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On the non-relativistic Casimir e�ect
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We compute the Casimir energy for a massive scalar �eld constrained between two parallel planes
(Dirichlet boundary conditions) in order to investigate its non-relativistic limit. Instead of em-

ploying the usual relativistic dispersion relation !(p) =
p
p2 +m2, we use the non-relativistic

one, !(p) = p2=2m. It turns out that the Casimir energy is zero. We include the relativistic
corrections perturbatively and show that at all orders the Casimir energy remains zero, since each
term in the power series in 1=c2 is proportional to the Riemann zeta function of a negative even
integer. This puzzling result shows that, at least for the free massive scalar �eld, the Casimir e�ect
is non-perturbative in the relativistic sense.

In 1948 Casimir [1] calculated the shift in the

zero point energy of the quantum electromagnetic �eld

caused by the presence of two perfectly conducting

plates, parallel to each other and kept at a small dis-

tance apart from each other so that edge e�ects can be

neglected. Assuming that the vacuum energy vanishes

in the absence of the material plates and denoting by E

the vacuum energy shift caused by the plates, the result

obtained by Casimir is given by [1]
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where ` is the linear dimension of the plates, supposed

to be identical and to take the form of perfect squares;

a is the separation between the plates and the condi-

tion a � ` is assumed. The dependence of the energy

shift E on the separation between the plates leads to a

force per unit area between the plates which by virtue

of equation (1) is given by
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The Casimir force given by (2) was measured for the

�rst time by Sparnaay [2] who cautiously stated that

the experimental results were not incompatible with the

theory. Recently, however, new experiments performed

independently by Lamoreaux [3] and Mohideen and Roy

[4, 5] greatly increased our con�dence in the reality of

the Casimir e�ect. From a theoretical viewpoint, any

inuence on the quantum vacuum uctuations due to

a non-trivial topology, that is, one di�erent from the

familar lR 3 topology, goes under the common name of

Casimir e�ect [6]. In the original Casimir e�ect the in-

troduction of the plates turn the trivial lR 3 topology

of the free space into a lR 2 � [0; a] topology. With this

broader signi�cance the Casimir e�ect plays a major

role in quantum �eld theories and has applications, for

instance, in cosmology and gravitation.

The Casimir e�ect has a special place in modern

physics due to its experimental actuality and due to

the fact that it deals with one of the most fundamental

concepts of quantum �eld theory: the quantum vac-

uum. On the other hand, the signi�cance and interpre-

tation of this e�ect are not controversy free. In par-

ticular, there is the question of whether or not the ef-

fect, which is a genuine quantum e�ect, shows up only

in the relativistic context. In fact, the original (elec-

tromagnetic) Casimir e�ect is intrinsically relativistic,

since the photon is a massless particle. Consequently,

there is no meaning in taking the limit c ! 1 in

(1). Moreover, the Casimir e�ect is usually calculated

and interpreted in a relativistic way, i. e., as a conse-

quence of the modi�cations in the uctuations of vir-

tual particle-antiparticle pairs due to the imposition of

external conditions. In the case of a non-relativistic

quantum �eld there are no antiparticles, therefore the
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ordering problem which gives rise to the vaccum en-

ergy is absent. From this fundamental point of view

there is no Casimir energy for such a �eld. However, we

can consider a meaningful non-relativistic limit of some

quantum �eld and ask what happens to the Casimir en-

ergy when we approach such a limit. If continuity holds

we would expect a diminishing Casimir energy. We can

consider a relativistic massive quantum �eld, for which

a Casimir energy does exist, and take the limit of large

mass which leads to the usual non-relativistic approxi-

mation. Hopefully a zero limit for the Casimir energy

will be obtained in this case. If this is the case the

next step is to look for the relativistic corrections to

this zero energy, in order to understand how the zero

limit is approached. A na��ve expectation would be a

small Casimir energy for a slightly relativistic theory.

We treat those matters below, where we obtain a zero

non-relativistic limit for the Casimir energy, in agree-

ment with the above remark, but also an unexpected

and rather subtle result for the order by order relativis-

tic contributions to the Casimir energy. We shall show

that the relativistic corrections to any �nite order (in

powers of p2=m2c2) vanish, since each of them sepa-

rately will be proportional to a Riemann zeta function

of a negative even integer.

Let us consider for simplicity a neutral scalar mas-

sive �eld. Let us also consider the vacuum of this

�eld distorted by two parallel surfaces. We impose

Dirichlet boundary conditions on the �eld at the lo-

cation of these surfaces, exactly as in the original

Casimir e�ect. Our �rst calculation will be with the

non-relativistic dispersion relation, that is, ~!(p) =

p2=2m. The imposition of Dirichlet boundary con-

ditions on the �eld results in the discretization of

the component of the linear momentum perpendic-

ular to the surfaces, that is p? = n~�=a with

n 2 lN = f1; 2; 3; :::g. The component parallel to the

surfaces is free to assume any value in lR 2. The Casimir

energy of this �eld can be easily calculated by adding

the energies associated with the allowed modes of the

�eld and making use of a regularization recipe. The reg-

ularization recipe is a matter of convenience and taste,

but the physical result must be the same for any recipe.

The ensuing calculations are well-known in the litera-

ture [6, 7, 8] and so are some results of classical analysis

[9] that we take advantage of. The regularized expres-

sion for the energy is

E(a; s) =
`2�2s

(2�~)
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where we included negative powers of p2=2m in order

to obtain a regularized expression for the zero point en-

ergy. The factor �2s was inserted to ensure dimensional

coherence. The parameter s is large enough to ensure

that the above expression is well de�ned. After an ana-

lytical extension of E(a; s) to the whole complex plane

of s (or at least to a domain containing the origin) we

obtain the physical result taking the limit s �! 0. Us-

ing a well known integral representation of the Euler

Beta function [9] we obtain
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�(2s� 4) ;

(4)

where we have identi�ed the Riemann zeta function.

In fact, � must be thought here as the analytical exten-

sion of the Riemann zeta function to the whole complex

plane. Since its unique pole occurs when its argument

is equal to one, which means in the previous equation

s = 5=2, there will be no problem in taking the limit

s �! 0 in this equation. The non-relativistic Casimir

energy is then given by

ENR(a) = lim
s!0

E(a; s)

= �
`2�3~2

32ma4
�(�4) :

(5)

Therefore, this non-relativistic Casimir energy is zero,

for the Riemann zeta function is zero for any even neg-

ative integer.

Let us now consider the �rst relativistic corrections,

that is, let us include in the calculation of the zero point

energy those terms stemming from the series develop-

ment of the relativistic dispersion relation in powers of

p2=m2c2 up to order N . The �rst term of this series,

after subtracting the rest mass term, is precisely the

contribution just computed and given by equation (5).

The relativistic corrections are easily obtained by ex-

panding the relativistic dispersion relation:

E �mc2 =
p2

2m

�
1�

1

4

p2

m2c2
+ :::

�
: (6)

The improved Casimir energy containing the �rst N rel-

ativistic corrections is then given by

E(a; s) =

NX
j=1

Tj(a; s) ; (7)

with
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d

where bj are the binomial coeÆcients of the expansion

and the regulator parameter s, after an analytical ex-

tension of the previous expression and further elimi-

nation of spurious terms, must again assume a value

equal to 0. It is not diÆcult to show that when s ! 0

then Tj(a; s) will be proportional to �(2js�2j�2) and

we can conclude that Tj(a; s) = �(�2j � 2) = 0 for

j = 1; 2:::N and arbitrary N . This result shows that

the Casimir e�ect for a massive scalar �eld, which is a

quantum e�ect, is also intrinsically a relativistic one. In

other words, retarded forces are intrinsically relativistic

in the sense that any �nite series expansion in powers

of 1=c will never generate perturbatively the Casimir

e�ect.

A possible interpretation of this rather unexpected

result is the following: let us consider the full relativis-

tic Casimir e�ect for a massive scalar �eld with the

same boundary conditions as before. The correspond-

ing Casimir energy is given by [7](see also a very nice

discussion of the 1+1 dimensional case in [10])

ER(a) = �
(amc=~)

2

4�2a4

1X
n=1

1

n2
K2 (2amc=~) : (9)

Since the non-relativistic limit can be achieved by tak-

ing c �!1, or equivalently, 1=c �! 0, let us write an

expression that approximates the previous formula for

large values of amc=~:

ER(a) =

�
m2c3

16�2 a~

��
�~

amc

�1=2

exp

�
�2am

~ (1=c)

�
;

(10)

where we have written conveniently the exponent as a

function of the variable 1=c. Notice that: (i) in the limit

c �! 1 the Casimir energy vanishes, in agreement

with our previous calculation; (ii) the expression (10)

is not analytic in the variable 1=c at 1=c = 0, so that

there is no way of obtaining this expression through a

power series in 1=c. This result is analogous to what

happens in the pair creation phenomenon by a uniform

electric �eld E, where the expression for the pair cre-

ation probability rate �, namely [11, 12],

� =

�
e2E2

4�3 ~2 c

� 1X
n=1

1

n2
exp

�
�
n�m2c3

eE ~

�
;

is not analytic in the coupling constant e at e = 0, so

that the result can not be obtained by a perturbative

approach [11, 12]. Pair creation is not a perturbative

phenomenon. Similarly, we can say that the Casimir

e�ect is also a non-perturbative e�ect in the relativistic

sense. As a �nal remark, we must say that if we use

another regularization prescription, as for example the

cuto� method, the same result will be obtained.
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