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Critical Behavior of High Temperature Superconductors
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We consider the scaling behavior in the critical domain of superconductors at zero external magnetic
�eld. The Josephson's relation for a charged superuid is proved without assuming the hyperscaling
relation. On the other hand we discuss the dual Ginzburg-Landau model. In this dual model, due
to the presence of two mass scales, a continuous family of non equivalent scalings can be de�ned.
The relevant critical regimes are identi�ed, and the corresponding critical exponents are predicted.

I Introduction

The study of high temperature superconductors

(HTSC's) is not an easy one, from a theoretical point

of view as well as from an experimental one.

Up to now, there is no theory of the microscopic

mechanism generating the pairing of electrons which

leads to superconductivity, for these HTSC's. There-

fore the theoretical study can be performed only in the

frame of phenomenological models, the most popular

of which is the Ginzburg-Landau (GL) model. But the

question raises : is this GL model relevant for HTSC's,

at least for what concerns the critical behavior, in the

neighborhood of the superconducting transition ? In

other words, do the HTSC's and the GL model belong

to the same universality class ? As many people believe,

we claim that it is the case, but this can be checked only

by comparison with experiments.

Now the experimental situation is also a bit

confusing[1]. Di�erent experiments, performed on dif-

ferent materials, give di�erent results. Many e�ects

have to be taken into account :

i) �nite size e�ects (in particular in one of the three

space dimensions, for thin �lms samples) ;

ii) anisotropy e�ects, since the HTSC's generally

present a crystalline structure made of bidimensional

layers ;

iii) estimate of the critical region probed, depending

on how much the critical temperature is approached.

We shall be concerned here with the critical behav-

ior of HTSC's at zero external magnetic �eld, and we

are mainly interested in the values of the critical expo-

nents � (the exponent for the inverse of �, where � is the

correlation length) and �0 (the exponent for the inverse

of �, where � is the penetration depth). The experimen-

tal results, for approximately isotropic, extreme type II

superconductors are essentially the following ones :

Almost all experimentalists agree on the value of �,

approximately 0.67, but some �nd �0 = �=2 ' 0:33.

This corresponds to an uncharged three-dimensional

XY universality class, which must be relevant for a crit-

ical region near, but not very near, from the critical

temperature ; a region where the gauge �eld uctua-

tions can be neglected.

Some other experimentalists, working with thin

�lms, �nd � ' 0:67 and �0 = 1=2. In this case, the

value of �0 corresponds to a mean-�eld-like behavior.

We stress that the charged critical region, very near

of the critical temperature, is a very small region, not

yet accessible to the experimental probes. And we shall

see that in the charged regime the critical exponents

must take the values � = �0 ' 0:67. This prediction is

con�rmed by a recent numerical study on the lattice[2].

In section II, we set up the main features we get from

the renormalization group study of the GL model. Sec-

tion III gives exact non perturbative relations between

critical exponents, including a proof of Josephson's re-

lation and of hyperscaling. In section IV, we consider

the dual GL model and we elucidate the controversy

which happened among theoreticians, depending on the

de�nition of the scaling.

II The Ginzburg-Landau model

The action for the GL model is built from the mini-

mal electromagnetic coupling of the Abelian gauge �eld

with a charged scalar �eld, and an additional quartic
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self-coupling of the scalar �eld :

S =

Z
d3xf
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~A0 is the electromagnetic �eld

�0 is the bare order parameter (related to electron's

pairs)

m0, the bare mass of �0, is related to the tempera-

ture by

m2
0 = T � Tc = t

The renormalized quantities ~A, �, m, u, e are de-

�ned in the standard way :
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From gauge invariance, the same factor ZA enters the

de�nition of ~A and e. The renormalized mass m is the

inverse of the correlation length � : m = ��1 and the

critical exponent � is de�ned by m � t� when t! 0.

In dimension 3, we de�ne the dimensionless cou-

plings f and v by

f = e2=m and v = u=m

The renormalization group equations are established by

choosingm as the scaling parameter and di�erentiating

with respect to lnm, at �xed u0 and e0.

Working at �xed dimension d = 3 in the one-loop

approximation, one �nds the ow diagram[3]:

O A

CB 

f

v

Figure 1

In Fig.1, the arrows give the evolution of (v; f) when

m goes to zero. Four �xed points appear:

O is the trivial Gaussian �xed point, infrared repul-

sive.

A is the neutral (e = 0) XY point, infrared attrac-

tive only at zero charge (i.e. in the �4 model).

B is a tricritical point. The line from A to B sep-

arates two basins : starting on the left of this line,

v goes to negative values and there is no �xed point,

which corresponds to a �rst order transition ; starting

on the right, (v; f) goes to the attractive, IR stable,

charged �xed point C, which corresponds to a second

order transition.

It must be noticed that when working with the tra-

ditional � expansion, where � = 4�d, the charged �xed

points B and C are not found[4], unless � is an N-

component �eld with a very large number of compo-

nents (N>365). The absence of charged �xed points

corresponds to a �rst-order transition, appropriate for

the description of superconductors in the type I regime,

but not for the type II regime.

The 4 � � method provides a good control of the

renormalization group, as far as one is interested in a

dimension equal to (or near from) 4. But for � = 1

(in dimension 3), this control is usually lost. On the

other hand, the control in our method (�xed d = 3)

depends on the smallness of the coupling constants. At

the charged �xed point, these constants are not really

small. However one may hope that the one-loop contri-

butions remain dominant, as it generally happens. Fur-

thermore, we shall see in section 4 below, from the dual

GL model, a qualitative con�rmation of the results.

III Exact non perturbative re-

sults

In this section we take an arbitrary (yet �xed) dimen-

sion d, 2 < d � 4, and we de�ne correspondingly :

f = e2md�4

v = umd�4

We shall prove some exact results (not depending on

the one-loop approximation), with only one assump-

tion, the existence of the stable infrared �xed point[5].

The �-functions for the renormalization constants

are de�ned as :

�A = m
@

@m
lnZA

�� = m
@

@m
lnZ�
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�
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ZA is de�ned from the two-points function for the ~A

�eld. At the infrared �xed point, �A ! ��A when

m ! 0, ��A being the anomalous dimension of the ~A

�eld.

Similarly, Z� is de�ned from the two-points function

of the � �eld, and Z
(2)
� from the two-points function

of � with mass insertion. At the infrared �xed point,

�� ! ��� = �, � being the anomalous dimension of �.

From the de�nition of f , its �-function is :

m
@

@m
f = (�A + d� 4)f

Assuming f ! f� 6= 0 when m! 0, since m @
@m
f must

vanish at the �xed point, we �nd :

��A = 4� d

Now in the normal phase (m2
0 > 0; T > Tc) the

photon is massless. But in the Meissner phase (m2
0 <

0; T < Tc), it is well known that the symmetry is bro-

ken, the classical potential becomes a double-well one

and the photon acquires a mass mA. The critical expo-

nent of mA is labeled as �0 :

mA � t�
0

and its inverse � = m�1
A is the penetration depth.

The mass mA is given by

m2
A = e2�s

where the superuid density �s =< j�j2 > satis�es

�s =
m2

u

The Ginzburg parameter � is de�ned as the ratio of

the two masses. Thus we have :

� =
m

mA

=
� u
e2

� 1

2

=

�
v

f

� 1

2

From the de�nition of mA, the �-function for m2
A is :
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At the infrared �xed point, v ! v� 6= 0; m @
@m

vanishes

and �A ! ��A = 4� d. Therefore

m
@

@m
m2
� ! 2m2

A

This means that mA behaves like m, and we �nd :

� = �0

Remembering m2
A = e2�s and using � = �0, we �nd for

the critical behavior of �s :

�s � t�(d�2)

which is nothing but the Josephson's relation[6]. In con-

trast with what is usually done, we prove this relation

without using the hyperscaling relation.

On the other hand

�s =< j�j2 >= Z�1
� < j�0j

2 >

Calling � the critical exponent of �0 and remember-

ing Z� � m� , we can write the critical exponent of �s
as 2� � ��. But the relation 2� � �� = �(d � 2) has

been shown[7] to hold only if the hyperscaling relation

d� = 2� � holds (� being the critical exponent for the

speci�c heat. Therefore we also prove the hyperscaling

relation for the GL model.

Finally we may notice that if the gauge �eld uctua-

tions were neglected, i.e. at zero charge, we would have

��A = 0 (instead of 4�d) and consequently m2
A � md�2

(instead of m2). Therefore in this case

�0 =
�(d� 2)

2

and �0 = �
2 for d = 3. We recover the XY behav-

ior which corresponds to approaching the neutral �xed

point A (see �g. 1).

IV The dual Ginzburg-Landau

model

The dual GL model has been proposed using plausible

arguments on the dynamics of a vortex gas[8]. In prin-

ciple, it is the continuum limit of the geometrical dual

(on the lattice) of the lattice version for the direct GL

model. Lattice duality in Abelian gauge models have

been used to predict that a second order phase transi-

tion should take place, at least in the type II regime[9].

But the continuous limit giving the continuum ver-

sion of the dual GL model is not easy to perform, and

implies several approximations. We do not repeat here

the arguments leading to this dual model, which are set

up in our paper[5]. The result is the following action :

S =

Z
d3xf

1
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2+

1
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The dual GL model is thus analogous to the direct GL

model, but the bare gauge �eld ~h0 (related to the mag-

netic induction) is now a massive �eld, with mass M0.
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This is similar to what happens in the broken sym-

metry region of the direct model. Thus the duality

exchanges the ordered and disordered phases, and the

charged scalar �eld  0 is sometimes called a "disorder

parameter". On the other hand, the bare charge q0 is

related to the bare charge e0 of the direct model by the

Dirac's relation

q0 =
2�

e0

Thus the duality also exchanges the large and small cou-

pling situations, giving a better support to the small

coupling expansion implied in our (�xed dimension)

method.

The renormalized quantities in the dual model are

de�ned in a way quite analogous to the previous one :

~h0 = Z
1

2
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After renormalization, one has to identify the critical

behavior of � and M with the critical behavior of m

and mA� in the direct model, retaining the same criti-

cal exponents � and �0

� � t� ; M � t�
0

In particular, the dual Ginzburg parameter

�d =
�

M

has the same �xed point value as the direct Ginzburg

parameter

� =
m

mA

Now a problem comes from the fact that, from the

beginning, two masses M0 and �0 enter the action of

the dual model : taking � as the scaling parameter,

what is the scaling for M0 ? In principle, the scaling

law for M0 must be deduced from the relation between

the direct and the dual GL models. But since the steps

leading to the dual model are not simple, this relation

is practically lost. By working just in the dual model

(forgetting where it comes from), one has to assume the

M0 scaling behavior. Indeed, various authors made dif-

ferent assumptions, which led to some controversy. Let

us generally de�ne the M0 scaling behavior by

M2
0 � t�

and look at the results of the renormalization group

study.

i) If � is taken to be zero, it amounts to take the limit

�! 0 at a �xed value of M0. The result is then[10]

�0 =
�

2

with a vanishing limit for the Ginzburg parameter �.

This is characteristic of a neutral XY behavior (the

only one presently seen by the experimentalists) and

is related to the approach of the neutral �xed point A

in the direct model.

ii) If � is taken to be 1, it amounts to identify M0

with the bare massmA0
of the gauge �eld in the broken

symmetry phase of the direct model. The result here

becomes[11]

�0 =
1

2

a mean-�eld value for the exponent of the penetration

depth. As we saw in the introduction, this could be a

relevant behavior for the superconducting transition of

thin �lms.

iii) If and only if we take � = 2�, which amounts

to identify the scaling behavior of M0 with the scaling

behavior of the renormalized mass mA, we �nd[5]

� = �0

with a non-vanishing �xed-point value of the Ginzburg

parameter. This choice now corresponds to the charged

regime, approaching the infrared stable �xed point C of

the direct model.

At the end of this short review, let us mention that

it would be very useful to ask for the same questions

in presence of an external magnetic �eld. Many recent

experiments are concerned with such a situation, and

indicate that several transitions occur, between various

phases. Starting from the normal metallic phase, when

the temperature is decreasing (depending on the value

of the external �eld), one probably meets a phase with

a uid of vortices, then the Abrikosov's phase with a

regular lattice of vortices, before reaching the Meissner

superconducting phase.

But from a theoretical point of view the problem is

extremely hard. We are presently working on this sub-

ject, trying to go farther than the old results of ref.[12].
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