
Brazilian Journal of Physics, vol. 31, no. 2, June, 2001 317

Note on BEC in Nonextensive Statistical Mechanics
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The generalized Bose-Einstein distribution, within the dilute gas assumption, in the nonextensive
Tsallis statistics is worked without approximation for the Bose-Einstein condensation (BEC). The
results obtained are compared with the recent results presented in Int. J. Mod. Phys. B 14, 405
(2000) by L. Salasnich. Furthermore, in order to promote a complete analysis for the BEC in the
nonextensive scenario we also �nd exact expression within the normalized constraints in a harmonic
trap.

I Introduction

In this last decade, we have witnessed a growing inter-

est in the Tsallis statistics [1, 2]. The starting point of

Tsallis statistics is based on the nonextensive entropy

Sq = k(1�
PW

i=1 p
q
i )=(q� 1), where k is a positive con-

stant and q 2 R. In the limit q ! 1 the usual Boltzman-

Gibbs entropy is recovered. It has been applied in many

situations such as, L�evy-type anomalous superdi�usion

[3], Euler turbulence [4], self-gravitating and correlated

systems [5], anomalous relaxation through electron-

phonon interaction [6], ferrouid-like systems [7], and

among others [8]. In particular, the Bose-Einstein and

Fermi-Dirac distributions have been extensively ana-

lyzed in the Tsallis framework [6,9-16]. Further, we can

mention the speci�c heat obtained for 4He [17] which is

in agreement with the experimental results reported in

[18]. For the most of these cases the analyses involving

these generalized Bose-Eisntein and Fermi-Dirac distri-

bution have been restricted for free systems, i.e., the

interaction between the particles is absent. However,

important questions about the complete solution for

the Bose-Einstein distribution and its implications for

the thermodynamics of these physical systems are still

present in this formalism. In this context, it may not

be out of place to mention here the generalized Bose-

Einstein distribution in the dilute gas assumption [13],

given by,

hn(�)iq =
1

[1 + �(q � 1)(�� �)]
1=(q�1)

� 1
; (1)

and its expansion at �rst order in (q � 1)

hn(�)iq =
1

e�(���) � 1
+

1

2
(q � 1)

�2(�� �)2e�(���)�
e�(���) � 1

�2 :

(2)

The equation (2) has been applied widely in the liter-

ature [6, 12, 13, 14, 15] (see [8] and references therein)

for obtaining thermodynamical quantities that emerge

from it. In this way, a complete solution involv-

ing Eq.(1) can be useful for quantitative and qual-

itative analysis of systems in the nonextensive con-

text. Furthermore, the development based on Eq.(1)

can also be useful in the description of the systems

with (multi)fractal structure (similar situation in met-

als [19] has been analyzed in [16]), systems with long-

time memories, and among others. Another important

point is about the constraints and the relation between

the Lagrange parameter � and temperature in the for-

mulations of Tsallis statistics[2].

Thus, we propose, in this work to �nd the complete

solution for the BEC transition temperature consider-

ing D dimension and q > 0, within the dilute gas as-

sumption. Then, we compare it with the approximate

results presented in the literature, and in particular the

Salasnich's work[12], by varying the values of q and D,

and as a consequence to check the validity of the ap-

proximation (2). In addition, we show that the results

obtained by using Eq.(2) are not accurate for most situ-

ations when compared with our ones. Also, to promote

a future discussion involving the constraints, Lagrange

parameters, temperature and experimental data, we ob-
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tain the Bose-Einstein distribution by taking into ac-

count the normalized constraints[2].

In order to facilitate our analysis, let us recall some

results evaluated in [12] with Eq.(2). The quantities

evaluated in [12] are: the BEC transition tempera-

ture, the condensed fraction and the energy per parti-

cle to the homogeneous gas, the gas in a harmonic trap

and the relativistic homogeneous gas in D-dimensional

space. For non-interacting bosons, the total number of

particle is evaluated by the following expression

c

N =

Z
1

0

d��(�)hn(�)iq ; (3)

where �(�) is the density of states. In a D-dimensional box of volume V , the densities of states for homoge-
neous gas and gas in harmonic trap are given respectively by �(�) = f(V=�)[m�=(2�~2)]D=2g=�(D=2) and �(�) =
f[�=(~!)]Dg=(�(D)�),where ! is the geometric average of the trap frequencies and �(x) is the gamma function.

To calculate the BEC transition temperature Tq, with � = 0, we substitute Eq.(2) and �(�) into (3), and we
obtain

kTq =

�
2�~2

m

�
(N=V )2=D= [�(D=2)]

2=Dh
1 + q�1

2
�(D=2+2)�(D=2+1)

�(D=2)�(D=2)

i2=D ; (4)

for the homogeneous gas, and

kTq =
~ !N1=D

[�(D)]1=D
h
1 + q�1

2
�(D+2)�(D+1)

�(D)�(D)

i1=D ; (5)

for a gas in a harmonic trap. �(x) is the Riemann �-function. The energy is calculated by the following expression

E =

Z
1

0

d���(�)hn(�)iq : (6)

The results are

E

kTq
=
V D

2

�
mkTq
2�~2

�D=2
�(D=2 + 1)

�
1 +

q � 1

2

�(D=2 + 3)�(D=2 + 2)

�(D=2 + 1)�(D=2 + 1)

�
; (7)

for the homogeneous gas, and

E

kTq
=

�
kTq
~!

�D
D�(D + 1)

�
1 +

q � 1

2

�(D + 3)�(D + 2)

�(D + 1)�(D + 1)

�
; (8)

for a gas in a harmonic trap.
For the relativistic gas, the total number of particles is not conserved due to the production of antiparticles, but

the di�erence between the number N of particles and the number N of antiparticles is conserved, i.e., Q = N�N =R
1

0 d��(�) [hn(�)iq � hn(�)iq ] ; where hn(�)iq is obtained from hn(�)iq by replacing � ! ��. The density of states

for the relativistic gas is given by �(�) = (V 2�D=2)=(2�~2)D�(D=2))�
�
�2 �m2c4

�(D�2)=2
. For ultrarelativistic

region kT >> mc2, the critical temperature at which BEC occurs corresponds to j�j = mc2. Expanding Q at �rst
order in � yields

kTq =

�
(2�~c)D�(D=2) j Q j

4V �D=2�(D)�(D � 1)mc2

�1=(D�1) �
1 +

q � 1

2

(D � 1)D�(D)

�(D � 1)

�
�1=(D�1)

: (9)

The Eqs.(4), (5), (6), (7) and (9) are the results obtained in [12], by using Eq.(2). Similar results for free particles
were also obtained in [15]. Now, we calculate again the quantities above by using the distribution (1), instead of
(2). To do so, we note that the distribution (1) can be written as a sum, i.e.,

hn(�)iq =
1

[1 + �(q � 1)(�� �)]
1

q�1 � 1

=

1X
n=1

[1 + �(q � 1)(�� �)]
�n=(q�1)

: (10)
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Substituting �(�) and Eq.(10) into (3) and taking into account the cut-o� [2] for q < 1, we obtain the critical
temperature as

mkTq
2�~2

=

8>>><
>>>:

�
V
N

P
1

n=1

(1�q)�D=2�( n
1�q+1)

�( n
1�q+1+

D
2 )

�
�

2
D

; 0 < q < 1�
V
N

P
1

n=1

(q�1)�D=2�( n
q�1�

D
2 )

�( n
q�1 )

�
�

2
D

; q > 1

(11)

for the homogeneous gas, and

kTq = (~ !)N1=D

"
1X
n=1

DY
l=1

1

n+ (1� q)l

#�1=D
q > 0; (12)

for a gas in a harmonic trap. Note that Eq. (12) is valid for (q � 1) < 1=D. In addition, the energy is also easily
obtained from Eq.(6)

E=V

kTq
=

8><
>:

P
1

n=1

((1�q)mkTq)
D=2+1D�( n

1�q+1)
2mkTq(2�~2)D=2�( n

1�q+2+
D
2 )

; 0 < q < 1P
1

n=1

((q�1)mkTq)
D=2+1D�( n

q�1�
D
2 �1)

2mkTq(2�~2)D=2�( n
q�1 )

; q > 1
(13)

for the homogeneous gas, and

E

kTq
= D

�
kTq
~ !

�D 1X
n=1

D+1Y
l=1

1

n+ (1� q)l
q > 0; (14)

d

for a gas in a harmonic trap. The Eq. (14) is valid for

(q � 1) < 1=(1 + D). We note that our results di�er

from those obtained by using the distribution (2). To

see that closely, we quote Tq with di�erent values of

D, for q = 1:1 (see Table 1). We also plot the critical

temperature in function of q. For homogeneous gas the

convergence of the series of Eq. (11) is slow for D = 3.

For convenience, we plot Tq in function of q, for D = 4

(Fig. 1). For a gas in a harmonic trap, we plot Tq in

function of q, for D = 3 (Fig. 2). As we can see the val-

ues quoted in Table 1, and the two �gures (Figs.1 and

2) show clearly that the critical temperatures obtained

by using (2) are not accurate when compared with our

results. Even for a gas in a harmonic trap with small

deviation in the nonextensive parameter q = 1:1 and

D = 3, the divergence between our result and Salas-

nich's result [12] is remarkable. This is not surprise

because the expansion made in (2), in the parameter

(q � 1); has included the factor ��. This last factor is

not necessarily small so the expansion of the exponen-

tial function at �rst order of (q � 1) cannot be good in

general, especially when j 1 � q j and D are increased.

We should also stress that the changes in the BEC tran-

sition temperature (for q > 1), from the extensive Bose

statistics, are greater than those obtained by using the

distribution (2). For the relativistic gas, in the ultra-

relativistic region kT � mc2, the critical temperature

by expanding Q at �rst order in � is given by

c

kTq=
�
~!N1=D

�
D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9

Salasnich 0.8144 0.8288 0.8284 0.8266 0.8258 0.8261 0.8273
our results 0.7635 0.7342 0.6837 0.6262 0.5639 0.4954 0.4147

Table 1. Results for critical temperature of a gas in a harmonic trap system with q = 1:1. The second row shows
the results obtained by using the distribution (2) which are given by Eq. (5). While, the last row shows our results
obtained by using the distribution (1) which are given by Eq. (12).
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1

kTq
=

(
4V �D=2�(D)mc2

j Q j (2�~c)D�(D=2)

1X
n=1

D�1Y
l=1

1

n+ (1� q)l

) 1
D�1

q > 0: (15)

Eq.(15) also di�ers from that obtained by using the distribution (2). For example: for q = 1:1 and D = 4 we obtain

[(4V �2mc2)=(j Q j (hc)4)]1=3kTq = 0:420181 from Eq. (15) and [(4V �2mc2)=(j Q j (hc)4)]1=3kTq = 0:448173 from

Eq. (9).

For completeness, we show below q-mean value of particle number and internal energy in the normalized con-

straints [2] by taking into account � = 0

hN̂iq

hN̂i1
=

 
1 + (1� q) ~�Uq

(1� q) ~�=�
(1)
c

!D8>><
>>:
�

�
D; 1

1�q +D; hN̂i1

�
1+(1�q) ~�Uq

(1�q) ~�=�
(1)
c

�D
�(D+1)
�(D)

�

�

�
D; 1

1�q ; hN̂i1

�
1+(1�q) ~�Uq

(1�q) ~�=�
(1)
c

�D
�(D+1)
�(D)

�
9>>=
>>; ; (16)

Uq�
(1)
c

DhN̂i1
=

 
1 + (1� q) ~�Uq

(1� q) ~�=�
(1)
c

!D+1
�(D + 1)

�(D)

�

�
D; 2�q1�q +D; hN̂i1

�
1+(1�q) ~�Uq

(1�q) ~�=�
(1)
c

�D
�(D+1)
�(D)

�

�

�
D; 1

1�q ; hN̂i1

�
1+(1�q) ~�Uq

(1�q) ~�=�
(1)
c

�D
�(D+1)
�(D)

� ; (17)

d

where �(�; ; z) =
P
1

k=0 z
k=(k! �(�k+ )) with �;  >

0 ~� = �=Tr�q , hN̂i1 / (1=�
(1)
c )D and �

(1)
c = 1=T1 where

T1 is the critical temperature. More details about the

calculation above can be found in [20], where the free

particle case has been analyzed.

Figure.1 We show the critical temperature versus the nonex-
tensive parameter q for the homogeneous gas, considering
D = 4. It should be noted that we also extend the approx-
imate result for q < 1:

Figure. 2 Plots of critical temperature versus the nonexten-
sive parameter q for a gas in a harmonic trap. Here, the
three dimension (D = 3) case is considered.

In summary, we have obtained the exact standard
BEC formula by using the generalized Bose-Einstein
distribution, within the dilute gas assumption, in Tsal-
lis statistics. The comparison between our results and
those obtained in [12] shows that the approximation
Eq.(2) is not accurate for most situations examined
here. Thus, the results obtained for the Bose-Einstein
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condensation [12, 14, 15] and among others, in the light
of our results, should be reanalysed. The role of the in-
teractions in the BEC [21, 22] in Tsallis statistics will
be addressed in an other opportunity. Furthermore,
we have also found the expressions for the BEC within
the normalized constraints, in order to promote a pos-
sible analysis involving Lagrange parameter, tempera-
ture, constraints and experimental data. Finally, we
believe that this work can be useful in the analyses of
future applications which involve Tsallis statistics and
BEC, within the dilute gas assumption.

EKL thanks CNPq and PRONEX (Brazilian agen-
cies) for �nancial support.
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