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Quantisation of the Multidimensional Rotor

E. Abdallaa and R. Banerjeeb

aInstituto de F��sica-USP, C.P. 66318, 05315-970 S~ao Paulo, Brazil
bS.N. Bose National Centre for Basic Sciences

Block JD, Sector III, Salt Lake City, Calcutta 700.091 India

Received on 9 September, 2000

We reconsider the problem of quantising a particle on the D-dimensional sphere. Adopting a
Lagrangian method of reducing the degrees of freedom, the quantum Hamiltonian is found to
be the usual Schr�odinger operator without any curvature term. The equivalence with the Dirac
Hamiltonian approach is demonstrated, either in the cartesian or in the curvilinear basis. We also
briey comment on the path integral approach.

The problem of the quantisation of the rotor has
been studied since decades, but remains a subject of
intense debate. De Witt[1] studied the path integral
quantization, and proposed that a term proportional to
the curvature should be included in the Hamiltonian.
There are, however, problems connected to the de�ni-
tion of the path integral using curvilinear coordinates,
since quantising in curvilinear coordinates leads to new
terms, even for free particles. Edwards and Gulyaev[2]
carefully considered that problem, and showed that due
to problems intrinsically connected to the path integral
formulation[3], path integration quantisation may lead
to di�erent results.

The Dirac formulation[4] has also been
undertaken[5]. In this case one faces the question of
operator ordering, a question which can only be tackled
using de�nite prescriptions based on general arguments
as hermiticity and general coordinate invariance. The
Laplace-Beltrami operator has been obtained without
curvature terms in e.g. [5], for the special case of a
three-dimensional rotor.

Besides the early developments[2], there are spe-
cial de�nitions of the path integral on the surface of
the sphere which do not give rise to the curvature
term[6]. Several diferent results have been obtained in
the literature[6, 7, 8, 9, 10].

In spite of all these developments, the status of the
problem is very confusing, and there have been many
papers claiming a rejection of the Dirac formalism[6]
an intrinsic di�erence between path integral formula-
tion and operator formalism[7], or advocating di�erent
quantization schemes[9]. The importance of the ques-
tion can be appreciated from the fact that it has impli-
cations in curved space quantization, when de�ning the
Wheeler-de-Witt equation[11], and in the quantisation
of sigma model Lagrangians.

The aim of the present paper is to analyse the prob-

lem directly in terms of reduced coordinates by solving
the constraint, bypassing the ambiguities inherent in
either the Dirac or path integral approaches. The clas-
sical reduced space is therefore obtained in a straight-
forward manner. We then pass to the quantum for-
mulation by using the Laplace-Beltrami construction,
leading to the usual Schr�odinger operator without any
curvature term. The connection of our results with the
Dirac approach is then established. In particular, the
role of the Maskawa-Nakajima[12] theorem in the Dirac
formalism in the cartesian basis is elaborated. We con-
clude mentioning the path integral formulation, where
the counterpart of the above approach is the special
time slicing of the integral as explained by T. D. Lee[13].

The Lagrangian for a particle of unit mass con-
strained to move on the surface of a D-dimensional
sphere of radius R is given by

L =
1

2
_x� _x� � �

�
x�x� �R2

�
� = 1 � � �D ; (1)

where the constraint is implemented by a Lagrangemul-
tiplier. Thus we use Dirac's constraint analysis. Apart
from the fact that Dirac brackets are plagued by order-
ing ambiguities, the extraction of the physical variables
of the system is not very transparent[5, 6, 7, 10].

Here we shall adopt an alternative canonical ap-
proach developed by one of us[14] which is based on
a Lagrangian reduction by systemmatically eliminating
the unphysical variables using the constraint. Elimi-
nating xD we obtain

Lr =
1

2
gij _xi _xj =

1

2

�
Æij +

xixj

R2 � ~x2

�
_xi _xj : (2)

The conventional canonical formalism is now applica-
ble, and the canonical Hamiltonian is

H = pi _xi �Lr =
1

2
pig

ijpj ; (3)
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which gives the �nal expression for the classical reduced
Hamiltonian in terms of the momenta conjugate to xi.

In order to perform the quantisation the above
Hamiltonian is replaced by the corresponding Laplace-
Beltrami operator, being de�ned as

Ĥ = OLB =
1

2
g�1=4�̂ig

1=2gij �̂jg
�1=4 ; (4)

where �̂ is the quantum momentum operator

�̂i = �i~g�1=4~@g1=4 ; (5)

and g is the determinant of the metric g � det gij =
R2

R2
�~x2 . This transition from classical to quantum the-

ory is based on hermiticity, general coordinate invari-
ance and preservation of the symmetry properties.

It is now simple to obtain the quantum Hamilto-
nian,

c

Ĥ = �
1

2

p
R2 � ~x2~@i

�
Æij �

xixj

R2

��
R2 � ~x2

�
�1=2 ~@j �

X
��

L2��

2R2
: (6)

d

where the angular momentum operator is given by

Lij = xipj � xjpi = �i~ (xi@j � xj@i) ; (7)

LiD = �
p
R2 � ~x2pi = �LDi = i~

p
R2 � ~x2@i :(8)

The conjugate momentum pD does not exist in the re-
duced variables. Thus the quantum Hamiltonian is the

conventional Schr�odinger operator without any curva-
ture term. This is our central result.

The analysis was carried out in the cartesian basis,
but it is instructive to repeat it in the curvilinear basis,
illuminating the connection with the conventional Dirac
approach. Using the standard curvilinear coordinates
the original Lagrangian is given by

c

L =
1

2
f _r2 + r2 _'2

1
+ � � � r2 _'2D�1 sin

2 '2
1
� � � sin2 'D�2g � � (r �R) : (9)

In constrast to the cartesian analysis, the solution of the constraint (a constant radius) here is trivial and the
reduced Hamiltonian obtained by following the previous steps is worked out to be

H =
1

2

X
gab�a�b ; (10)

with the inverse diagonal metric gab � g�1
ab

given by

gab = R2
�
1; sin2 '1; sin

2 '1 sin
2 '2; � � � ; sin

2 '1 sin
2 '2 � � � sin

2 'n�2
�
: (11)

The quantum Hamiltonian, which is given by the corresponding Laplace-Beltrami operator, reduces to

Ĥ = �
~
2

2R2

n�1X
i=1

i�1Y
j=1

1

sin2 'j

1

(sin'i)
n�i�1

@

@'i
(sin'i)

n�i�1 @

@'i
(12)

which corresponds to (6). To compare with the Dirac formalism we start from the constrained Lagrangian (9). The
set of primary constraints is now given by


 = �� = 0 ; 
1 = r �R � 0 ; 
2 = �r � 0 : (13)

d
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The unphysical canonical set (� ; ��) associated with
the Lagrange multiplier is ignored. This leaves us with
a pair of second class constraints, 
1 and 
2, forming
a canonical set,

f
i;
jg = �ij : (14)

The special form of the constraints allows a straightfor-
ward application of the Maskawa-Nakajima theorem[12]
to extract the physical variables and the Hamiltonian
without the need of any explicit computation of Dirac
brackets. Using this theorem, it is simple to show that
the canonical pairs are given by 'i; �'i

. In other words,
the Dirac brackets among these variables is equal to
their Poisson brackets. The physical Hamiltonian is
now obtained from the canonical Hamiltonian by pass-
ing on to the constraint shell. This is found to coin-
cide with the reduced Hamiltonian (10). The quantum
Hamiltonian is then reobtained from the corresponding
Laplace-Beltrami operator.

The Dirac analysis of this problem in the cartesian
basis is quite nontrivial, since the constraint algebra is
no longer canonical. The Maskawa-Nakajima theorem
allows �nding the canonical transformation which en-
ables the extraction of the canonical pair of variables
without any further ambiguities. The constraint struc-
ture is given by


1 = xixi � R2 = 0 
2 = xipi = 0 (15)

The Maskawa Nakajima canonical tr. is just the trans-
formation from the cartesian to the spherical basis. In
these rede�ned variables the physical hamiltonian is
given by,

Hphys =
1

2R2

�
�2� +

1

sin2 �
�2'

�
: (16)

This completes the classical reduction. Since the
above Hamiltonian is expressed in terms of canonical
pairs, the Laplace-Beltrami construction goes through
and we exactly reproduce the canonical Hamiltonian.

The main conclusion of the present work is that
the quantum Hamiltonian for the multidimensional ro-
tor is given by the pure Schr�odinger operator without
any curvature term. This result was obtained in the
Lagrangian formalism [16] by directly solving the con-
straint and reducing the unwanted degrees of freedom.
The usual ambiguities of the Dirac approach in the
cartesian basis were avoided by taking recourse to the
powerful Maskawa-Nakajima theorem [12].

It is essential to point out that the transition from
the classical to the quantum theory was done by explot-
ing the Laplace-Beltrami construction, enforcing the
conditions of hermiticity, general coordinate invariance,
and preservation of the classical symmetries. While the
passage from the classical to the quantum theory is rid-
dled with ambiguities, the Laplace-Beltrami operator
provides a desirable quantum hamiltonian. Curvature

terms are ruled out since these are incompatible with
the third condition. In particular, they violate the con-
servation of the generator of the equilong transforma-
tion group [9]. Yet another way of seeing the impor-
tance of the Laplace-Beltrami construction is to com-
pare it with the path integral formalism [13]. The spe-
ci�c time slicing prescription used in [13] is known to
yield consistent results for the path integral either in
the cartesian or curvilinear basis. Using the Laplace-
Beltrami operator in the canonical quantisation of non-
abelian gauge theories [15] naturally led to the interac-
tion terms originally postulated by Schwinger [16] and
subsequently derived in the path integral framework
[13]. The di�erent methods of reducing the unwanted
degrees of freedom in the lagrangian and hamiltonian
approaches, yield completely consistent results. This is
the important �nding of the present work which serves
to dispel at least some of the confusion and controversy
existing in the literature.

A possible approach of discussing systems with sec-
ond class constraints is to embed them into a �rst class
system. Details of this procedure in the present con-
text have been given in [17] where the invariance of the
quantum theory under reparametrisation of the con-
straint surface has also been studied. Regarding the
path integral formulation, the basic problem here stems
from the fact that the de�nition of the path integral
in curvilinear coordinates is rather tricky and subtle.
An apparent clash between the canonical and (a naive)
path integral formulation is already seen in the simplest
of examples, namely a free non relativistic particle in
two dimensions[18].

Thus, a clear computation as the one performed
by Kleinert[6] leads to the correct result. We however
point out that a distinction can be made, so that it is
possible to treat the particle either on or near the sur-
face of the sphere. For the former case the boundary
term disappears[6] but in the latter, such a term ex-
ists. Since in the present analysis the constraints are
always strongly enforced, we are con�ned to the case of
the particle exactly on the sphere. A recent calculation
from a more mathematical point of view also con�rms
our result[19].
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