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In this work it is analytically shown that any one-dimensional non-uniform planar con�guration is
unstable with relation to out-of-plane tilts. The uctuations describing this escape into the third
dimension are studied, and it is shown that the minimization of the bulk free energy makes non-null
the mean values of the parameters describing these uctuations. The equations describing this
phenomenon are proposed and solved in the small bending approximation.

I Introduction

Usually, in the study of the textures and defects of the
nematic liquid crystal (NLC), it is convenient to use a
director planar con�guration [1]. A typical example of
such assumption is found in the study of magnetic walls
[2], that make the transition between adjacent symmet-
rical distorted textures formed by the action of an ex-
ternal magnetic �eld. The director is initially prepared
in such a way that, in the entire sample, it is uniformly
aligned. Then, a constant magnetic �eld is applied per-
pendicularly to the initial director direction. As a re-
sult of the presence of this external �eld the nematic
material presents a response that couples the bending
of the director and the coherent motion of its micelles
[3, 4, 5, 6]. The planar hypothesis assumes that, after
this dynamic process the director is reoriented [5], but
it remains in the plane delimited by its initial direction
and the direction of the magnetic �eld.

The motivation for this assumption is clear. When a
isolated magnetized rod is put in a magnetic �eld, with
direction perpendicular to the rod's long axes, the rod
becomes parallel to the external magnetic �eld turning
around an axes of rotation that is always perpendicu-
lar to the plane formed by the initial orientation of the
long axes of the rod, and the external magnetic �eld.
Thus, as the nematic material is usually thought as an
ensemble of rods, it would be expect that the direc-
tor would always be achieved in the same initial plane,
formed by the direction of the magnetic �eld and the
initial direction of its long axes.

Nevertheless, such assumption has not an experi-
mental evidence. It has been observed a lens e�ect in
the light transmitted throughout a sample with mag-
netic walls [7, 8]. This e�ect was explained as result of
a three-dimensional director deformation in which the

planar con�guration is lost and the director undergoes
an out-of-plane deformation [9, 10]. This unsuspected
behavior has a surprising explanation. The NLC mat-
ter cannot be thought as a simple collection of rods.
Through the elastic forces the NLC micelles interact
generating elastic tensions inside the sample. The re-
sulting components of this induced stress make unstable
any planar torsion of the director.

The most studied example of this out-of-plane tilt
are the axial disclinations of the NLC [9, 10, 11]. For
example, in order to study the disclination with S = 1 a
planar con�guration can be assumed [1, 11, 12]. When
this is done the existence of a singular line, perpen-
dicular to the plane of the texture, is predicted. But
this prediction has not experimental support. It was
found that the assumption of a planar con�guration
is the responsible for prediction of these singularities
and it must be rejected because, in order to avoid the
disclination line, the director \escapes into the third
dimension" [10]. Likewise, for some others planar ax-
ial textures these disclinations lines are predicted and it
has been found that the director can sometimes exhibits
this turning to the third dimension and, in this way, it
can eliminate the singularity in the nematic structure.
Using as examples these axial textures, it could be be-
lieved that the escape into the third dimension is due
to the reaction of the nematic material to the existence
of the singular lines. In fact, it will be will shown here
that this is not completely true. The turning to the
third dimension results from the assumed textures at
the planar con�guration and it exists even when there
is not singular lines in the bulk. This is the advantage
of the one-dimensional textures; they present the pla-
nar instability without the need of these axial disclina-
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tions. Furthermore, these one-dimensional textures are
important because they appear in samples subjected to
external �elds. Finally, some previous numerical calcu-
lations proposed to explain this escape to the third di-
mension (in the Fr�eedericks transition) reveal that such
out-of-plane tilt would only occur above a critical �eld,
greater than the Fr�eedericks threshold [7, 8]. We will
demonstrate ahead that such critical �eld does not ex-
ist.

II Fundamentals

In this section the one-dimensional planar textures will
be characterized, and the origin of its out-of-plane tilt
will be studied. In order to accomplish this task let us
consider the bulk free energy of a sample of nematic
liquid crystal [1, 13]
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where K11; K22; and K33 are the elastic constants of splay, twist, and bend, respectively, V is the volume of the
sample, and ~H is an external magnetic �eld. A planar con�guration will be understood as the one in which in all
the sample the director �eld ~n(r) can be written as

nx = cos �(x; y; z); ny = sin �(x; y; z) ; nz � 0; (2)

�(x; y; z) is the angle between the director and the ~ex direction. Observe that the director component along the
~ez direction is always null and, in all the sample, the director �eld can be described with only one parameter, the
function �(x; y; z). Suppose a nematic sample with dimension a along the x axis, d along the z axis, and in�nitely
long along the y axis, and such that a � d. Furthermore, the director is initially uniformly aligned along the x
axis, and an external controlled magnetic �eld ~H is applied along the y axis, and strong boundary conditions are
assumed at the sample edges. The energy Fp of this sample would be given by the substitution of Eq. (2) in it Eq.
(1), which is
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As we have said above, we will restrict this study to the so-called one-dimensional planar con�gurations. They
are de�ned as the ones that, extending along the ~ex direction, do not change along the ~ey direction, that is

@yny = @ynx = @ynz = 0: (4)

In the Fig. 1 a photo of a magnetic wall illustrating this property is shown. Under this hypothesis the planar
energy, Eq. (3), becomes
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In order to work with a handleable expression, the two elastic constant approximation (K11 = K33) will be used
(as we will see ahead this will not change our fundamental results). In this way, the free energy becomes[1, 2]

F =

Z �
1

2
K33(@x�)

2 +
1

2
K22(@z�)

2 �
1

2
�aH

2 sin2 �

�
dV; (6)

d

As we will investigate the planar stability of the struc-
tures resulting from the minimization of this free en-
ergy, we remember [14-22] that this geometry produces

twist-bend walls in the sample [1, 15], whose the gen-
eral solution satisfying the strong boundary conditions,
is of the form
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Figure 1. Photo exhibiting the one-dimensional and peri-
odic character of a magnetic wall. Observe that the walls
are distributed periodically along the ~ex axis, and that they
do not change along the ~ey axis. The simpli�cation given
on Eq. (4) regards this property.

�(x; y; z) = �(x) sin(
�z

d
); (7)

where 0 � x � a; 0 � z � d, and �(x) gives the
con�guration of the nematic structure along the x axis.
The function sin(�z=d) describes the pro�le of the di-
rector along the ~ez direction. In Fig. 2 it is shown that
at the edge of the sample (z = 0 and z = d) the bending
of the director is null, while at the center of the sample
(z = d=2) it achieves its maximum value. The physical
important issue about this pro�le is that along the ~ez
direction it is even with relation the plane z = d=2. As
we will see ahead, this fact has important consequences
in the geometry of the out-of-plane tilt. Furthermore,
when sin2 � is expanded up to the fourth order term in
�, as will be done below in Eq. (37), the function �(x)
giving a extreme of Eq. (6) through (7), results in a
elliptic sine function (sn (x; k)) [23] of argument k

�(x; k) = �0 sn (�x; k) ; (8)

where �0 is the amplitude of oscillation of the wall, and
k2, 0 � k2 � 1, gives the shape of the walls, and � =
�(k) characterizes the periodicity of the wall. A pro�le
of sn (x; k) is shown in Fig. 3. So, when the magnetic
�eld is in the neighborhoods of the Fr�eedericks thresh-
old (H � Hc); we have k � 0 and as k ! 0 we have
sn (u; k) ! sinu: Also, as H ! 1 we have k ! 1,
and as k ! 1 we have sn (u; k) ! tanhu. Therefore,
the walls' shape is a function of the magnetic �eld ( for
details see [14]).
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Figure 2. Pro�le of the director along the ~ez direction. Due
the boundary condition the bending of the director at the
edges of the sample is null, and it achieves its maximum
inclination at the center of the sample. Along the ~ez direc-
tion the pro�le of the out of plane tilt will be given by the
derivative of this function. So, as this function is even with
respect to the axis z=d = 1=2, the out of plane will be odd
with respect to this axis (see Fig. 4).

Figure 3. Outline of director along the ~ex direction at the
center or the sample. This pro�le is described by the elliptic
function, sn(x; k), given on Eq. (8). Observe that the es-
sential di�erence between this function and the usual sin(x)
is that the sn(x; k), presents a saturation region given in
this �gure by �. This parameter determined by the modu-
lus k of the elliptic sn(x; k). When � goes to zero sn(x; k)
becomes sin(x) [14].

In the derivation of the above equation it has as-
sumed that the walls are one-dimensional planar ob-
jects (It can be shown that its periodicity results from
its one-dimensionality and vice-versa [17]). But it was
not presented any argument that can justify this as-
sumption. Furthermore, the derivation that we have
presented is static. That is, it does not takes care of
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the internal motion of the nematic material. It was
conjectured by Guyon et al. [3], and demonstrated by
Lonberg et al. [5], that the elastic properties of the ne-
matic medium are not enough to explain the observed
walls geometry. The nematic material is an anisotropic
liquid and, at the moment of the walls creation, its in-
ternal rearrangement must be taken in account. The
director rotation stimulates the motion of the nematic
material and it is this internal motion that gives rise
to the one-dimensional (and periodic) character of the
walls [17]. In fact, using the NLC anisotropic proper-
ties, it was shown that the observed geometry of the
walls results from a coherent internal motion of the ne-
matic material. That is, the external magnetic �eld
creates an unstable situation that must be eliminated
as fast as possible. This implies that the motion of
the nematic material needs to occur with the smallest
possible e�ective viscosity. In the search for the least
e�ective viscosity the system selects the observed one-
dimensional and the periodic geometry.

However, as soon as this motion ceases, the resulting
one-dimensional walls' con�guration is not found in a
minimum of the elastic free energy, but in a local max-
imum. This fact leads to the fate of these structures:
uctuations arising at the nodes of the walls destroy
their regularity leading then to closed elliptical struc-
tures [18]. An important issue about these uctuations
is that along their study it has been assumed that they
are restricted to the plane of the walls, and perpendic-
ular uctuations have not been considered. Ahead, it
will be shown that such out-of-plane uctuations lead
the director �eld to an escape into the third dimen-
sion. The correlation between this escape to the third
dimension and the fate of the walls will not be consid-
ered here. Some reasons for this procedure will be given
at the conclusion.

Observe that all this dynamical phenomenology, and
the Fr�eedericksz transition, is induced by the linear
term of the expansion determining the con�guration
given by Eq. (8). The higher order terms of this ex-
pansion determine the new stable con�guration, but are
not signi�cant in the dynamical process giving the one-
dimensional and periodic character of the walls. This
observation will be important in the analysis of how
the escape to the third dimension changes the planar
con�guration, to be given below in Eq. (42).

The approach to be developed below is not re-
stricted to the magnetic walls, but is to be applied
to every one-dimensional planar textures whose energy,
and therefore the complete physical characterization, is
given by the values of the parameters

�(x; y; z); @x�; @z� (9)

at each point of the sample. If it is supposed that they
are stable con�gurations, the uctuations of the direc-
tor in direction ~ez, given by any one of the terms

nz ; @xnz; @znz; (10)

must assume, in the mean, a null value. If a uctuation
induces a non-null value for some of these terms the

corresponding planar con�guration would be unstable.
At the end of this work it will be shown that provided
@x� and @z� are non-nulls the escape into the third di-
mension will always exist.

In order to implement this task the director's con�g-
uration will be described by the cylindrical coordinates

nx = r cos �(x; y; z); ny = r sin �(x; y; z) ; n2z = 1�r2;
(11)

where r = r(x; y; z) is the length of the projection of
the director in the plane (x; y), and �(x; y; z) is the an-
gle between this projection and the ~ex direction. In this
parametrization a planar con�guration, Eq. (2), would
be obtained when nz = 0, or r2 = 1, everywhere. So,
a non-null value of nz would imply the existence of the
out-of-plane tilt. Furthermore, observe that the rela-
tion �xing the director's length, n2x+n

2
y+n

2
z = 1; is triv-

ially satis�ed and, due to this relation, there are only
two independent parameter �xing the director �eld. In
this work we will use � and nz. Observe that r cannot
be used, because it does not determine nz uniquely.
Nevertheless, we will continue to use, for convenience,
the notation nx, ny, nz , � and r: But it cannot be forgot
that these director's components aren't independent,
but connected by the normalization of the director.

To obtain the equations driving the escape into the
third dimension let us begin by rewriting the Frank free
energy, Eq. (1), in the following form
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where it was used the fact that

n2x + n2y + n2z = 1; (13)

and
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Putting these results in the bulk free energy, Eq. (12),
it is obtained
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It is important to observe that in the �rst term,
F0, nx and ny are connected to nz through Eq. (13).
Therefore, an out-of-plane tilt will change F0. Never-
theless, F0 is the unique term in Eq. (18) that survives
in the limit of the planar con�guration. Furthermore,
the remainder terms completely describe the dynamics
of the parameters established in Eq. (10). So, they ac-
count for the escape into the third dimension through
the iteration of nz, or its variations, with the texture
in the (x; y) plane. Consequently, it is only in this con-
dition that the contributions of the terms of Eq. (10)
will emerge.

III The origin of the out-of-plane

tilt

In this section we will look for the origin of the forces
that push the director to the third dimension. As it
seems impossible to �nd an exact solution coupling all
terms of Eq. (18) we will begin by showing that the one-

dimensional planar con�guration is unstable by assum-
ing that all the elastic energy of the one-dimensional
planar textures is contained in the term Fo of Eq. (18).
Our aim is to shown that, in order to relax the energy
stored in Fo, the director incline to the ~ez direction and
others energy terms becomes non-null.

So, assuming that there is a one-dimensional planar
con�guration in the sample, let us consider the out-of-
plane random uctuations acting over it. As we have
stated in Eq. (10), if the con�guration is stable we must
obtain hnzi = 0, h@xnzi = 0, h@znzi = 0, where hnzi in-
dicates the mean value of the random uctuations of the
variable nz, and son on. In order to appreciate the de-
velopment of each of these uctuations we will assume
that near the equilibrium the mean value is governed by
the same laws of the corresponding macroscopic equi-
librium variables, [25-28]. Therefore, the mean value of
the variables described above could be calculated us-
ing the laws of motion giving the minimum of Eq. (18).
Furthermore, we will suppose that these random uctu-
ations are independent and we will consider them sep-
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arately. So, during the evaluation of a given term the
mean value of the others ones will be supposed zero. As
we will see immediately this hypothesis is untenable: at
the end it results that the mean value of all these vari-
ables is non-null. This is a convenient contradiction:
the only way to avoid it is to admit the existence of the
out-of-plane tilt, just what we want to prove. In the
next section the combined action of these terms will be
studied.

To begin, consider

F = Fo + F3 (25)

where Fo contains the energy of the textures in the
(x; y) plane and F3 contains the energy stored in the
con�guration nz. As we have neglected the terms
@znz and @xnz the energy F3 is analogous to a \poten-
tial energy" for nz: By assuming that Fo will contain
the main contribution to the energy of the observed
textures, the term F3 will be considered as a pertur-
bation and we will neglected its inuence on Fo. So,
the minimum of F3 is obtained for uctuations of nz
around
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(K22 �K33)nx(@z�)(@x�)

2 (K33(@z�)2 + (K22 �K33)n2x(@x�)
2)
: (26)

Therefore, if @z� 6= 0 and @x� 6= 0, we obtain hnzi 6= 0,
and the planar con�guration would be necessarily un-
stable. That is, only when @x� or @z� are null we would
obtain hnzi = 0! As, according to Eq. (9) and Eq.
(18), the planar texture is given by the values of @x�
and @z�, the nullity of these parameters is equivalent
to the absence of the planar texture. Furthermore, nz
would be proportional to @z�. This is an surprising re-
sult because, as we see in the Eq. (18), the � function
is symmetric in relation to the plane given by z = d=2
and, therefore, @z� would be anti-symmetric with re-
spect to this plane. Consequently, if in the upper half
(z > d=2) of the sample the director tilts to the direc-
tion of increasing z, in the lower half of this plane it
would tilts to the direction of decreasing z. Due the
� symmetry of the nematic material ( ~n is equivalent
to �~n), the major observable consequence of this anti-
symmetry would be the fact that at the plane z = d=2
the out-of-plane tilt would be null.

Let us consider now the development of the mean
value of the term h@znzi. Its is given by

F = Fo +F1: (27)

In exactly the same way that we have done to arrive at
Eq. (27), if K11 6= 0; we get

h@znzi � ny@x�: (28)

Finally we consider

F = Fo +F2: (29)

and obtain
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K22ny(@z�)

n2xK33

: (30)

Observe that in these equations the term impelling
the uctuations of hnzi, h@znzi and h@xnzi is @x� and
@z�. Therefore in order to obtain hnzi = 0, h@znzi = 0
and h@xnzi = 0 one must have @x� = 0 and @z� = 0.
So, again, the existence of the non-null planar texture
drives the out-of-plane tilt.

During the deduction of the Eqs. (26), (28) and (30)
the mean value of each of the terms nz, @xnz and @znz
has been supposed initially zero. This hypothesis has at
least two advantages. Firstly, it gives a glimpse of the
out-of-plane tilt by neglecting the interaction between
these uctuations and supposing that the are very close
of the planar con�guration. Secondly, it leads to a con-
tradiction, because the �nal result is that these vari-
ables are not null. As said above the only way to avoid
this contradiction in to assume the out-of-plane tilt.

IV A small bending solution

In the last section we have shown that the one-
dimensional con�guration gives a non-null value to the
mean of each of the parameters of Eq. (18). But, our
deduction does not consider the interaction between the
parameters described by that equation. In order to take
into account this interaction we will present an approx-
imated analytic solution.

The escape into the third dimension will be con-
sidered as a weak phenomenon (of course this must be
con�rmed by our �nal results) that allow us to retain
only its linear and quadratic terms (in nz, @znz, @xnz
and their products). Furthermore, we will use the usual
approximation K11 = K33, that produces an important
simpli�cation in Fo without changing substantially the
remainder terms of Eq. (18). Under these conditions
we obtain
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In the next step we observe that nx and ny, as de�ned in Eqs. (11), makes Eq. (31) highly non-linear. In order
to consider this point we consider that
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In the following calculations only the term of fourth order in � and its derivatives (or products between both) will
be retained. Furthermore, we recall that r2 = 1� n2z and use in advance the result of Eq. (43), that shows that nz
is quadratic in � and its derivatives. Therefore, by keeping the forth order term in � we are being consistent with
the small bending approximation used in Eq. (32) to Eq. (35). With these approximations we have
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Now the Euler-Lagrange equation for � is

�K33@
2

x� �K22@
2

z� � �aH
2(� �

2�3

3
) +

+ (K33 �K22)

�
� (@x@znz)�

1

2
(@x(nz@z�) + @z(nz@x�))

�
= 0; (42)

and the equation for nz is

�K33

�
@2znz + @2xnz

�
+ (K33 �K22)

�
3

2
(@z�) (@x�) + � (@x@z�)

�
= 0 (43)

d

As observed above, Eq. (43) shows that nz is of
second order in �. Therefore, the change in the planar
texture due to the out-of-plane tilt, given in Eq. (42)
is of third order in �. Moreover, we remember that the
bending of the director at the Fr�eedericksz threshold,
and the dynamic instability resulting from it, is driven

by the �rst order term of this equation [1]. The function
of third order term is to stabilize the new least energy
con�guration, and it will not change the fundamental
walls' characteristics: one-dimensionality and periodic-
ity. So, a suitable, and usual [5, 7], approximation for
the solution of Eq. (42) is given by
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�(x; y; z) = �0 sin

�
2�

�
x

�
sin

��z
d

�
; (44)

Of course sin(2�x=�) is an approximation to the
sn (�x; k), given in Eq. (8) and Fig. 3, that preserves
its fundamental property: periodicity. As can be easily
veri�ed, when Eq. (44) is substituted in Eq. (43), the
solution for nz becomes

nz =

�
d

�

�
�20

5(K22 �K33)

16K33

�
1 + ( 2d

�
)2
� sin

�
4�

�
x

�
sin

�
2�

d
z

�
:

(45)
From this equation we see that, according to the ap-
proximation that we are using, the out-of-plane tilt only
exists if K33 6= K22. Furthermore, it is really anti-
symmetric with relation to the plane z = d=2. In the
Fig. 4 it is shown a pro�le along the ~ez direction of
the director given by Eq. (7), or (44), and the pre-
dicted out-of-plane tilt given by the above equation.
Another important result is that the out-of-plane tilt
is proportional to d=�. This means that, with the use
of samples for which d << �, it would be a very small
e�ect. Finally, observe that along the ~ex direction the
phenomenon is null exactly at the walls' nodes and at
points where the walls achieve their maximum bending.

Figure 4. Pro�le of the out-of-plane tilt along the ~ez direc-
tion. This function is given by the derivative of the direc-
tor pro�le along this direction. So, the out-of-plane tilt is
odd with respect to the axis z=d = 1=2, being null at this
point. The dashed line represents the director pro�le shown
in Fig. 2.

V Final remarks and conclusion

We have considered the origin of the out-of-plane tilt by
studying the trends of the uctuations of hnzi, h@znzi
and h@xnzi. But, it is widely known that in the mag-
netic walls there are important in-plane uctuations
and, it is believed, these uctuations are the respon-
sible for the fate of the walls [18]. From this picture,
and considering the results exposed along this paper, it
can be asked: is the established picture - of the insta-
bility of the walls - changed by the out-of-plane uc-
tuations? Without a doubt, some further e�orts must

be done in this problem, but it seems that these two
kinds of uctuations have completely di�erent roles in
the physics of the magnetic walls. In a previous work,
it has been shown how the fate of the walls is drove
by large in-plane uctuations happening at the places
where, even in the presence of the external magnetic
�eld, the director does not bend at all. These places
form the nodes of the walls. But, Fig. 5 shows that
just at the nodes of the walls the out-of-plane tilt is
zero. Therefore it seems that the two kinds of uctu-
ations have its action at di�erent places of the walls,
and its interaction could be neglected. Furthermore, to
�nd an approximated solution, we used a small bend-
ing approach where the planar con�guration has been
considered as the predominant energy term.

Figure 5. Pro�le of the out-of-plane tilt along the ~ex direc-
tion. This function is given by the derivative of the director
pro�le along this direction. In the dashed line it is shown
the director pro�le given by the function sin(2�x=�). Ob-
serve that this function is not exactly same present in Fig.
3. In that �gure it was plotted the function sn(x; k), that
presents a saturated region. In order to simplify the calcu-
lations that function was approached by sin(2�x=�).

As a �nal remark, we remember that in a previous
numerical study it has been predicted that the out-of-
plane tilt would only occur above a critical point [7, 8].
In our analytical study we have not found it. We be-
lieve that this di�erence comes from the fact that in
that numerical study it has been assumed an even func-
tion, with relation to z = d=2, for the out-of-plane tilt
and, as we have anticipated in Eq. (26) and deduced in
Eq. (45), this is indeed and odd function.
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