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In the last decade it has been experimentally found a periodic domain pattern arising in smectic
C� liquid crystals in surface stabilized bookshelf geometry. Such a periodic texture appears after
switching-o� an external electric �eld, even in strong anchoring conditions. It has a static character
and can be bidimensional, being dependent on both directions normal to the smectic planes and
normal to the cell plates. In the present work an explanation to this phenomenon is proposed. Ac-
cording to our model in the antiferroelectric phase the biperiodic texture is a threshold phenomenon,
appearing for values of the spontaneous polarization greater than a critical value, whereas in the
ferroelectric phase this type of bidimensional instability is hindered.

I Introduction

The importance of Ferroelectric Liquid Crystals (FLC)
is strictly related to the nonlinear electro-optic e�ect
determined by the coupling of the spontaneous polar-
ization

�!
P s with an external applied electric �eld

�!
E ext

[1]. The e�ect can be characterized by bistability and
optical memory in the surface stabilized bookshelf [2, 3]
or quasi bookshelf [4] con�guration. In this case, each
single layer exhibits a uniform spontaneous polariza-
tion, oriented in the same way in the whole cell (see
Fig.1 a).

But some smectic C� materials, like MHPOBC,
due to their molecular structure [5] can present also
a dual arrangement, in which consecutive layers nat-
urally have alternative sense of

�!
P s- antiferroelectric

phase (AFLC). In this state the whole cell spontaneous
polarization vanishes. An AFLC under applied electric
�eld can move towards other two stable states, up- and
down- via an azimuthal rotation Æ� = �� of alternate
layers (see Fig.1 b), allowing to obtain a tristability be-
haviour [3]. In the last decade, the appearance of static
modulated pattern was observed, both in ferroelectric-
and in antiferroelectric phase [6]-[12], for instance after
switching o� a DC �eld applied to a uniform surface sta-
bilized cell. Regular periodic domains occur in this case

as static stripes, oriented either parallel [8-11] or per-
pendicular [6, 7, 12] to the smectic layers normal, which
lies in a plane parallel to the cell walls (see Fig. 2).

Up to now several qualitative models describe the
possible role played by the presence of a periodic discli-
nation array [13], by exoelectricity and charge conduc-
tion [12].

The purpose of the present paper is to investigate
a new mechanism, explaining the biperiodic instability
as the result of a competition between the polarization-
�eld coupling and the coulombian interaction between
the polarization charges in the smectic layers. This
competition is driven by the anchoring, mediated by
the bulk elasticity [14], biased by the dielectric contri-
bution and corrected by the exoelectricity [15].

II Theory

Let us consider a bookshelf arrangement of a mate-
rial exhibiting both ferroelectric - and antiferroelectric-
phases, like MHOPBC. The cell reference frame [x; y; z]
has x-axis normal to the cell walls, y-axis parallel to the
the glass plates and to the smectic planes, z-axis normal
to the smectic planes (see Fig. 1a). bn is the molecular
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Figure 1. Surface stabilized C� liquid crystal cell with
strong anchoring in bookshelf geometry (a). The cell volume
is DxDyDz , d is the smectic layer thickness. The smectic
cone is also reported in (b), with azimuth �, polar angle �
and spontaneous polarization ~PS either parallel or antipar-
allel to the unit vector bp = bc � bk, according to the type of
molecular chirality.

Figure 2. Periodic distortion modes with wave-vector along
the x-axis, normal to the cell plates (a), and along the z-
axis, normal to the smectic planes (b). In the case of strong
anchoring, the �rst mode has wavelength �x equal to the
double of the cell thickness Dx.

director, and bc is the tilt director. � is the polar angle
characterizing the tilt cone, whereas � is the azimuth
of the bn-director orientation (see Fig. 1b). Any vari-
ation Æ� is connected with a hard distortion, hindered
at constant temperature; instead, any variation Æ� is
allowed, describing a soft distortion. The LC sponta-
neous polarization

�!
P s = Psbp, where bp = bc � bk (bk is

parallel to the z-axis), lies in the smectic layer parallel
to xy-plane. The initial con�guration of bc is parallel
to y-axis (�0 = �=2). By applying an external electric

�eld
�!
E ext along z the linear coupling with the polariza-

tion
�!
P s produces a certain azimuthal rotation (���0).

After switching o� the �eld, the bc-distribution relaxes
to a con�guration di�erent with respect to the previous
one. The new con�guration is biperiodically distributed
in zx-plane, being invariant along y-axis. To describe
the modulated pattern, it is convenient to de�ne

� = �0 + '(x; z) (1)

where the wave amplitude j'j � �0. Moreover, the
tilt-director bc is given by
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bc = �sin�bi+ cos�bj ' �[sin�0 + ' cos�0]bi+ [cos�0 � 'sin�0]bj: (2)

The free energy density of the whole cell accounts for the following contributions:
Elastic term

The elastic energy involved in a distortion, where any curvature of smectic plane is prohibited, is given by [16]:

fel =
1

2
[B1sin

2�0 +B2 cos
2 �0]'

2

x +
1

2
B3 '

2

z �B13sin�0 'x'z; (3)

where 'x � @'=@x,'z � @'=@z and Bi and B13 are smectic elastic constants. More precisely, B1 describes the
bend of smectic director bc, B2 the splay of smectic director bc, B3 the twist of smectic director bc, and B13 is a mixed
bend-twist of the nematic director bn, which vanishes in one-constant approximation [3].

Flexoelectric term

The exoelectric polarization is de�ned as [15]:

�!
P f = d3(div bc)bc� d4(bc � rotbc) bp+ d6(bk � rotbc) bp+ d9(div bc) bk; (4)

where di are exoelectric moduli.
�!
P f (x; z) writes

�!
P f ' �d3 cos�0 bc 'x + [d4'z + d6sin�0 'x] bp� d9 cos�0 'x bk; (5)

turning out to be bidimensionally modulated as well, then creating an internal �eld
�!
E (x; z), characterized by the

potential 	(x; z):

�!
E (x; z) = �grad	(x; z) = �[	x

bi+	z
bk]; (6)

being j	(x; z)j � PsDx, where Dx is the cell thickness. In the local frame [bc; bk; bp] the internal �eld �!E (x; z) is:

�!
E = Ec bc+Ez

bk +Ep bp = sin�0	x bc�	z
bk � cos�0	x bp; (7)

and couples with
�!
P f , giving

fflexo = �
�!
P f �

�!
E =

=
1

2
(d3 + d6)sin2�0 'x	x + d4 cos�0 'z	x � d9 cos�0 'x	z: (8)

d

Dielectric term

The dielectric contribution to the cell free energy
density writes

fdiel = �
1

8�

�!
D �

�!
E ; (9)

where
�!
D = "

�!
E : (10)

The rank 2 dielectric tensor " ("k; "p; "t ) has only its
diagonal components di�erent from zero [16, 17], ex-
pressed in the intrinsic frame [bn; bp;bt] where bt is the
transverse unit vector bt � bn � bp. It takes into account
the bonded charges separation in the chiral liquid crys-
tal. Due to the fact that the wave amplitude j'j of the

periodic distortion is much smaller than �0, the directorbn reads

bn = �sin�sin�bi+ cos�sin�bj + cos � bk =

' �sin�(sin�0 + ' cos�0)bi+
+sin�(cos�0 � 'sin�0)bj + cos � bk : (11)

Thus, from Eqs. (9 - 11) the free energy term is

fdiel = �
"k
8�

(
�!
E � bn)2 � "p

8�
(
�!
E � bp)2 � "t

8�
(
�!
E � bt)2 (12)

and eventually becomes

c

fdiel = �
"k
8�

(sin�sin�0	x � cos �	z)
2 �

"p
8�

(cos�0	x)
2 +

�
"t
8�

(cos �sin�0	x + sin�	z)
2: (13)
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Electrostatic interaction term among bonded charges

The Coulomb interaction free energy density be-
tween spontaneous polarization charges Q, Q0 sepa-
rated at the same surface in correspondence of two
smectic layers l, l0 is given by

fC = �
1

2

jQjjQ0j

j�!r 0 ��!r j

1

V
(14)

where V is the relevant volume, �!r ;�!r 0 are the positions
of Q, Q0, and the sign to be chosen is either (+) or
(�) respectively for ferroelectric- and antiferroelectric
-phases, according to the fact that interacting dipole
charges separated at the same cell surface are of the
same or di�erent signs. This means that a chiral LC
in ferroelectric state has a repulsive coulombian poten-
tial, since the charges separated at the same surface in
correspondence of adjacent layers have the same sign
(fC = �2Q2=d), whereas in antiferroelectric state it has
attractive coulombian potential, since the charges sepa-
rated have alternatively opposite sign (fC = ��2Q2=d)

- note that � is a convenient constant and d is the smec-
tic layer thickness. More precisely fC writes

fC = �
1

2

Z Z
� dA �0 dA0

jz0 � zjDxDyDz

; (15)

where �, �0 are the surface charges densities at the
walls, dA, dA0 are the relevant surface elements and
Di is the cell size along the i-direction. Putting Ps,
P 0
s as the involved spontaneous polarizations, the cor-

responding charges are

� dA =
�!
P s � d

�!
A =

�!
P s �Dy dzbi

�0 dA0 =
�!
P

0

s � d
�!
A =

�!
P

0

s �Dy dz
0bi: (16)

Approximating Dirac delta function by Æ(z) = 1=jz�z0j,
the integration of Eq. (15) over the whole cell gives

fC = �
1

2
(div

�!
P

0

s)
2DxDy: (17)

The local spontaneous polarization is

c

�!
P s = Psbp = Ps[cos�bi+ sin�bj] =

' Ps[(cos�0 � 'sin�0)bi+ (sin�0 + ' cos�0)bj]; (18)

d

and the divergence is

div
�!
P s =

@Psx
@x

' �Pssin�0 'x: (19)

The Coulomb term eventually reads

fC = �
1

2
P 2

s sin
2�0DxDy '

2

x; (20)

where (+) and (�) are relevant to the ferroelectric- and
antiferroelectric- states, respectively. The total bulk
free energy density is the sum of all contributions al-
ready mentioned:

f = fel + fflexo + fdiel + fC : (21)

In the hypothesis that the anchoring is strong, the to-
tal free energy coincides with the total bulk free energy.
By minimizing it with the usual procedure, the Euler-
Lagrange Eqs.

8<
: � @

@z

�
@f
@'z

�
� @

@x

�
@f
@'x

�
+ @f

@'
= 0

� @
@z

�
@f
@	z

�
� @

@x

�
@f
@	x

�
+ @f

@	
= 0

(22)

can be written as

c

8>>>><
>>>>:

[B1 sin
2 �

0
+B2 cos

2 �
0
� 1

2
P 2
s sin

2 �
0
DxDy]'xy+

+B3'zz � 2B13 sin�0
'xz + d sin 2�

0
	xx + d� cos�

0
	xz = 0

[sin2 �
0
("q sin

2 � + "t cos
2 �) + "p cos

2 �
0
]	xx+

+("q cos
2 � + "t sin

2 �)	zz � ("q � "t) sin 2� sin�0
	xz+

�2�d sin 2�
0
'xx � 4�d� cos�

0
'xz = 0

(23)
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where d � (d3+d6)=2, d
� � d4�d9 are combinations of

the exoelectric moduli. System (23) is comprising two

2nd order linear di�erential equations in the azimuth

'(x; z) and the internal electric potential 	(x; z). The

system admits harmonic solutions as the following:

�
'
	

�
=

�
'max

	max

�
exp[i(qxx+ qzz)]; (24)

where qx, qz represent the wave-vector of the possible

biperiodic coupled distortion. By substituting Eq. (24)

into linearized Euler- Lagrange Eqs. (23), a linear sys-

tem in '(x; z), 	(x; z) is obtained. The nontriviality

condition yields to the dispersion relation

c

[B3r
2 � 2B13sin�0r +B2 cos

2 �0 +B1sin
2�0 �

1

2
P 2

s sin�0DxDy] + (25)

+
4�[ 1

2
dsin2�0 + d� cos�0r]

2

sin�0("ksin
2�+"t cos2 �)�("k�"t)sin2� r+("k cos2 �+"tsin

2�)r2
=0

d

where the wave-vector ratio is de�ned as

r � qz=qx: (26)

The minimum value of r, which satis�es the condition
(25), determines the threshold of the appearance of the
biperiodic instability. In the case of strong anchoring,
it turns out to be

qx =
�

Dx

' 1�m�1; (27)

since at the cell walls the director is kept in its unde-
formed position: '(x = 0; z) = 0, '(x = Dx; z) = 0,
and the minimum energy distortion has the wavelength
�x equal to the double cell thickness, �x = 2Dx, where
Dx � 2�m.

If the elastic constants for bend B1 and for splay B2

are equal and if the dielectric permittivity is isotropic,
"k = "p = "t � ", the dispersion relation can be written
more simply as

c

B3r
2 �B13sin�0r +B2 � P 2

s sin�0DxDy + 4�
[dsin2�0 + d� cos�0r]

2

"[sin�0 + r2]
= 0; (28)

d

resulting in a 4th degree algebraic equation. Let us re-
mind the correspondence between the smectic C� and
the nematic elastic constants8>><

>>:
B1 =

1

4
K22sin

22� +K33sin
4�;

B2 = K11sin
2�;

B3 = K22sin
4� + 1

4
K33sin

22�;
B13 =

1

2
(K33 �K22)sin2�sin

2�;

(29)

where the smectic tilt � = �(T ) is only dependent on
temperature T . At room temperature T = 25ÆC it has
the typical value � � 20Æ. The usual values of the other
relevant parameters are B1 � B2 � B3 � 0:1 � 0:5,
Kii � 10�6dyn, B13 � �B1 � �10�6dyn, d �
10�5dyn, d� � �10�5dyn, Ps � (0:05 � 50)nC/cm2,
�0 � 10Æ�90Æ, " = 1 . Hence the last term of Eq. (28)

turns out to be negligible. If the elastic coupling no
commar bend-twist, B13 is negligible (for rigid smectic
planes, B13 = 0) and if the splay does not inuence the
phenomenon (B2 = 0), thus (28) reduces to

B3r
2 �

1

2
P 2

s sin�0DxDy ' 0; (30)

giving simply:

r2 = �
DxDy

2B3

sin�0P
2

s : (31)

We point out that only in antiferroelectric state this
model predicts the existence of the biperiodic distortion
for smectic C� cells in bookshelf geometry with strong
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Figure 3. Ratio r = �x=�z between the wavelengths of the two distortion modes characterizing the biperiodic instability
as a function of the spontaneous polarization PS . (a) The con�guration are described by the pre-azimuth �0 = 90Æ � ��

with �� = 5Æ-15Æ (around maximum pre-tilt), and with �0 = �� (around unidirectional planarity). (b) Zoom of the same
diagram around the threshold, showing that in the �rst case the transition is 2nd order, whereas in the second case it is 1st
order.
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Figure 4. The same as in Fig. 3, but (a) with �� = 25Æ-45Æ. (b) Zoom of the same diagram around the threshold. When
�0 � 45Æ the transition is 2nd order.
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anchoring. Then in the case of elastic- and dielectric-
isotropy, by neglecting the exoelectrical corrections,
the wave-vector ratio turns out to be proportional to
the spontaneous polarization of one smectic plane:

r = �Ps; (32)

where

� =

r
DxDy

2B3

sin�0: (33)

In a more general case Eq. (28) holds and it is nec-
essary to perform a numerical calculation. As a result,
in Figs. 3a and 4a the wave-vector ratio as a function
of the spontaneous polarization is reported for di�erent
values of pre-azimuth �0 . When �0 = 0Æ, in the ini-
tial conditions the tilt director bc is normal to the cell
plates; when �0 = 90Æ, the tilt director bc lies in the cell
plates, and the bn-orientation is unidirectional planar.
According to the present model, numerical calculations
performed on the dispersion relation Eq. (28) demon-
strate that the biperiodic pattern is a threshold phe-
nomenon, with the wavelength �x bonded to the cell
thickness in the case of strong anchoring. Above the
threshold, the wavelength �z is almost inversely pro-
portional to the smectic layer spontaneous polarization
Ps , and increases with the pre-azimuth as well. In Fig.
3b and 4b a zoom of the origin zone of Fig. 3a and 4a
is reported, showing that for pre-azimuth �0 � 0Æ, im-
plying pre-tilt close to the smectic tilt �, the transition
is of the �rst order, whereas for pre-azimuth �0 � 90Æ,
implying a quasi-planar con�guration, the transition is
of the second order. The �rst order character yields in
the range �0 = 0Æ-45Æ, whereas the second order char-
acter yields in the range �0 = 45Æ-90Æ. In any case
the Ps-threshold diminishes as the pre-azimuth �0 in-
creases as well, converging to a minimum critical value
� 0:2 ues.

III Conclusions

The arising of periodical instability in smectic C� has
been analysed and a new model in the frame of con-
tinuum theory has been established. According to our
model, a soft mixed bend- and twist- distortion spon-
taneously arises in homogeneous surface stabilised cells
ordered in bookshelf geometry, when the external �eld
is switched o�. Such distortion is biperiodical, since the
two wave-vectors instead of wave vector and directions
instead of direction. In antiferroelectric con�guration it
can be explained without invoking smectic planes- and
layers deformation, as a competition between the cou-
pling of spontaneous polarisation-internal electric �eld
and the Coulombian interaction among charges sepa-
rated in smectic layers at the cell walls. Such competi-
tion is driven by anchoring and is mediated by elasticity.
The dielectric- and exoelectric- contributions just give
small corrections to this picture. In the case of strong

anchoring, the wave-vector ratio is proportional to the
spontaneous polarisation of one smectic plane. How-
ever, in the ferroelectric state, such type of biperiodical
distortion is hindered.
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