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In this talk we review the subject of electromagnetic duality, and related ones, as \normal" electric
and magnetic charges, being di�erent from monopoles (magnetic or electric), the topological content
of monopoles, surface terms, Dirac strings and chiral structure in the inclusion of massless spinor
�eld and its relation to torsion. We limit our discussion to the simplest, Heaviside electromagnetic
duality, include some links with the nonabelian gauge theories and make no comment on the use
of this concept in string theories. Old and recent contributions on the subject are presented and
discussed, and possible lines of research will hopefully be indicated.

I Introduction

In this talk I intend to review the notion of electro-
magnetic duality in its simplest forms. My views on
the subject result from a long standing collaboration
with Prof. Carlos A. P. Galv~ao �rst at CBPF and now
at UnB (with several articles in preparation, and bit-
ter discussions with referees), and numerous pleasant
conversations with Prof. Clovis Wotzasek. Given the
huge amount of paper in the literature on the subject,
I can't think to have covered all the available mate-
rial, and many will �nd that important references were
not given enough relevance. I apologize too for those
here at S~ao Louren�co and elsewhere whose own contri-
butions in their opinion didn't receive the appropriate
consideration.

The concept of duality has received prominent at-
tention in modern gauge theories. It provides use-
ful tools to construct solutions to the �eld equations,
namely, those which are self-dual or anti-self-dual, or
allows to study regimes of the theory which prevent the
use of perturbation expansions . These features seem
particularly important for recent developments in string
theory and its derivatives,such as branes, M-theory [1].
I shall not deal with these advanced matters.

Duality in classical electromagnetic theory was dis-
covered by Heaviside [2] a century ago for the Maxwell
equations in vacuum. He saw that

r ^ E = �@B
@t

r ^B = 1
c2
@E
@t

9>=
>; : (1)

exchange among themselves under the replacements

E! �cB ; cB! E : (2)

This symmetry of the system, duality (we shall refer
to it as Heaviside duality) , originated a lot of specula-
tion about its meaning: is the electric �eld to be con-
sidered equivalent to the magnetic induction �eld, and
the reverse?.

It seems that Larmor [3] generalized Heaviside du-
ality to a continuous transformation:

E� = E cos� � cB sin �
cB� = E sin � + cB cos�

�
; 0 � � �

�

2
: (3)

This emphasizes that there is complete ambiguity
or equivalently, continuous freedom, in the choice of
electric and induction �elds for the radiation �elds.

With the advent of nonabelian gauge theories for el-
ementary particle physics, a lot of work in Physics and
Mathematics has been performed to clarify the mean-
ing and applicability of duality, as exposed above, or in
its modern nonabelian versions.

Let us recall that the original �elds in the Maxwell
equations have electric charges or currents and/or time
varying �elds as their sources. Even in vacuum, elec-
tric �elds are considered the ones accelerating elec-
tric charges parallel to their direction, whereas mag-
netic �elds provide transverse acceleration for electric
charges. Magnetic materials are related to elementary
magnetic dipoles but single isolated magnetic charges
have never been observed.

Dirac [4], motivated by the need to explain the
quantization of the electric charges, introduced mag-
netic monopoles in this framework to provide sources
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for the magnetic induction �eld, i. e.,

r �B = �0gÆ(x) (4)

To preserve the relation with the magnetic vector
potential,

B = r^ A (5)

a �lamentary solenoid had to extend from the posi-
tion of the magnetic charge to in�nity. In the quan-
tum regime, the unobservability of this determined the
famous Dirac relation between the electric charge of a
test particle and the strength of the monopole �eld 1:

qg = 2�n
~

�0
: (6)

The topological characterization of the problem
[6][7] was established almost half a century later. It is
usually strongly assumed that the introduction of mag-
netic monopoles is related to Heaviside duality.

There remain unwanted aspects of the theory at the
electromagnetic level. Standing high is the fact that
the lagrangian of the theory changes sign under duality,
that is, Heaviside duality is a symmetry for the equa-
tions of motion but not for the lagrangian providing
them. Neglecting sources,

LfE;Bg =
�0
2

Z
d3x

�
E2 � c2B2

�
(7)

Let me list the works which somehow were land-
marks on this subject.

� Dirac's 1947 article proposing a string theory for
monopoles [8]

� The two potential formalism by Nisbet in 1955 [9]
and Cabibbo and Ferrari in 1962 [10]

� R�ohrlich's article on the impossibility of a classi-
cal local theory with monopoles [11]

� Schwinger contributions in 1966-75 [12]

� Zwanziger formulations in �eld theory 1968-72
[13]

� The formalism of �bre bundles for the magnetic
monopole set forth by Greub and Petry [6] and
Wu and Yang [7]

� Deser and Teitelboim construction of a non local
duality generator in 1976 [14]

� Olive and Montonen work in 1977 about magnetic
monopoles in gauge theories [15]

� Schwarz and Sen work in 1994 with a non-Lorentz
invariant lagrangian [16]

� Seiberg and Witten use of duality in supersym-
metric string theories in 1995 [17]

In the following, I shall dwell on some of this work, a
criticism will be addressed when considered necessary
and shall try to frame them in a common realm.

II Some preliminaries

The talk is about a speci�c symmetry. What we un-
derstand under this name is a precise dynamical idea: a
system exhibits a symmetry when under its action the
properties of the system remain unaltered. Conversely,
a symmetry is an action which cannot discriminate dif-
ferences on a given physical system.

To see that it is a dynamical concept, take for in-
stance the hydrogen atom: as long as your spectroscope
is not able to separate the �ne structure, it looks sym-
metric under the usual space rotation symmetry. Once
the spin of the particles is taken into account, this sym-
metry doesn't hold anymore.

The breaking of a symmetry results in an ordering
of the resulting physical characteristics: it may grossly
preserve it, as in the preceding case of the hydrogen
atom, or disturb it deeply, as the electroweak symme-
try breaking.

To �x notations, as shown before vectors in three-
space will be denoted by boldface characters, A, j ,E,
B, .... ; in what follows, four dimensional tensorial
quantities will be denoted by italics, A, j, F, .... ; and
�nally, di�erential forms by calligraphic letters, A , J
, F , .... .

The �eld intensities E and cB will be associated to
the �eld strength tensor, F�� , and a two-form di�eren-
tial form in four-dimensional spacetime:

F =
1

2
F��dx

� ^ dx� (8)

= F 0kdx
0 ^ dxk + F ijdx

i ^ dxj (9)

The usual inhomogeneous Maxwell equations read
(repeated indices indicate sums)

@�F
�� = �0cj

� (10)

with j� � (c�; j). From the homogeneous equations,
one has Bianchi identity for F :

@�F�� + @�F �� + @�F �� = 0 (11)

Using di�erential forms, we have for Maxwell equa-
tions

ÆF = ��0cJe
dF = 0

�
(12)

1It is worth pointing that in the expression appears a quantum of ux which is half the one needed for the unobservability of the
solenoid in the Ehrenberg-Siday-Aharonov-Bohm \experimental" setup.

Curiously putting for q the value of the electronic charge, and n taken as two, the resulting value for g is the inverse of the constant
for the Josephson e�ect, KJ = 2e=h = 483598GHz=V = 1=g(n = 2) [5]
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The symbols d and Æ correspond to di�erential oper-
ators, the generalizations for antisymmetric tensors of
the usual curl and divergence operators in three space.
Given a di�erential p-form !

! = wi1:::ipdx
i1 ^ � � � ^ dxip (13)

the action of d is given by

d! = @ikwi1���ipdx
ik ^ dxi1 ^ � � � ^ dxip (14)

that is, it produces a di�erential (p + 1)-form from a
di�erential p-form . The other operator performs the
opposite way, relating a di�erential p-form with a dif-
ferential (p� 1)-form, as

Æ! = �gikil@ikwi1���ipdx
i1^� � � (no dxil) � � �^dxip : (15)

Another operation which will play a rôle in what
follows is the Hodge duality operator for di�erential
forms,�, which relates di�erential p-forms with di�er-
ential (n � p)-forms, n being the total dimension of
the manifold, in most of our talk the four-dimensional
spacetime. Acting on the base monomials it gives:

�dx�1 ^ � � � ^ dx�p =

1

(n� p)!
g�1�1 � � � g�p�p"�1����p�p+1����n dx

�p+1 ^ � � � dx�n :

(16)
p-forms into a Hilbert space, de�ning properly an in-
ternal product. With this de�nition, the di�erential
operators d and Æ appear as adjoint to the other.

It is easy to show that for di�erential 2-forms, Hodge
duality applied to F produces the result of Heaviside
duality for the �elds (E; cB).

In the real world where electrons strike on TV
screens and electric generators light the nights of mod-
ern times, the presence of sources, electric charges and
current densities, abrogates the validity of Heaviside
duality. Let us recall the complete set of Maxwell equa-
tions:

r �D = �e
r �B = 0

r ^ E = �@B
@t

r ^H = je +
@D
@t

9>>>>>>=
>>>>>>;

(17)

Electric charges and the invariance of the equations
under Lorentz transformations show that the electric
and magnetic �elds cannot be taken on the same foot-
ing. In fact, magnetic �elds are a kind of \kinematic"
e�ect from charges in motion, in general. Only for radi-
ation �elds both electric and magnetic induction have
equivalent properties.

In terms of four-dimensional �eld tensors, in vac-
uum, we have eqs. (10) and (11), and we may write

them in terms of di�erential forms as eqs. (12). For
what follows, let me write the latter in its dual version:

Æ � F = 0
d � F = ��0c � Je

�
(18)

In the following, having in mind the extensions of
the former equations into a generalized duality frame-
work, I shall try to analyze the possible answers to some
appealing questions:

� Does the generalization of Heaviside duality im-
ply exclusively the introduction of Dirac's mag-
netic monopoles ?

� Should the magnetic �eld of a magnetic charge be
the same as obtained from electric currents ?

� Should the generalized Heaviside duality to be
taken as identical to Hodge duality for di�erential
forms ?

� Is the present physical world emerging from a
breaking of Heaviside duality ?

III Duality without sources

The transformation devised by Heaviside has a dis-
comforting consequence already at the free-�eld level.
The energy density of the electromagnetic �eld remains
invariant:

uem =
1

2
�0(E

2 + c2B2) (19)

whereas the action density

s =
1

2
�0(E

2 � c2B2) (20)

changes sign. Heaviside's transformation is a symmetry
for the equations of motion, but not for the lagrangian
generating them.

There are two most accepted ways of overcoming
this, the �rst one proposed in 1976 by Deser and Teit-
elboim [14] , and almost two decades later the second
by Schwarz and Sen [16].

Deser and Teitelboim looked for a generator for the
Heaviside duality transformations that leaves the en-
ergy invariant. This they succeeded to �nd, and pro-
posed an expression local in time:

G =
1

2

Z
d3x(E�r�2r ^E+ c2B�r�2r ^B) (21)

The fact that one has to reccur to a generator non-
local in space is somewhat ugly.

Schwarz and Sen [16] went along di�erent lines of
thought. They proposed an action with two sets of
�elds and potentials (� = 1; 2):

S = �
1

2

Z
d4x(B(�)iL��E

(�)
i +B(�)iB(�)

i) (22)
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with the matrix L being

k L k=

�
0 1

�1 0

�
: (23)

The �elds are de�ned through

E(�)
i = @0A

(�)
i � @iA

(�)
0 ;

B(�)i = "ijk@jA
(�)

k ; � = 1; 2 ; 1 � ijk � 3 :(24)

Taking into account the gauge freedom of the theory
they set

A(�)
0 = 0: (25)

One of the equations of motion is

B(2)
k = E(1)

k (26)

and it allows to recover the usual Maxwell equations
for the � = 1 �elds. The duality for the potentials has
a local expression

A(�)
� = L��A

(�)
� (27)

the only aw being the apparent Lorentz noninvariance
of the equations. They were able to prove that Lorentz
invariance holds.

Pakman [20] observed that for the free �elds the
equations of motion read:

@�F
�� [A�] = 0; (28)

with
F�� = @�A� � @�A� : (29)

The last equation implies the Bianchi identities,
which, written in terms of the Hodge dual of F�� read

@� � F�� [A�] = 0: (30)

He proposes to introduce a new potential for the
dual tensor, Z�,

� F�� [Z�] = @�Z � � @�Z� (31)

and writing the action in terms of the dual tensor, the
equation of motion is now

@� � F�� = 0 (32)

whereas the corresponding Bianchi identities (the for-
mer equations of motion) are

@�F
�� [Z�] = 0 : (33)

We shall show below other examples on this line of
thought. The Schwarz-Sen action may now be written
in terms of the two four potentials, A�, Z�, and it is a
kind of interpolation for the situations described above.
Besides, Pakman proposes a continuous U(1) general-
ization using complex �elds and potentials.

Girotti [21] analyzed the quantization of this model
in the Coulomb gauge using the Dirac bracket formal-
ism. He showed that the quantized theory propagates
massless particles, and explicitly demonstrated that the
theory is genuinely Lorentz invariant. In fact, I see two
massless particles propagating.

Dwelling deeper into the subject, Girotti, Marcelo
Gomes, Victor Rivelles and Adilson da Silva [22] showed
that the formalism of Schwarz and Sen at the quantum
level is equivalent to the proposal of Deser and Teitel-
boim, and of course, both reproduce the quantum the-
ory of the Maxwell �eld. They obtained the charge that
generates the in�nitesimal duality transformation:

Q = � 1
2

R
d3x�ijk(@jA

(�)
i)A

(�)
k (34)

= 1
2

R
d3xB(�)kA(�)

k : (35)

Its relation with a Chern-Simons term guarantee that
it is gauge invariant.

An interesting interpretation of the work by Schwarz
and Sen was shown to me by Cl�ovis Wotzasek. Take the
oscillator decomposition of modes at a given frequency,
! = !(k). The lagrangian density may be written as

L = p _x�
1

2
p2 �

1

2
x2 (36)

and write p _x = 1
2 (p _x � x _p), then rede�ne p = x1 and

x = x2 and one recovers the Schwarz and Sen form of
the lagrangian. The procedure is a reparametrization,
a relabelling of the potential �elds.

Other proposals to overcome the problem of covari-
ance are the introduction of an in�nite number of aux-
iliary �elds [18] or a non-polynomial lagrangian of aux-
iliary �elds [19].

In previous editions of this meeting we have heard
contributions to this problem from Girotti and our col-
leagues of USP, and others by Cl�ovis Wotzasek, Ra-
bin Banerjee and collaborators. The latter study the
generalization of Heaviside duality to spacetimes of
higher (even) dimensions. The relevant extended elec-
tromagnetic theory is the one de�ned through antisym-
metric tensors having 2(n � 1) components (n being
as before the number of spacetime dimensions). For
n = 4k, k:integer, the group implementing duality is
Z2, whereas for dimension n = 4k + 2, the group is
SO(2). By introducing \external" additional variables,
they �nd a \duality of duality", in the sense that when
the group is Z2 (n = 4k for the normal variables), the
\external" ones transform as SO(2), and the opposite
in the other dimensions [23]. The new \duality" ex-
changes internal and external variables 2.

Notice that all these works do not take for granted
that the electromagnetic �elds introduced through new
potentials are indeed the same as the old ones. They
either propose to incorporate the symmetry in electro-
magnetism, suitably generalized, or a new theory where
the symmetry is implemented.

2In conversations with Cl�ovis we have speculated that their results may be somehow a generalization of Schwarz-Sen
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IV Including sources

The generalization of Maxwell equations with magnetic
charges and currents is [12, 24, 26]:

r�D = �e
r�B = �0�m

r ^ E = � 1
�0
jm � @B

@t

r ^H = je +
@D
@t

9>>>>>>>=
>>>>>>>;

(37)

There are no homogeneous equations and we have
two conserved currents:

r�je +
@�e
@t = 0

r�jm + 1
c2
@�m
@t = 0

9=
; (38)

Notice that the magnetic charges are related to the
ux of the magnetic induction �eld. Calling Qm;V the
total magnetic charge in a volume V , and S the surface
at the boundary of V , thenI

S

B�dS = �0Qm;V (39)

The equations implicitly identify as the same quan-
tity the �elds generated by electric charges and mag-
netic currents, for the electric �eld, and generated by
magnetic charges and electric currents for the magnetic
induction �eld. These equations are invariant under a
generalization of the Heaviside transformations:

E! �cB ; cB! E

cD! �H ; H! cD
je ! �cjm ; cjm ! je
c�e ! ��m ; �m ! c�e

9>>=
>>;

(40)

The free �eld equations continue to have two degrees
of freedom. The addition of sources do not change the
empty space counting of degrees of freedom, and the
added invariance reduces the number with sources.

In this case, it seems pointless to speak about
Bianchi identities, which result in the introduction of
potentials.

In terms of di�erential forms, we have now

ÆF = ��0cJe
dF = ��0cJm

�
(41)

where Je is the one-form that corresponds to the elec-
tric current density and Jm is a three-form having as
components the magnetic current density vector. The
di�erent meanings of the currents is in evidence. If, as
a useful exercise, one introduces the Heaviside trans-
formations (?) in both members of these equations,one
�nds

�F = ?F
�Je = ?Jm
�Jm = � ? Je

9=
; (42)

The important point is that Hodge duality is a ge-
ometrical transformation, the physical content of the
equations is the result of imposing Heaviside duality
for the Maxwell equations, no matter in which form
one expresses them. When the equations satisfy Heav-
iside duality, Maxwell equations receive a Hodge dual
symmetric form.

To introduce potentials, it is enough to switch o�
the electric charge and current densities. The �rst and
fourth equations become homogeneous, and suggest the
introduction of a magnetic (pseudo)scalar potential,  ,
and an electric (pseudo)vector potential, W, with the
natural de�nition for the �elds:

E = �r'� @A
@t +r ^W

B = �r + 1
c2
@W
@t +r^A

9>=
>; : (43)

There is no conict with usual three-dimensional
vector analysis in taking the divergence of these �elds,
one arrives at ordinary Poisson equations for the poten-
tials ' and  in each case. The imposition of Heaviside
duality is achieved with no magnetic monopoles.

Since Maxwell equations are invariant under Heav-
iside transformations, the potentials have correspond-
ingly to satisfy the following relations:

W! �cA ; cA!W

'! �c ; c ! '

�
: (44)

Since applying twice Heaviside transformations one
gets a global minus sign for all quantities involved, we
see that Heaviside duality IS NOT identical to Hodge
duality for di�erential forms, it co�incides just for the
�elds, not for the currents and potentials.

The relativistic formulation however proves to be
troublesome. De�ne the following four-vectors:

A� � f';�cAg
j e� � fc�e;�jeg
W � � fc ;Wg
jm� � f�m; cjmg

9>>=
>>;

(45)

Calling

A�� = @�A� � @�A� ; W �� = @�W � � @�W �;
(46)

one writes the tensor for the �eld intensities as

F�� = A�� + "����W
�� : (47)

The relativistic invariant lagrangian density having
the extended Maxwell equations with Heaviside duality
as a symmetry is

LA+W = �
1

4
�0F��F

�� �
1

c
j e�A

� �
1

c
jm�W

�: (48)
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The �rst term in the above expression merits a
closer look. It is

F��F
�� = A��A

�� �W ��W
�� +

1

3
"����A

��W �� :

(49)
The last term is a \surface term", and it it should

be neglected under the usual assumptions. Its conse-
quences will be discussed in what follows.

The canonical momenta are:

�(A)
k = �0Ek (50)

�(W )
k = ��0cBk (51)

Under Heaviside duality, they transform properly:

�(W )
k ! ��(A)

k; �(A)
k ! �(W )

k: (52)

As before, the lagrangian changes sign under Heav-
iside duality. The corresponding full canonical hamil-
tonian reads:

HA+W =
1

2
�0(

1

�0
�(A)

k + "0kijWij)
2

�
1

2
�0(

1

�0
�(W )

k + "0kijAij)
2

+ A0(@k�
(A)

k) +W0(@k�
(W )

k)

+
1

4
�0Aij

2 �
1

4
�0Wij

2 +
1

c
j e�A

� �
1

c
jm�W

�

(53)

Under Heaviside duality, the hamiltonian too
changes sign. The only way out for this situation in
the quantized version of the theory may be the rever-
sal of either space or time. The integrated hamiltonian
being the fourth total momentum component, it seems
that the last, time reversal, is the appropriate one.

Notice the important point that in this formalism
it is implicit that the electric �eld and magnetic induc-
tion �eld generated by electric or magnetic charges and
current densities are the same. When this translates
at the potential dependence, we face this troublesome
situation.

For what regards the gauge invariance properties of
the theory, it is invariant under [9, 27]

A� ! A0
� = A� + @��+ @�P��

W � !W 0
� =W � + @��+ "����P

��

�
(54)

with 2P�� = 0. The theory displays a kind of
U(1) 
 U(1) gauge symmetry provided the \surface"
term in the lagrangian is neglected and P�� is taken
zero.

The continuous duality transformation holds for the
�elds and related quantities. Indeed, as pointed by
Jackson [28] this shows that the direction which is taken
as magnetic or electric in the �eld space is arbitrary.
The lagrangian, however, transforms as:

LA+W;� = LA+W cos 2� + L0 sin 2� (55)

where L0 is an interesting intermediate expression:

L0 =
1

4
�0A��W

�� �
1

8
�0"

����(A��A�� +W ��W ��)

(56)
which is a pseudo-scalar quantity under parity trans-
formations. The last terms reminds of the expressions
obtained from the calculation of the U(1) electromag-
netic anomaly.

V The monopoles

The question of magnetic monopoles appears often
linked with electromagnetic duality. In several con-
tributions, Olive and collaborators [15, 29] proposes a
general theory including particles (carriers of the elec-
tric charges) and monopoles. We have heard about this
work here and at the \Jorge Andr�e Swieca" school ex-
posed by Marco Aurelio Kneipp [30].

The simplest version of monopole is a magnetic
point charge at the origin (4) :

r�B = �0gÆ(x): (57)

By Gauss's theorem, the ux of B around that
charge is:

� =

I
B�dS = �0g (58)

Taking, by assumption,

B = r^A (59)

one has

r�B = r�(r ^A) = 0: (60)

In his 1947 article, Dirac [8] recognizes the incom-
patibility of both requirements. To write a magnetic
potential for the monopole, a Dirac string is needed.
To guarantee unobservability of the string by charged
particles, the electric charge and the monopole charge
should satisfy Dirac's condition. What Dirac proposes
is an enlargement that produce a dynamics to the
string. He writes

F�� = A�� +
X

(Gy)�� (61)

The sum is over all the world sheets swept by a Dirac
string. The result for G�� he obtains is

G��(x) = g

Z Z
d�d�[

@y�
@�

@y�
@�

�
@y�
@�

@y�
@�

]Æ4(x� y)

(62)
I understand that duality between electric charges and
magnetic monopoles means, for Dirac, the exchange of
the �rst term in the �eld-strength tensor with the sec-
ond.

The topological approach to the theory of the
magnetic monopole was due almost simultaneously to



Brazilian Journal of Physics, vol. 31, no. 2, June, 2001 241

Greub and Petry [6] and Wu and Yang [7]. It is framed
in �ber bundle language, and starts from a punctured
R3 space, which gives essentially a sphere. The mag-
netic potential is not globally de�ned, and in the tran-
sition region (z � 0) both local de�nitions are related
through a gauge transformation. This seems an inno-
cent trick, but the fact is that the gauge function is a
(in Dirac words) non-integrable function, i.e., an angle
(an example of a closed but non- exact one-form in R2).

A� = A�
I ; z > 0 (63)

A� = A�
II ; z < 0 (64)

A�
II = A�

I � n� ; z � 0: (65)

The integer n assumes any value. One may recall
that was through a singular gauge transformation with
an angle that Bocchieri and Lo�inger [31] eliminated the
e�ect of the solenoid in the Ehrenberg-Siday-Aharonov-
Bohm setup.

Some time later, Ryder [37] studied the monopole
as a realization of the principal bundle Hopf mapping
S3 ! S2. This yields a unique value, n = 2, in agree-
ment with previous reult by Schwinger [38]. In fact, it
is not only the principal bundle which is involved for
other values of n, but rather the related \lens spaces".
These are obtained from the S3 sphere parametrized by
two complex variables

j z1 j
2 + j z2 j

2= 1 (66)

through the equivalence classes (z1e
i2�kl1=n; z2e

i2�kl2=n),
with (k; l1; l2) relative prime numbers and n an integer.

In the two-potential formalism presented in the pre-
vious section, if one keeps the \surface term" it con-
tributes to the minimization

ÆLA+W
Æ(@�W �)

= ��0"����A
�� ; (67)

and yields the Bianchi identity for the potential �eld
strength.

It is immediate that a monopole breaks Bianchi
identity likewise a \normal" magnetic charge does, but
makes it through a more elaborated contribution. In a
contribution by P. C. R. Cardoso de Mello, S. Carneiro
e M. C. Nemes, they proposed a non-local lagrangian
[32] for a dual theory with two potentials. One may
take a similar expression to theirs for the potentials:

A� = A(0)� +
1
2"����

R
P

x
@�A(m)

�dy� (68)

W � =W (0)� +
1
2"����

R
P

x
@�W (m)

�dy� (69)

where the subscripts indicate no topologial structure
and magnetic or electric monopole, respectively, and
the latter contribute to the Euler equation.

The same mechanism produces electric monopoles,
di�erent from the usual electric charges. The minimiza-
tion equation with respect to the magnetic potential

has a contribution from the surface term in the la-
grangian. An electric monopole would break the iden-
tity r�(r ^W) = 0.

For the magnetic monopole, Greub and Petry
showed [6] that the compatibility of the Schr�odinger
equation for charged particles and the non-null value
for the magnetic ux (taking the wave function as a
section of a line bundle on S2) limits the values for the
charges through the Dirac condition and shows the exis-
tence of an integral, real, de Rham cohomology class for
the manifold M , in our case, S3 � S2 
 S1 (locally).
In terms of di�erential forms, one has simultaneously
dF = 0 ( F is a closed di�erential form) and

H
F 6= 0 (F

is not an exact form). Closed forms which are not exact
expands the Hodge cohomology group. The analogous
case for electric monopoles, i. e., d � F = 0,

H
�F 6= 0

has been considered by Cabibbo and Ferrari [10] and
Dijkgraaf [33].

The approach to duality by Olive in more than two
decades is an extension of the meaning of electromag-
netic duality [15]. It is inspired by previous work by
Coleman [34]and Mandelstam [35] on the relation be-
tween the sine-Gordon model and the Thirring model in
1 + 1 spacetime. In brief, the fermions in the Thirring
model may be written as solitons of the sine-Gordon
model, via a so called \duality" relation between the
two models, which, besides, links the weak coupling
regime in one model with the strong coupling regime
in the other. This analogy has been pursued further in
non-abelian theories by Olive as well as other authors
[46, ?].

The quanta of the �eld in one case are the electri-
cally charged particles, and the solitons are magnetic
monopoles. Electromagnetic duality, in this extended
sense, is seen as the remnant of a non-abelian gauge
symmetry, broken by the Higgs-Kibble-Brout-Englert-
Anderson mechanism [36], with the HKBEA particles in
the adjoint representation of the original gauge group.

A mass formula is proposed for all the quanta of
the theory, which, on account of the dual symmetry
proposed should not distinguish electric and magnetic
charges. It is

M = a
p
q2 + g2 (70)

The natural framework for the realization of these
ideas in a quantum theory seems to be N = 4 super-
symmetry. Further developments led to the concepts
of S and T duality widely circulating nowadays. In my
opinion, the whole scheme seems plausible, but remains
til now highly speculative. For a recent update on these
matters, I refer to the review by Marco Aurelio [30].

VI Massless Dirac �elds as

sources

Since decades the construction of a Heaviside
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dual symmetric �eld theory with electric and mag-
netic charged spinor �elds has been studied [12, 13].
Fermions were in general massive, and the two-potential
theory is used for the electromagnetic �eld. Magnetic
charges are taken generally as monopoles, disregarding
\normal" charges (an exception being Nisbet [9]). Cu-
riously, properties under space inversion of the �elds
were mostly not accounted.

We present here a sketch of results involving mass-
less spinor �elds with \normal" electric and magnetic
charges. The free spinor �eld lagrangian is

L	 = i~c	 6 @	 (71)

It can be separated in chiral contributions:

L	 = L	;L + L	;R : (72)

The interaction is now introduced with both potentials
of a pretense Heaviside dual electromagnetic theory via
the extended covariant derivative:

D� = @� + i
q

~c
A� + i

g

~c2
5W �: (73)

The left-right chiral separation remains, with

DL;R� = @� + i
q

~c
A� � i

g

~c2
W �: (74)

A di�erent combination works for each chirality, and
they may be quali�ed as \chiral" left and right poten-
tials. They exchange under Heaviside duality transfor-
mations.

The imposition of duality restricts the values of the
electric and magnetic charges to the relation:

g = qc: (75)

under the hypothesis that both charges are able to pro-
duce the same �elds.

The left and right potentials are

ZL
� = A� + cW � (76)

ZR
� = A� � cW � (77)

and if one rewrites the potentials A�, W � in terms
of these right and left potentials, the two-potential la-
grangian (48) separates nicely in left and right parts.
It appears as a U(1)L 
 U(1)R symmetric model (but
what about the monopoles?), a sugestion put forward
by Singleton [24].

The relation between spinor �elds on a manifold
and monopole �elds have been studied on the two-
dimensional sphere S2 by Jayewardena [39] for the
Schwinger model, and by our group in Rio using
Connes-Lott noncommutative version for the abelian
theory [40]. It turns out that the number of zero modes
of the Dirac operator is related to the integer de�ned by
the Chern character. Besides, the non-trivial topology
induced by the monopole �eld leads for the Schwinger

model to the axial anomaly and a non-zero value for the
condensate described by the vacuum expectation value
of the fermion �eld, < 		 >.

With C. A. P. Galv~ao we have recalculated the ax-
ial anomaly in four (Euclidean) dimensions for the two-
potential case, a calculation performed previously by
Balachandran and collaborators [41]. The result is

1

16�2
tr
�
5a2

	
=

1

16�2

�
1

2
"����

�
A��A�� +

1

3
W ��W ��

�

+
16

3
W �W � (@�W �)�

4

3
W 2 (@ �W )

+
2

3
@2 (@ �W )

�
(78)

The interesting observation is that the terms ap-
pearing in the �rst bracket are the same present in an
� = �=4 intermediate step in the continuous duality
transformation for the lagrangian. This may suggest
that a lagrangian density including both kinds of terms
may improve as a dual symmetric version.

A last remark: Belyaev and Schapiro [42] have stud-
ied the axial current coupling as a remnant of torsion
when general relativity is taken to the limit of at space.
It may be interesting to look whether this may be an
indication of a natural Heaviside duality when gravity
is taken into account

VII A consistent duality

scheme

As I have shown, the strict concept of electromagnetic
duality, implying the same �eld as produced from elec-
tric or magnetic charges, carries several problems and
questions. Without monopoles, the theory has funny
properties, ensuing mainly from the fact that Heaviside
duality is not a symmetry of the lagrangian. The im-
position of duality as a symmetry led Schwarz and Sen
[16] to develop an ad hoc formalism apparently without
relativistic invariance, and a generator for the transfor-
mation found by Deser and Teitelboim [14] is non-local
in space. The latter results were obtained for the free
�eld case. With two potentials, some of these features
are tamed, but energy ceases to be positive under the
transformation.

Recently, with C. A. P. Galv~ao we have looked to the
problem [43]. The idea of consistency results in an het-
erodox proposal, abandoning the identity of electric and
magnetic �elds having di�erent charges as sources. In
the vacuum sector, the symmetry allows free exchange
between electric and magnetic �elds, in the Heaviside
original fashion. However, symmetry under duality
means here exchange between dissimilar �elds.
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A dual theory to the usual electrodynamics, mag-
netodynamics would be:

r �E0 = 0

r �B0 = �0�m

r ^E0 = � 1
�0
jm � @B0

@t

r^B0 = 1
c2
@E0

@t

9>>>>>>>>>=
>>>>>>>>>;

: (79)

The primes indicate that the �elds represented by
the symbols do not satisfy the same equations as the
ones appearing in the ordinary theory.

Potentials are introduced from the homogeneous
equations:

E0 = r ^W0

B0 = �@ 0

@t + 1
c2
@W0

@t

9=
; : (80)

In three-dimensional notation, the lagrangian den-
sity that produces the �eld equations above reads:

LfB0;E0g =
�0
2
[c2B02 �E02]� �m  

0 � jm �W0 (81)

Written in covariant four-dimensional notation, one
has to introduce a second rank antisymmetric tensor,
G�� such that its time-space components are related to
cB0 and the space-space ones to E0, and the correspond-
ing four-vectors for the potentials and current density.
This tensor is not to be taken as the dual of the elec-
tromagnetic tensor in the Maxwell case, the �elds are
assumed to be di�erent.

Duality now corresponds to the exchanges

E! �cB0 ; cB! E0 (82)

and the corresponding equations in the opposite direc-
tion.

A lagrangian density in four-dimensional notation
covering electrodynamics and magnetodynamics with
the above transformation properties is:

L = �
�0
4
F��F�� �

�0
4
G��G��

�
1

c
j �A� �

1

c
j �W 0

� + (gauge �xing terms) :

(83)

This theory has the symmetry as required, possess
a positive energy and the generator for the symmetry
is

M =

Z
d3x[A��0

� �W 0���] (84)

and is perfectly local and covariantly written. Here,
A� and �� are the usual potential and canonical mo-
mentum four-vectors of Maxwell theory, and �0

� =
��0cB

0
kÆk�.

Though the physical idea of relating di�erent �elds
through a \duality" transformation may sound inap-
propriate, let us recall the important Hodge decompo-
sition theorem for di�erential forms [44]: for a compact,
oriented Riemannian manifold, any p�di�erential form
may be decomposed in the sum

! = !0 + d� + Æ� (85)

where �!0 = 0, and each term in the sum belongs to
a vector subspace in the space of p�di�erential forms
orthogonal to the other two. This raises the question
whether in the two potential theory it is legitimate to
identify the two contributions to �eld-strength tensor
as being equivalent physical �elds.

VIII Duality and monopoles in

non-abelian gauge theories

and phenomenology

In the last decades of evolution of the theory of ele-
mentary particles as expressed by non-abelian gauge
theories through the \standard model", monopoles
have played di�erent rôles. I just want to mention some
recent applications of the monopoles in non-abelian
gauge theories which called my attention.

Let me �rst make a digression, and mention that J.
Sim~oes showed to me that in 1979 Senjanovic was look-
ing for a model with SU(2)L
SU(2)R
U(1) symmetry
for the electroweak interactions, which was consistent
with the phenomenology data at the time [45]. The
idea was that the right symmetry was broken via the
usual HKBEA mechanism and the charged vector me-
son from the right part acquired a large mass.

Going back to the matter, the group at Rutherford
Laboratory led by Chang Hong-Mo is studying non-
abelian gauge theories in a di�erential geometric con-
text [46]. In 1995, he, Tsou Sheung Tsun and Jacque-
line Faridani proposed an extension of what is Hodge
duality in abelian theories for non-abelian ones. This
was to take advantage of the notion of duality, in the
form originally visualized by Dirac. In Dirac terms [4],
\ the idea is so �ne that one would be surprised if Na-
ture had made no use of it".

Usually, one starts from a free action,

S0 = S0F + S0M (86)

where in the right hand side each contribution corre-
sponds to �eld and matter free actions.

Interaction is introduced adding an \ interaction
term ", whose form is deduced from phenomenology
and/or invariance considerations. Chan and collabo-
rators, instead, propose that matter and �elds are de-
termined to obey as a constraint that the dual �eld
intensity has a magnetic monopole as a source. Take
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the example of the abelian theory with a Dirac �eld,
the constraint reads:

@� � F
��(x) = 4�~e~	(x)� ~	(x) (87)

and the action includes the constraint with a Lagrange
parameter �eld,

S0 = S0+

Z
d4x��f@� �F

���4�~e~	(x)� ~	(x)g : (88)

Notice that I would have used the axial current in
the constraint.

Minimizing with respect to F��(x) one gets

F�� = 2�"����(@��� � @���) ; (89)

and with respect to ~	(x),

(i 6 @ �m) ~	(x) = �4�~e��(x)
� ~	(x) : (90)

In fact, one gets,

� F�� = �4�(@���(x)� @���(x)) : (91)

A new gauge invariance with the opposite parity is
gained from ��(x).

The coupling ~e is related to the original one via the
Dirac relation (in these units)

e~e = n=4 : (92)

Personally, I can't see how they arrive to this conclusion
for the spinor theory.

For the non-abelian theory, Chan, Tsou and Fari-
dani obtained an extension of Hodge duality satisfying

� It reduces to Hodge duality in the abelian case

� Applied twice goes back to the original object
(with possibly a phase factor)

� Non-abelian charges for the original �elds are
monopoles of the dual �eld

Duality is introduced via loop variables; the main
feature is that, like the abelian case, one gets as a bonus
an additional gauge invariance with the opposite parity.

The phenomenological applications provene from
the breaking of this additional symmetry. Higgs �elds
are taken as the frame vectors of SU(3), they belong
to the fundamental representation; in the presence of
monopoles they have to be adjusted for each chart.

The dual colour distinguish generations. In fact, the
tree approximation for masses produces a mass for one
generation, the others being massless (think in the mass
relations � : � : electron). They are then able to calcu-
late the Cabibbo-Kobayashi-Maskawa matrix, and the
result is rather impressive:

c

j Vrs j=0
@ 0; 9755(0; 9745� 0; 9757) 0; 2199(0; 219� 0; 224) 0; 0044(0; 002� 0; 005)

0; 2195(0; 218� 0; 014) 0; 9746(0; 9736� 0; 9750) 0; 0452(0; 036� 0; 046)
0:0143(0; 004� 0; 014) 0; 0431(0; 034� 0; 046) 0; 9990(0; 9989� 0; 9993)

1
A (93)

d

The �gures in parenthesis are the phenomenological
values. The values for the masses are not so good, but
Chan believes that, since the calculations involve ex-
trapolations in a logarithmic scale, they should be less
reliable.

Another development is due to Tanmay Vachaspati
and collaborators [47]. The idea is that may be the
fermions of the standard model may be seen as the
monopoles of a dual bosonic Grand Uni�cation The-
ory. Starting from a ~SU(5) model, successive breakings

leads to the dual of usual electromagnetism, ~U(1). The
breaking scheme is

~SU(5) ! [ ~SU(3)
 ~SU(2)
 ~U(1)
0
]=Z6 (94)

! [ ~SU(3)
 ~U(1)]=Z3 (95)

! ~U(1) : (96)

A monopole charge is obtained from the homotopy
groups for each group in the chain:

Q(n) = n3Q3 + n2Q2 + n1Q1 ; (97)

and stability requires n = �1;�2;�3;�4;�6, with
n1 = n(mod:3),n2 = n(mod:2) and n3 an integer.

The assignments for the known particles result:

(u; d)L ! n = +1
dR ! n = �2

(�; e)L ! n = �3
uR ! n = +4
eR ! n = �6 :

9>>>>=
>>>>;

(98)

It has been shown that diquarks are unstable,
whereas clusters of three quarks are stable. The prob-
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lem of spin has been attacked too, taking pro�t from
the \spin from isospin" construction.

The more recent work on this approach by Lepora
[47] converges to the views by Olive and collaborators
and Chan and collaborators.

Even in case the �nal goal is not attained, one may
ask whether these �gures quoted from the works by
Chan, Tsou and collaborators and Vachaspati and fol-
lowers are mere funny numerical accidents or point to
the true structure of the theory taken for the \stan-
dard model" . In any case, in my opinion they open
interesting pathways for research.

IX Conclusion

In this swift glance on the subject, I hope to have
made clear that at least two di�erent views of it are
referred in the same terms. One, pure electromagnetic
Heaviside duality, does not include necessarily magnetic
monopoles. The answer to the �rst question addressed
at the end of section 2 is then on the negative.

The second view introduces the notion of dual-
ity from two-dimensional spacetime Sine-Gordon and
Thirring model relationship. There seems to be fruit-
ful results of this ideas in nonabelian theories if one
takes for the solitons in this approach the magnetic
monopoles.

In my view, the pure Heaviside duality may be im-
plemented either by imposing the identity of the �elds
generated by electric or magnetic charges, or extending
the phase space to include di�erent �elds for each di�er-
ent kind of charge. In the �rst case, the problems that
appear are related to the fact that the transformation is
not a symmetry of the action, but of its Euler-Lagrange
equations. One may overcome these diÆculties through
a time inversion in the quantized version, but it remains
to see if the �nal theory is consistent, and so remains
an open question which is the right path to follow.

I hope to have set clear that Heaviside duality is
a physical condition on �elds, potentials and currents.
Hodge duality, while being a useful tool to write the
results in a concise form, is just a geometrical setting.

In any case, it remains to show that duality may
produce meaningful physical results in a �eld theoreti-
cal framework. Coming back to the example of the hy-
drogen atom, is not clear that we have an spectroscope
with enough resolution to put into evidence a symmetry
under the broken theory leading to the Maxwell equa-
tions. The results obtained by the groups implementing
the idea in nonabelian theories open a window for hope.
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