceptibility curves, respectively,
obtained by scheme (ii), for several linear sizes of the
square-lattice model (similar plots hold for the other
lattices). One may now use the standard scaling func-
tions,
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Table 2

Square Triangular Honeycomb Cubic
Lattice Lattice Lattice Lattice

kBT
�=J 2:27� 0:01 3:64� 0:02 1:52� 0:01 4:51� 0:02
� 0:126� 0:003 0:124� 0:002 0:127� 0:003 0:30� 0:03
 1:73� 0:04 1:75� 0:02 1:73� 0:03 1:22� 0:02
� 1:02� 0:02 1:0� 0:02 1:02� 0:04 0:62� 0:01

Table 2: The dimensionless stationary temperatures (kBT
�=J), as well as the critical exponents �, , and

�, as obtained by a FSS approach, for the ferromagnetic Ising model on di�erent Bravais lattices. All estimated
stationary temperatures agree, within the error bars, with the corresponding critical temperatures available in
the literature (see Table 1). The same happens for our critical-exponent estimates, that should be compared with
� = 1=8,  = 7=4, and � = 1, which hold for all two-dimensional lattices, due to universality [13], and � = 0:3265(3),
 = 1:2353(11), and � = 0:6294(5), for the cubic lattice [14].

mL(T ) = L��=� ~m[L1=�(T � T �)=T �];

�L(T ) = L=� ~�[L1=�(T � T �)=T �]; (6)

in order to obtain, from our �nite-size data, the sta-
tionary temperature T �, as well as the critical expo-
nents �, , and � in the thermodynamic limit. In Figs.
7 and 8 we exhibit the data colapse of the magnetiza-
tion and susceptibility curves shown in Figs. 5 and 6,
respectively, for the square-lattice model (similar data
colapses apply for the other lattices). The results of our
FSSs are exhibited in Table 2, and compared with the
well-known values available in the literature. All the es-
timated stationary temperatures and critical exponents
agree, within the error bars, with the values available in
the literature. In two cases (square and triangular lat-
tices), the stationary temperatures estimated through
a simple extrapolation to the limit L ! 1 (cf. Table
1), and those obtained by means of the FSS approach
(cf. Table 2), present a small discrepancy (including
the respective error-bar ranges). We believe that such
discrepancies are consequences of the small lattice sizes
investigated.

To conclude, we have investigated the ferromag-
netic Ising model de�ned on several well-known Bravais
lattices, by combining a recursive method that drives
the system spontaneously towards criticality, with a
standard FSS approach. The recursive method allows
for the detection of the critical temperatures sponta-
neously, through a convergence towards a �xed point
of a recursion relation involving a pair of dimension-
less variables (X;Y ), constructed in such a way that X
is associated with the temperature, whereas Y may be
related, in principle, to any physical parameter display-
ing a nontrivial behavior at criticality. In spite of the
small computational e�ort involved, the e�ectiveness
of the method has been con�rmed by the evaluation of
critical temperatures and critical exponents that are in
good agreement with those available in the literature.
The agreement of our critical-exponent estimates with
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Figure 5. The magnetization per spin plots, versus the
scaled temperature, for the ferromagnetic Ising model on
square lattices of di�erent linear sizes. The temperature is
scaled in units of the well-known exact critical temperature
of the model (see Table 1).
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Figure 6. Plots of the dimensionless magnetic susceptibility
(J�L), versus the scaled temperature (same scale as in Fig.
5), for the ferromagnetic Ising model on square lattices of
di�erent linear sizes.
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Figure 7. Data colapse of the �nite-size magnetization
curves for the ferromagnetic Ising model on square lattices
of di�erent linear sizes.
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Figure 8. Data colapse of the �nite-size magnetic suscep-
tibility curves for the ferromagnetic Ising model on square
lattices of di�erent linear sizes.

well-known values indicates that the recursive method
yields a convergence towards criticality following the
correct thermodynamic path. Certainly, the accuracy
of present results may be signi�cantly improved by us-
ing larger lattice sizes. However, we have illustrated
that the power of the method { which has already
proven its eÆciency in �nding critical properties for
branched polymers [6], percolation [7], pure [8, 9] and

site-diluted [10] Ising ferromagnets { may be substan-
tially enhanced if it is combined with a FSS approach.
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