
8 Brazilian Journal of Physics, vol. 31, no. 1, March, 2001

Variances and Covariances in Deconvolution of

Multichannel Spectra: 34S (; xn) Cross Section

O. Helene�, C. Takiya� y, and V. R. Vanin�

� Instituto de F��sica, Universidade de S~ao Paulo

CP 66318 CEP 05315-970 S~ao Paulo, SP, Brazil
y Universidade Estadual do Sudoeste da Bahia

Departamento de Ciências Exatas

Estrada do Bem Querer Km 4, CEP 45083-900, Vit�oria da Conquista, BA

Received on 8 March, 2000. Revised version received on 14 September, 2000

This paper discusses some aspects of deconvolution of one-dimensional spectra in the framework of
the Least Squares Method and presents a minimum variance regularization procedure. Covariance
matrices are taken into account in every step. Fluctuation and artifacts, both in the deconvolved
and regularized spectra, are related to the structure of the covariance matrices. The method is
applied to a simulated spectrum and to the 34S (; xn ) cross section determination from actual
yield data.

I Introduction

Deconvolution of one dimensional spectra has been ex-
tensively used in experimental sciences in connection
to gamma-ray spectroscopy [1], neutron [2, 3], mass
[4] and beta [5] spectra studies, cross-section measure-
ments [7, 8], energy distribution of annihilation radi-
ation [6, 9] and microprobe scans [10], among others.
The basic goal of deconvolution procedures is to obtain
the intrinsic distribution of a signal blurred by the re-
sponse function of a detector system and a�ected by
statistical uctuation. Most of the troubles in deconvo-
lution algorithms stem from that even small statistical
uctuations in the original data are strongly ampli�ed
[11] and, frequently, produce an oscillatory behavior of
the deconvolved data, and even unphysical results. In
order to reduce uctuations of the deconvolved spectra,
many regularization procedures have been developed [1
- 15]. Such regularization procedures have usually been
studied from ad hoc observations of the obtained results
in some practical and simulated cases. However, reg-
ularization methods give rise to biased estimates and
artifacts. As a consequence, the choice of the regular-
ization parameter depends on the compromise between
artifacts and noise [14].

In the study of deconvolution procedures, not
enough attention has been paid to the covariance ma-
trices. This paper discusses some aspects of the decon-
volution procedure within the Least Squares Method
(LSM), and takes into account, in every step, the co-
variance matrices, which are not ill-behaved although
showing large elements on the diagonal and negative co-

variances between adjacent channels. A regularization
procedure on the basis of a minimum variance criterion
was developed in order to reduce the large uctuations.
When the covariance matrices are taken into account,
the obtained results are unbiased, the artifacts can be
understood, functions can be �tted to the data, and the
goodness-of-�t can be tested by the usual chi-square
test.

II Least Squares Method and

regularization procedures

We assume that the relationship between an unknown
spectrum S(x0) and a measured spectrum Yi; i =
1; 2; � � �n, can be described by

Yi =

Z
Ri(x

0)S(x0)dx0 + �i ; (1)

where Ri(x
0) is the detector response function, and �i

is a measurement error. Eq.(1) can be approximated
by

Yi =
X
j

RijS(xj) + �i ; (2)

where

Rij =

Z xj+
1
2

xj�
1
2

Ri(x
0)dx0 : (3)
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Eq. (2) can be written in a more suitable form as

Y = R � S+ ~� (4)

where Y is the known column vector with elements
Yi, R is the response matrix, S the unknown (col-
umn) vector with elements S(xi) and ~� is the error vec-
tor. Although ~� is unknown, we have < ~� >= 0 and
< ~� � ~�t >= V, where V is the covariance matrix of Y,
and <> stands for expectation value. We assume that
V is known, as usual in experimental physics.

Due to the linear relation between the vector of ob-
servations, Y, and the vector of parameters, S, the es-
timate ~S given by the LSM,

~S = (RtV�1R)�1RtV�1Y; (5)

is consistent, unbiased and has the minimum attainable
variance among the linear estimates even in the case of
deconvolution procedures [16]. The covariance matrix
of ~S is given by

V~S
= (RtV�1R)�1 ; (6)

and can be easily calculated from R and V. Generally,
R is a n�m rectangular matrix, with n � m where n
is the number of experimental data points in Y and m

is the number of channels in S.
Eqs. 5 and 6 can fruitfully be used in the decon-

volution procedure and in the interpretation of the ob-
tained spectra. However, deconvolved spectra are usu-
ally poorly de�ned, showing very large uctuations. If

we know the function to be �tted to the deconvolved
spectra, the large uctuations are not cumbersome.
However, when we need to examine the spectra for clues
about the �tting function, a regularization procedure
provides important guidance.

III Regularization

The LSM is the best linear estimator of linear models
like that given by (4), not only for the parameters but
also of any linear combination of them. As a conse-
quence, we choose a linear regularization given by

ST = T � ~S; (7)

where T is the regularization matrix. The covariance
matrix of the regularized spectra ST is given by

VT = T �V~S �T
t : (8)

In addition to the linearity, T obeys the following
rules:

i) Only three non vanishing elements in every line
of T are taken, in order to reduce the structure
loss due to the smoothing caused by the linear
combination of parameters in ~S;

ii) In order to avoid skewnnes and to preserve sim-
metry and normalization T is given by

c

T =

2
6664

a1 1� 2a1 a1 0 0 0 0 : : :

0 a2 1� 2a2 a2 0 0 0 : : :
...

...
... : : : : : :

...
...

...
0 0 : : : : : : : : : am�2 1� 2am�2 am�2

3
7775 (9)

where m is the number of rows in ~S;

iii) The values of ai will be chosen to minimize the variances of the regularized spectra. Minimizing the diagonal
elements of VT (eq. 8) we obtain

ai =
�V ~Si;i+1

+ 2V ~Si+1;i+1
� V ~Si+1;i+2

V ~Si;i
� 4V ~Si;i+1

+ 2V ~Si;i+2
+ 4V ~Si+1;i+1

� 4V ~Si+1;i+2
+ V ~Si+2;i+2

� (10)

d

If the regularized spectrum is not suÆciently de-
�ned, the regularization can be repeated with ST as
input, giving rise to an iterative procedure.

IV Simulation

In order to study some practical aspects of the decon-
volution procedure we simulated a Gaussian signal con-
volved with a Gaussian response function, which gives
rise to a Gaussian spectrum with variance equal to the
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sum of the variances of the signal and of the response
function. The simulated spectrum consists of a Gaus-
sian peak with a standard deviation of 5.00 channels
and an area of 100,000 counts, superimposed to uni-
form background of 200 counts per channel. A Poisson
random uctuation was simulated in order to obtain
the typical statistical uctuation of real spectra. As a
consequence, the covariance matrix V of the simulated
data is diagonal with Vii = Yi, where Yi is the number
of counts in channel i. Fig. 1 shows the simulated peak.
Results of the �tting of a Gaussian peak are shown in
second column of Table I.

Figure 1. Simulated spectrum and the �tted peak plus back-
ground.

Deconvolution

The simulated peak was deconvolved using eq. 5
with

Rij =

Z j+ 1
2

j� 1
2

Z i+ 1
2

i� 1
2

1p
2� � �r

� e�(xi�xj)
2=(2�2r) � dxidxj

(11)
with �r = 1:2 channels. In this example a square R
(200� 200) was used. Fig. 2 shows the obtained spec-
trum, where the enormous uctuation are typical of

deconvolution procedures. The peak structure was lost
and non physical (yet statistically meaningful) negative
counts appear. The structure of the spectrum in Fig. 2
can be understood by inspecting the covariance matrix
calculated from eq.6 whose central part is shown in Ta-
ble II. The variances of ~S are about 109, corresponding
to standard deviations of about 3 �104, greater than the
typical values of Y in the peak region (about 104), and
many times greater than

p
Yi. Those standard devia-

tions explain the enormous uctuations of ~S.

Figure 2. Deconvolved spectrum by using the LSM method
and the �tted peak and background.

The typical oscillation pattern of ~S can also be un-
derstood from the inspection of the correlation between
counts in adjacent channels, de�ned as

�ij =
V ~Sijq
V ~Sii

V ~Sjj

: (12)

As can be seen from Table II, the correlation coeÆcients
between counts in adjacent channels are about -0.98.
A negative correlation between two data means that if
a datum is underestimated (overestimated) the other
is probably overestimated (underestimated). Since the
values obtained are very near - 1, which means total
anticorrelation, the deconvolved spectrum must show
strong oscillatory pattern.

Simulated Deconvolved Regularized

Area (counts) 100,650(328) 100,620(328) 100,740(328)
Position (channels) 100.005(17) 99.995(17) 99.997(17)
� (channels) 5.009(14) 4.863(14) 4.895(14)
Background 198.7(11) 199.0(11) 199.0(11)
(counts per channel)
Reduced �2 P(�2 > �2obs) 1.013 (36 %) 1.04(27 %) 1.019 (34 %)

Table I. Result of the �t of a Gaussian peak plus a background to the original (second column), the deconvolved
(third column), and the regularized spectra (fourth column).
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(96) (97) (98) (99) (100) (101) (102) (103) (104)
(96) .834E9 -.866E9 .858E9 -.815E9 .743E9 -.655E9 .559E9 -.465E9 .378E9
(97) -.984 .929E9 -.950E9 .927E9 -.866E9 .777E9 -.674E9 .567E9 -.465E9
(98) .938 -.984 .100E10 -.101E10 .972E9 -.893E9 .789E9 -.674E9 .560E9
(99) -.869 .937 -.983 .105E10 -.104E10 .988E9 -.894E9 .778E9 -.656E9
(100) .786 -.868 .937 -.983 .107E10 -.105E10 .974E9 -.868E9 .745E9
(101) -.698 .785 -.868 .937 -.983 .106E10 -.101E10 .930E9 -.817E9
(102) .610 -.697 .785 -.86 .937 -.984 .101E10 -.953E9 .862E9
(103) -.527 .609 -.697 .785 -.868 .937 -.984 .932E9 -.869E9
(104) .452 -.528 .610 -.698 .787 -.869 .938 -.984 .837E9

Table II. Covariance (upper triangle, including the main diagonal) and correlation (lower triangle) matrix of the
central part of the deconvolved spectrum. The numbers into parentheses refer to the channel number of the
spectrum.

Despite the strange pattern of the spectrum in Fig.
2, it is possible to �t the peak and background by the
LSM taking into account the covariance matrix of ~S.
Table I shows the result of the �tting of a Gaussian peak
to ~S. The obtained standard deviation, � = 4:863(14),
agrees with the expected value (

p
52 � 1:22 = 4:854).

Likewise the area, position and background agree with
the expected values. The obtained reduced chi-square
value, 1.04, has 27 % probability of being exceeded and
shows that both the �t is acceptable, and no more hy-
potheses are needed to explain the structure of the spec-
trum.

Indeed, it should be expected that a Gaussian could
be �tted to the ill-behaved spectrum of Fig. 2, because
all the assumptions required for its success are satis�ed.
This result is shown here only to stress the fact that if

the function to be �tted is known a regularization pro-
cedure is not necessary. Regularization procedures are
required, however, when we need visual information to
decide which function to �t.

Regularization

Fig. 3 shows the same data of Fig. 2 regular-
ized by the procedure of section III. Table III shows
the covariance/correlation matrix of the central part of
ST = T � ~S. As can be seen by comparing the diagonal
elements of VT (table III) with the diagonal elements
of V~S

(table II),variances were reduced by a factor of

about 3 � 10�4. Such reduction can be understood by
inspecting the regularization procedure. The variance
of the number of counts in a regularized channel can be
estimated assuming ai �= 0:25, a typical value, by

(96) (97) (98) (99) (100) (101) (102) (103) (104)
(96) 2.755E5 -2.022E5 4.570E4 7.677E4 -1.199E5 1.002E5 -5.239E4 3.503E3 3.290E4
(97) -.705 2.986E5 -2.126E5 4.091E4 8.717E4 -1.279E5 1.034E5 -5.265E4 3.401E3
(98) .155 -.692 3.152E5 -2.208E5 3.854E4 9.250E4 -1.304E5 1.033E5 -5.223E4
(99) .255 .130 -.686 3.288E5 -2.256E5 3.712E4 9.280E4 -1.279E5 1.000E5
(100) -.396 .276 .119 -.682 3.325E5 -2.255E5 3.821E4 8.724E4 -1.198E5
(101) .332 -.408 .287 .112 -.681 3.293E5 -2.216E5 4.117E4 7.690E4
(102) -.177 .336 -.412 .287 .117 -.685 3.172E5 -2.134E5 4.532E4
(103) .012 -.176 .336 -.407 .276 .131 -.693 2.989E5 -2.015E5
(104) .119 .101 -.177 .333 -.396 .255 .153 -.703 2.743E5

Table III. Covariance (upper triangle, including the main diagonal) and correlation (lower triangle) matrix of the
central part of regularized spectrum.

�2reg =
�21
16

+
�22
4

+
�23
16

+
�12 � �1�2

4
+
�13 � �1�3

8
+
�23 � �2�3

4
: (13)

d
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where �i; i = 1; 2; 3, are the standard deviations of
three adjacent channels and �ij their correlation co-
eÆcients. Since �12 �= �23 �= ��13, �12 �= �1 and
�1 �= �2 �= �3 �= � we have �2reg << �2. In conclu-
sion, the regularization procedure relies on the strong
and negative covariances between adjacent channels for
its success. Table I shows the results of �tting a Gaus-
sian peak superimposed to an uniform background to
data in �gure 3 using the LSM and taking into account
the whole covariance matrix of ST. The reduced �2 is
1.019 with 195 degrees of freedom and corresponds to
a 34% con�dence level.

Figure 3. Regularized spectrum and the �tted curve.

V Application example: cross

section of 34S

The 34S (; xn) yield was measured by Assa�ri et al
[17] from 10.4 MeV to 29.4 MeV in 100 keV intervals.
Determination of the cross section from yield data is
an inverse problem like that given by eq. (1), where Yi
is the yield data, S(x') the unknown cross section, and
Ri(x

0) the Bremsstrahlung spectrum. Some procedures
have been used to determine the cross section [7,8] from
yield data; however, those procedures do not consider
the whole covariance matrices and, as a consequence,
statistical tests can not be applied. Here we apply the
method of section III to the analysis of the 34S(; xn)
cross section.

Fig. 4 shows the 182 experimental yield data points
taken from ref [17]. The analysis of the yield data
was performed in two steps. First, from inspection,
it was searched the best dimension of R to use, and
the number of regularizations such that both the shape
of the deconvolved-regularized spectrum becomes de-
�ned, and the �tted cross-section passed a quantitative

acceptance test. A deconvolution using a 182 � 90
response matrix, followed by a threefold regularization
was performed. If a more compressed response matrix
n �m was used, with m < 90, or a higher regulariza-
tion were performed, some narrow structures would be
lost. Otherwise, if a less compressed response matrix
or a lower regularization were adopted, the large uc-
tuation of the obtained spectrum would hide the cross
section structure. Fig. 5 shows the obtained spectrum.
Four Lorentz curves,

�(E) =

4X
i=1

E2 �2i Ai

E2 �2i + (E2 �E2
oi)

2
(14)

were �tted to the spectrum and the results are shown
in the last three columns of table IV. The obtained
P (�2 > �2obs), about 9 %, validates the regularization
procedure.

Figure 4. Experimental yield of the 34S (; xn) reaction.

Figure 5. Deconvolved (182 � 90 response matrix) and
regularized 34S (; xn) cross-section and the �tted curve.
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Deconvolved spectrum (182x182) Deconvolved (182x90) and regularized
P (�2 > �2obs)

�= 16% spectrum P (�2 > �2obs)
�= 9%

A (mb) E0 (MeV) � (MeV) A(mb) E0(MeV) � (MeV)
29.4(38) 20.94(10) 1.4(4) 27.5(22) 20.88(7) 1.6(2)
32.3(24) 17.38(14) 2.2(7) 31.0(17) 17.36(7) 2.3(3)
9.8(37) 14.97(35) 1.3(19) 8.9(24) 15.06(8) 1.3(3)
8.3(19) 12.70(30) 1.5(8) 7.5(13) 12.67(15) 2.0(9)

Table IV. Result of �t of four Lorentzians to the experimental 34S (; xn) cross section.

Fig. 6 shows the same cross section obtained by
Assa�ri et al. [17] using the Penfold-Leiss [8] decon-
volution method. As can be seen, both Figs. 5 and
6 show the same features: a split of the giant dipole
ressonance into two components near 17 MeV and 21
MeV with two small peaks at 13 MeV and 15 MeV. The
main di�erence between data in Figs. 5 and 6 is that
those data in Fig. 5 have a known covariance matrix
and a model (four Lorentz curves) can be �tted and a
chi-squared test can be performed.

Figure 6. 34S (; xn) cross-section as obtained by ref. [17].

However, as stated above, regularization smooths
the spectrum and some narrow structures can be lost.
In order to examine this possibility, the yield data was
unfolded once more with a large (182 � 182) response
matrix without regularization. The obtained spectrum
is shown in Fig. 7. Four Lorentz curves were also �tted
to this spectrum and the results are shown in columns
1 to 3 of table IV. The results obtained as well as the
chi-squared (corresponding to a con�dence level of 16 %
) value show that the hypothesis of four Lorentz curves
agree with the data without regularization.

Figure 7. Deconvolved (182 � 182 response matrix) 34S
(; xn)cross-section and the �tted curve.

In conclusion, the cross-section of the 34S (; xn)
reaction can be explained by four Lorentz peaks, being
not required more than four peaks to explain the data.

VI Conclusion

We developed a deconvolution with regularization pro-
cedure based on the LSM, taking advantage of the lin-
earity of the convolution equation and the optimum
properties of the least squares estimator. The regular-
ization procedure is linear and can be represented by a
rectangular band matrix. The covariance matrix of the
regularized spectrum can be calculated by a closed for-
mula, making possible statistical hypothesis tests with
the obtained spectrum.

The oscillatory pattern and the artifacts of decon-
volved and regularized spectra were understood and ex-
plained. They follow from the structure of the covari-
ance matrix of the deconvolved spectrum.

Finally, it may be worth to emphasize that, when-
ever the functional form of the signal function is known,
a straightforward data �tting procedure should be pre-
ferred because it avoids the artifacts, inevitable in the
deconvolution with regularization procedure.



14 Brazilian Journal of Physics, vol. 31, no. 1, March, 2001

Acknowledgments

We acknowledge Dr. P. Gou�on for a critical read-
ing of the manuscript, and Dr. M. N. Martins for com-
ments and suggestions. This work was partially sup-
ported by CNPq and FAPESP.

References

[1] Cs. S�usk�od, W. Galster, I. Licot and M. P. Simonart,
Nucl. Instr. and Meth. A 355, 552 (1995).

[2] J. Pulp�an and M. Kr�al�� k, Nucl. Instr. and Meth. A 325,
314 (1993).

[3] W. R. Burrus and V. V. Verbisnki, Nucl. Instr. and
Meth. 67, 181 (1969).

[4] A. A. Marchetti and A. C. Mignerey, Nucl. Instr. and
Meth. A 324, 288 (1993).

[5] Thomas M. Semkow, Appl. Radiat. Isot. 46, 341 (1995).

[6] J. Dryzek, C. A. Quartes, Nucl. Instr. and Meth. A 378,
337 (1996).

[7] B. C. Cook, Nucl. Instr. and Meth. 24, 256 (1963).

[8] A. S. Penfold and J. E. Leiss, Phys. Rev. 114-5, 114-5
(1959).

[9] L. Ho�mann, A. Shukla, M. Peter, B. Barbiellini and A.
A. Manuel, Nucl. Instr. and Meth. A 335, 276 (1993).

[10] G. E. Coote and Betty P. Kwan, Nucl. Instr. and Meth.
B 104, 228 (1995).

[11] Per Christian Hansen, Inverse Problems 8, 849 (1992).

[12] V. B. Anikeyev and V. P. Zhigunov, Phys. Part. Nucl.
24, 424 (1993).

[13] F. M. Ramos, H. F. C. Velho, J. C. C. Carvalho and
N. J Ferreira, Inverse Problems 15, 1139 (1999).

[14] V. B. Anikeev A. A. Spiridonov and V. P. Zhigunov,
Nucl. Instr. and Meth. A 303, 350 (1991).

[15] N. D. Gagunashvili, Nucl. Instr. and Meth. A 343, 606
(1994).

[16] M. G. Kendall and A. Stuart, The Advanced Theory of

Statistics (Charles GriÆn and Co Ltd., London, 1967),
Vol. 2.

[17] Y.I. Assa�ri, G.F. Egan and M.N. Thompson, Nucl.
Phys. A 413, 416 (1984).


