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In this talk, I will sumarize the status of our understanding of the puzzle of large gauge invariance
at �nite temperature.

I Introduction

Gauge theories are beautiful theories which describe
physical forces in a natural manner and because of their
rich structure, the study of gauge theories at �nite tem-
perature [1] is quite interesting in itself. However, to
avoid getting into technicalities, we will not discuss the
intricacies of such theories either at zero temperature
or at �nite temperature. Rather, we would study a par-
ticular puzzle that arises when a fermion interacts with
an external gauge �eld in odd space-time dimensions.

To motivate, let us note that gauge invariance is re-
alized as an internal symmetry in quantum mechanical
systems. Consequently, we do not expect a macroscopic
external surrounding, such as a heat bath, to modify
gauge invariance. This is more or less what is also found
by explicit computations at �nite temperature, namely,
that gauge invariance and Ward identities continue to
hold even at �nite temperature [2]. This is certainly
the case when one is talking about small gauge trans-
formations for which the parameters of transformation
vanish at in�nity.

However, there is a second class of gauge transfor-
mations, commonly known as large gauge transforma-
tions, where the parameters do not vanish at in�nity.
In odd space-time dimensions, invariance under large
gauge transformations leads to some interesting fea-
tures in physical theories. Let us note that, in odd
space-time dimensions, one can, in addition to the usual
Maxwell (Yang-Mils) term, have a topological term
in the gauge Lagrangian known as the Chern-Simons
term. For example, in 2+1 dimensions, a fermion inter-
acting with a non-Abelian gauge �eld can be described
by a Lagrangian density of the form

L = Lgauge �mLCS + Lfermion

=
1

2
trF��F

�� �m���� trA�(@�A�

+
2g

3
A�A�) +  (�(i@� � gA�)�M) (1)

where m is a mass parameter, A� a matrix valued non-
Abelian gauge �eld in a given representation and \tr"
stands for the matrix trace. The �rst term, on the right
hand side, is the usual Yang-Mills term while the sec-
ond is known as the Chern-Simons term which exists
only in odd space-time dimensions. It is a topological
term (since it does not involve the metric) and, in the
presence of a Yang-Mils term, its e�ect is to provide
a gauge invariant mass term to the gauge �elds. Con-
sequently, such a term is also known as a topological
mass term [3]. (Such a term also breaks various dis-
crete symmetries, but we will not get into that.)

Under a gauge transformation of the form

 ! U�1  

A� ! U�1A� U �
i

g
U�1 @�U (2)

it is straightforward to check that both the Yang-Mills
and the fermion terms are invariant, while the Chern-
Simons term changes by a total divergence leading to

S =

Z
d3xL ! S +

4�m

g2
2i�W (3)

where

W =
1

24�2

Z
d3x ���� tr@�UU

�1@�UU
�1@�UU

�1

(4)
is known as the winding number for the gauge trans-
formation. It is a topological quantity which is an in-
teger and which groups all gauge transformations into
topologically distinct classes. Basically, it counts how
many times the gauge transformations wrap around the
sphere. For small gauge transformations, the winding
number vanishes since the gauge transformations van-
ish at in�nity whereas non-vanishing winding numbers
give rise to large gauge transformations.
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Let us note from eq. (3) that even though the action
is not invariant under a large gauge transformation, if

m is quantized in units of g2

4� , the change in the ac-
tion would be a multiple of 2i� and, consequently, the
path integral would be invariant under a large gauge
transformation. Thus, we have the constraint coming
from the consistency of the theory that the coeÆcient
of the Chern-Simons term must be quantized in units

of g2

4� . (From an operator point of view, such a condi-
tion arises from an analysis of the dimensionality of the
Hilbert space.)

We have derived the quantization of the CS coeÆ-
cient from an analysis of the large gauge invariance of
the tree level action and we have to worry if the quan-
tum corrections can change the behavior of the theory.
At zero temperature, an analysis of the quantum correc-
tions shows that the theory continues to be well de�ned
with the tree level quantization of the Chern-Simons
coeÆcient provided the number of fermion avors is
even. The even number of fermion avors is also neces-
sary for a global anomaly of the theory to vanish and
so, everything is well understood at zero temperature.
(Namely, the quantum corrections, with an even num-
ber of fermion avors shift the tree level integer value to
another, thereby maintaining large gauge invariance.)

At �nite temperature, however, the situation ap-
pears to change drastically. Namely, the fermions
induce a temperature dependent Chern-Simons term
leading to [4]

m! m�
g2

4�

MNf

2jM j
tanh

�jM j

2
(5)

Here, Nf is the number of fermion avors and � = 1
kT

.
This shows that, at zero temperature (� ! 1), m
changes by an integer (in units of g2=4�) for an even
number of avors. However, at �nite temperature, the
CS coeÆcient becomes a continuous function of temper-
ature and, consequently, it is clear that it can no longer
be an integer for arbitrary values of the temperature, as
is required for large gauge invariance. It seems, there-
fore, that temperature would lead to a breaking of large
gauge invariance in such a system. This, on the other
hand, is completely counter intuitive considering that
temperature should have no direct inuence on gauge
invariance of the theory. As a result, we are left with a
puzzle, whose resolution, as we will see, is quite inter-
esting.

II C-S Theory in 0 + 1 Dimen-

sion:

The 2+1 dimensional theory described in the previous
section is quite complicated to carry out higher order
calculations. On the other hand, as we have noted,
Chern-Simons terms can exist in odd space-time di-
mensions. Consequently, let us try to understand this

puzzle of large gauge invariance in a simple quantum
mechanical theory. Let us consider a simple theory of
an interacting massive fermion with an Abelian gauge
�eld in 0 + 1 dimension described by [5, 6]

L =  j(i@t �A�M) j � �A (6)

Here, j = 1; 2; � � � ; Nf labels the fermion avors. There
are several things to note from this. First, we are con-
sidering an Abelian gauge �eld for simplicity. Second,
in this simple model, the gauge �eld has no dynamics
(in 0+1 dimension the �eld strength is zero) and, there-
fore, we do not have to get into the intricacies of gauge
theories. There is no Dirac matrix in 0+1 dimension as
well making the fermion part of the theory quite sim-
ple as well. And, �nally, the Chern-Simons term, in
this case, is a linear �eld so that we can, in fact, think
of the gauge �eld as an auxiliary �eld. (Note that we
have set the coupling constant to unity for simplicity.)

In spite of the simplicity of this theory, it displays
a rich structure including all the properties of the 2+1
dimensional theory that we have discussed earlier. For
example, let us note that under a gauge transformation

 j ! e�i�(t) j ; A! A+ @t�(t) (7)

the fermion part of the Lagrangian is invariant, but the
Chern-Simons term changes by a total derivative giving

S =

Z
dtL! S � 2��N (8)

where

N =
1

2�

Z
dt @t�(t) (9)

is the winding number and is an integer which vanishes
for small gauge transformations. Let us note that a
large gauge transformation can have a parametric form
of the form, say,

�(t) = �iN log

�
1 + it

1� it

�
(10)

The fact that N has to be an integer can be easily
seen to arise from the requirement of single-valuedness
for the fermion �eld. Once again, in light of our ear-
lier discussion, it is clear from eq. (8) that the theory
is meaningful only if �, the coeÆcient of the Chern-
Simons term, is an integer.

Let us assume, for simplicity, that M > 0 and com-
pute the correction to the photon one-point function
arising from the fermion loop at zero temperature.

iI1 = �(�i)Nf

Z
dk

2�

i(k +M)

k2 �M2 + i�
=
iNf

2
(11)

This shows that, as a result of the quantum correction,
the coeÆcient of the Chern-Simons term would change
as

�! ��
Nf

2
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As in 2+1 dimensions, it is clear that the coeÆcient of
the Chern-Simons term would continue to be quantized
and large gauge invariance would hold if the number
of fermion avors is even. At zero temperature, we
can also calculate the higher point functions due to the
fermions in the theory and they all vanish. This has a
simple explanation following from the small gauge in-
variance of the theory [7]. Namely, suppose we had
a nonzero two point function, then, it would imply a
quadratic term in the e�ective action of the form

�2 =
1

2

Z
dt1 dt2 A(t1)F (t1 � t2)A(t2) (12)

Furthermore, invariance under a small gauge transfor-
mation would imply

Æ�2 = �

Z
dt1 dt2 �(t1)@t1F (t1 � t2)A(t2) = 0 (13)

The solution to this equation is that F = 0 so that

there cannot be a quadratic term in the e�ective action
which would be local and yet be invariant under small
gauge transformations. A similar analysis would show
that small gauge invariance does not allow any higher
point function to exist at zero temperature.

Let us also note that eq. (13) has another solution,
namely,

F (t1 � t2) = constant

In such a case, however, the quadratic action becomes
non-extensive, namely, it is the square of an action.
We do not expect such terms to arise at zero tempera-
ture and hence the constant has to vanish for vanishing
temperature. As we will see next, the constant does
not have to vanish at �nite temperature and we can
have non-vanishing higher point functions implying a
non-extensive structure of the e�ective action.

The fermion propagator at �nite temperature (in
the real time formalism) has the form [1]

c

S(p) = (p+M)

�
i

p2 �M2 + i�
� 2�nF (jpj)Æ(p

2 �M2)

�
=

i

p�M + i�
� 2�nF (M)Æ(p�M) (14)

and the structure of the e�ective action can be studied in the momentum space in a straightforward manner.
However, in this simple model, it is much easier to analyze the amplitudes in the coordinate space. Let us note
that the coordinate space structure of the fermion propagator is quite simple, namely,

S(t) =

Z
dp

2�
e�ipt

�
i

p�M + i�
� 2�nF (M)Æ(p�M)

�
= (�(t)� nF (M))e�iMt (15)

d

In fact, the calculation of the one point function is triv-

ial now

iI1 = �(�i)NfS(0) =
iNf

2
tanh

�M

2
(16)

This shows that the behavior of this theory is com-

pletely parallel to the 2+1 dimensional theory in that,

it would suggest

�! ��
Nf

2
tanh

�M

2

and it would appear that large gauge invariance would

not hold at �nite temperature.

Let us next calculate the two point function at �nite

temperature.

iI2 = �(�i)2
Nf

2!
S(t1 � t2)S(t2 � t1)

= �
Nf

2
nF (M)(1� nF (M))

= �
Nf

8
sech2

�M

2
=

1

2

1

2!

i

�

@(iI1)

@M
(17)

This shows that the two point function is a constant as

we had noted earlier implying that the quadratic term

in the e�ective action would be non-extensive.

Similarly, we can also calculate the three point func-

tion trivially and it has the form
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c

iI3 =
iNf

24
tanh

�M

2
sech2

�M

2
=

1

2

1

3!

�
i

�

�2
@2(iI1)

@M2
(18)

In fact, all the higher point functions can be worked out in a systematic manner. But, let us observe a simple
method of computation for these. We note that because of the gauge invariance (Ward identity), the amplitudes
cannot depend on the external time coordinates as is clear from the calculations of the lower point functions.
Therefore, we can always simplify the calculation by choosing a particular time ordering convenient to us. Second,
since we are evaluating a loop diagram (a fermion loop) the initial and the �nal time coordinates are the same and,
consequently, the phase factors in the propagator (15) drop out. Therefore, let us de�ne a simpli�ed propagator
without the phase factor as eS(t) = �(t)� nF (M) (19)

so that we have eS(t > 0) = 1� nF (M); S(t < 0) = �nF (M) (20)

Then, it is clear that with the choice of the time ordering, t1 > t2, we can write

@ eS(t1 � t2)

@M
= �� eS(t1 � t3)eS(t3 � t2) t1 > t2 > t3

@ eS(t2 � t1)

@M
= �� eS(t2 � t3)eS(t3 � t1) t1 > t2 > t3 (21)

d

In other words, this shows that di�erentiation of a
fermionic propagator with respect to the mass of the
fermion is equivalent to introducing an external pho-
ton vertex (and, therefore, another fermion propagator
as well) up to constants. This is the analogue of the
Ward identity in QED in four dimensions except that
it is much simpler. From this relation, it is clear that
if we take a n-point function and di�erentiate this with
respect to the fermion mass, then, that is equivalent to
adding another external photon vertex in all possible
positions. Namely, it should give us the (n + 1)-point
function up to constants. Working out the details, we
have,

@In
@M

= �i�(n+ 1)In+1 (22)

Therefore, the (n + 1)-point function is related to the
n-point function recursively and, consequently, all the
amplitudes are related to the one point function which
we have already calculated. (Incidentally, this is al-
ready reected in eqs. (17,18)).

With this, we can now determine the full e�ective
action of the theory at �nite temperature to be

� = �i
X
n

an (iIn)

= �
i�Nf

2

X
n

(ia=�)n

n!

�
@

@M

�n�1
tanh

�M

2

= �iNf log

�
cos

a

2
+ i tanh

�M

2
sin

a

2

�
(23)

where we have de�ned

a =

Z
dtA(t) (24)

There are several things to note from this result.
First of all, the higher point functions are no longer
vanishing at �nite temperature and give rise to a non-
extensive structure of the e�ective action. More impor-
tantly, when we include all the higher point functions,
the complete e�ective action is invariant under large
gauge transformations, namely, under

a! a+ 2�N (25)

the e�ective action changes as

�! � +NNf� (26)

which leaves the path integral invariant for an even
number of fermion avors. This clari�es the puz-
zle of large gauge invariance at �nite temperature in
this model. Namely, when we are talking about large
changes (large gauge transformations), we cannot ig-
nore higher order terms if they exist. This may provide
a resolution to the large gauge invariance puzzle in the
2 + 1 dimensional theory as well.

III Exact Result:

In the earlier section, we discussed a perturbative
method of calculating the e�ective action at �nite tem-
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perature which clari�ed the puzzle of large gauge in-
variance. However, this quantum mechanical model is
simple enough that we can also evaluate the e�ective
action directly and, therefore, it is worth asking how
the perturbative calculations compare with the exact
result.

The exact evaluation of the e�ective action can be
done easily using the imaginary time formalism. But,
�rst, let us note that the fermionic part of the La-
grangian in eq. (6) has the form

Lf =  (i@t �A�M) (27)

where we have suppressed the fermion avor index for
simplicity. Let us note that if we make a �eld rede�ni-
tion of the form

 (t) = e
�i
R

t

0
dt0 A(t0) ~ (t) (28)

then, the fermionic part of the Lagrangian becomes free,
namely,

Lf = ~ (i@t �M) ~ (29)

This is a free theory and, therefore, the path integral
can be easily evaluated. However, we have to remember
that the �eld rede�nition in (28) changes the periodic-
ity condition for the fermion �elds. Since the original
fermion �eld was expected to satisfy anti-periodicity

 (�) = � (0)

it follows now that the new �elds must satisfy

~ (�) = �e�ia ~ (0) (30)

Consequently, the path integral for the free theory (29)
has to be evaluated subject to the periodicity condition
of (30).

Although the periodicity condition (30) appears to
be complicated, it is well known that this can be ab-
sorbed by introducing a chemical potential [1], in the
present case, of the form

� =
ia

�
(31)

With the addition of this chemical potential, the path
integral can be evaluated subject to the usual anti-
periodicity condition. The e�ective action can now be
easily determined

� = �i log

 
det(i@t �M + ia

�
)

(i@t �M)

!Nf

= �iNf log

 
cosh �

2 (M � ia
�
)

cosh �M
2

!

= �iNf log

�
cos

a

2
+ i tanh

�M

2
sin

a

2

�
(32)

which coincides with the perturbative result of eq. (24).

IV Large Gauge Ward Identity:

It is clear from the above analysis that, to see if large
gauge invariance is restored, we have to look at the com-
plete e�ective action. In the 0 + 1 dimensional model,
it was tedious, but we can derive the e�ective action
in closed form which allows us to analyze the ques-
tion of large gauge invariance. On the other hand, in
the theory of interest, namely, the 2 + 1 dimensional
Chern-Simons theory, we do not expect to be able to
evaluate the e�ective action in a closed form. Conse-
quently, we must look for an alternate way to analyze
the question of large gauge invariance in a more realis-
tic model. One such possible method may be to derive
a Ward identity for large gauge invariance which will
relate di�erent amplitudes much like the Ward identity
for small gauge invariance does. In such a case, even if
we cannot obtain the e�ective action in a closed form,
we can at least check if the large gauge Ward identity
holds perturbatively.

It turns out that the large gauge Ward identities are
highly nonlinear [8], as we would expect. Hence, look-
ing for them within the context of the e�ective action is
extremely hard (although it can be done). Rather, it is
much simpler to look at the large gauge Ward identities
in terms of the exponential of the e�ective action. Let
us de�ne

�(a) = �i logW (a) (33)

Namely, we are interested in looking at the exponential
of the e�ective action (i.e. up to a factor of i, W is the
basic determinant that would arise from integrating out
the fermion �eld). We will restrict ourselves to a single
avor of massive fermions. The advantage of study-
ing W (a) as opposed to the e�ective action lies in the
fact that, in order for �(a) to have the right transfor-
mation properties under a large gauge transformation,
W (a) simply has to be quasi-periodic. Consequently,
from the study of harmonic oscillator (as well as Flo-
quet theory), we see that W (a) has to satisfy a simple
equation of the form

@2W (a)

@a2
+ �2W (a) = g (34)

where � and g are parameters to be determined from
the theory. In particular, let us note that the constant g
can depend on parameters of the theory such as temper-
ature whereas we expect the parameter �, also known as
the characteristic exponent, to be independent of tem-
perature and equal to an odd half integer for a fermionic
mode. However, all these properties should automati-
cally result from the structure of the theory. Let us also
note here that the relation (34) is simply the equation
for a forced oscillator whose solution has the general
form
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W (a) =
g

�2
+A cos(�a+ Æ) =

g

�2
+ �1 cos �a+ �2 sin �a (35)

The constants �1 and �2 appearing in the solution can again be determined from the theory. Namely, from the
relation between W (a) and �(a), we recognize that we can identify

�2�1 = �
@2W

@a2

����
a=0

=

 �
@�

@a

�2

� i
@2�

@a2

!�����
a=0

��2 =
@W

@a

����
a=0

= i
@�

@a

����
a=0

(36)

From the general properties of the fermion theories we have discussed, we intuitively expect g = 0. However, these
should really follow from the structure of the theory and they do, as we will show shortly.

The identity (34) is a linear relation as opposed to the Ward identity in terms of the e�ective action. In fact,
rewriting this in terms of the e�ective action (using eq. (33)), we have

@2�(a)

@a2
= i

 
�2 �

�
@�(a)

@a

�2
!
� ig e�i�(a) (37)

So, let us investigate this a little bit more in detail. We know that the fermion mass term breaks parity and,
consequently, the radiative corrections would generate a Chern-Simons term, namely, in this theory, we expect the
one-point function to be nonzero. Consequently, by taking derivative of eq. (37) (as well as remembering that
�(a = 0) = 0), we determine (The superscript represents the number of avors.)

(�(1))2 =

"�
@�(1)

@a

�2

� 3i
@2�(1)

@a2
�

�
@�(1)

@a

��1�
@3�(1)

@a3

�#
a=0

g(1) = �

"
2i
@2�(1)

@a2
+

�
@�(1)

@a

��1�
@3�(1)

@a3

�#
a=0

(38)

d

This is quite interesting, for it says that the two pa-
rameters in eq. (34) or (37) can be determined from a
perturbative calculation. Let us note here some of the
perturbative results in this theory, namely,

@�(1)

@a

����
a=0

=
1

2
tanh

�M

2

@2�(1)

@a2

����
a=0

=
i

4
sech2

�M

2

@3�(1)

@a3

����
a=0

=
1

4
tanh

�M

2
sech2

�M

2
(39)

Using these, we immediately determine from eq. (38)
that

(�(1))2 =
1

4
; g(1) = 0 (40)

so that the equation (37) leads to the large gauge Ward
identity for a single fermion theory of the form,

@2�(1)

@a2
= i

 
1

4
�

�
@�(1)

@a

�2
!

(41)

Furthermore, we determine now from eq. (36)

�
(1)
1 = 1; �

(1)
2 = �i tanh

�M

2
(42)

The two signs in of �
(1)
2 simply corresponds to the two

possible signs of �(1). With this then, we can solve for
W (a) in the single avor fermion theory and we have
(independent of the sign of �(1))

W
(1)
f (a) = cos

a

2
+ i tanh

�M

2
sin

a

2
(43)

which can be compared with eq. (32). For Nf avors,
similarly, we can determine the Ward identity to be

@�(Nf )

@a2
= iNf

 
1

4
�

1

N2
f

�
@�(Nf )

@a2

�2
!

(44)

where the nonlinearity of the Ward identity is manifest.

Similarly, we can determine the large gauge Ward
identity for scalar theories as well as supersymmetric
theories, but we will not go into the details of this.
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V Back to 2 + 1 dimensions:

The analysis of various 0+1 dimensional models shows
[9] how the large gauge invariance puzzle gets resolved.
A crucial feature in this was the existence of non-
extensive higher order terms in the e�ective action. To
further understand this feature, we have also studied
the e�ective action for a fermion interacting with an
external gauge �eld in 1 + 1 dimensions [10]. In that
case, the e�ective action is non-local, as it should be
at �nite temperature, but extensive. Furthermore, the
e�ective action shows non-analyticity, as one would ex-
pect at �nite temperature, unlike the 0+1 dimensional
model, where one does not expect any non-analyticity.

Following the results of the 0+1 dimensional model,
it was shown [11] that, for the special choice of the

gauge �eld backgrounds where A0 = A0(t) and ~A =
~A(~x), the parity violating part of the e�ective action of
a fermion interacting with an Abelian gauge �eld takes
the form

�PV =
ie

2�

Z
d2x arctan

�
tanh

�M

2
tan(

ea

2
)

�
B(~x)

(45)
However, because the choice of the background is very
special, it would seem that this may not represent the
complete e�ective action in a general background. In
fact, in higher dimensions, such as 2 + 1, one also has
to tackle with the question of the non-analyticity of the
thermal amplitudes which leads to a nonuniqueness of
the e�ective action [1, 12].

With these issues in mind, we have studied the par-
ity violating part of the four point function in 2 + 1
dimensions at �nite temperature. The calculations are
clearly extremely diÆcult and we have evaluated the
amplitudes at �nite temperature by using the method
of forward scattering amplitudes [13]. Without going
into details, let me summarize the results here [14].
First, the parity violating part of the box diagram is
nontrivial at zero temperature and comes from an ef-
fective action of the form

�4T=0 = �
e4

64�M6

Z
d3x ���� F��(@

�F��)F
��F��

(46)
This is Lorentz invariant and is invariant under both
small and large gauge transformations and is compati-
ble with the Coleman-Hill theorem [15].

At �nite temperature, however, the amplitude is not
manifestly Lorentz invariant (because of the heat bath)
and is non-analytic. We have investigated the ampli-
tude in two interesting limits. Namely, in the long wave
limit (all spatial momenta vanishing), the leading term
of the amplitude, at high temperature, can be seen to
come from an e�ective action of the form

�4LW =
e4

512MT

Z
d3x �0ij Ei(@

�1
t Ej)(@

�1
t Ek)(@

�1
t Ek)

(47)

where ~E represents the electric �eld. There are several
things to note here. First, this is an extensive action,
be it non-local. Second, it is manifestly large gauge
invariant and �nally, the leading behavior at high tem-
perature goes as 1

T
.

In contrast, we can evaluate the amplitude in the
static limit (all energies vanishing) where we �nd the
presence of both extensive as well as non-extensive
terms at high temperature. However, the extensive
terms are suppressed by powers of T and the leading
term seems to come from an e�ective action of the form

�4S =
e4

4�T 2

�
tanh

�M

2
� tanh3

�M

2

�Z
d3x a3B

(48)
This coincides with the amplitude that will come from
eq. (45) and has the leading behavior of 1

T 3 at high
temperature. Such a term is not invariant under a large
gauge transformation. However, we can now derive a
large gauge Ward identity for the leading part of the
static action and the solution of the Ward identity co-
incides with the form given in eq. (45). This, therefore,
clari�es the meaning of the e�ective action in the spe-
cial background, namely, it represents the leading term
in the e�ective action in the static limit.

VI Higher order corrections:

Since we have calculated the box diagram at �nite tem-
perature, we can also ask about possible higher loop
corrections to the CS coeÆcient. Let us note that, at
zero temperature, there is a result due to Coleman and
Hill [15], which says that in an Abelian theory, there
cannot be any correction to the CS coeÆcient beyond
one loop. Their result basically uses two simple as-
sumptions, i) small gauge invariance and ii) analyticity
of the amplitudes in the momentum space. Small gauge
invariance is, of course, known to be true at �nite tem-
perature. However, as we have pointed out earlier, am-
plitudes become non-analytic in the momentum space
at �nite temperature. Therefore, the second assump-
tion of Coleman-Hill breaks down at �nite temperature
and one may expect higher loop correction to the CS
coeÆcient at �nite temperature.

We have explicitly computed the two loop correc-
tion to the CS coeÆcient at �nite temperature [16].
Parameterizing the self-energy in a covariant gauge as

���(p; u) = ���
1 (p; u) + i����p��2(p; u) (49)

where u� represents the velocity of the heat bath, we
�nd that, in the static limit, the two loop correction to
the CS coeÆcient at high temperatures takes the form

�
(2)
2 (0) = (2m� 3M)

e4

192�2T 2
ln
T

m
(50)
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This result explicitly shows that the Coleman-Hill
result breaks down at �nite temperatures. Further-
more, the form of the correction is interesting in that
it diverges as m ! 0. This is the usual manifesta-
tion of infrared divergence and shows that, although
the zero temperature theory is well de�ned in the limit
of vanishing m, there are infrared divergences at �nite
temperature. In addition, since there is a two loop cor-
rection to the CS coeÆcient, one may ask the structure
of the e�ective action when higher order corrections are
taken into account. This can be determined from the
large gauge Ward identity that we have derived and it
determines the form of the parity violating e�ective ac-
tion, satisfying large gauge invariance, at any order to
be

�PV = tan�1
�
2�0(0) tan

ea

2

�Z
d2xB (51)

where �0(0) represents the correction to the CS coeÆ-
cient to that order.

VII Non-Abelian theories:

Our main interest was in the study of the question of
large gauge invariance at �nite temperature in a non-
Abelian theory. As we have shown, the question of
large gauge invariance is well understood in an Abelian
theory. However, not much is known about the non-
Abelian theory yet. To that extent, let us note that
even the Coleman-Hill result was derived for an Abelian
theory. In this section, let me describe briey how the
Coleman-Hill result can be generalized to non-Abelian
theories (at zero temperature).

There are several qualitative di�erences between the
Abelian and the non-Abelian theories. First, while the
Abelian theory is well de�ned even when the tree level
CS coeÆcient vanishes, the infrared divergences in the
non-Abelian theory are severe if there is no tree level CS
term. Second, while the Abelian theory can be de�ned
in any gauge, the non-Abelian theory is well de�ned
only in a select class of infrared safe gauges such as
the Landau gauge, the axial gauge etc. Finally, in the
Abelian theory, the CS coeÆcient is a gauge indepen-
dent quantity while in the non-Abelian theory, the CS
coeÆcient is gauge dependent. As a result, it is not
clear how to generalize the Coleman-Hill result in the
non-Abelian case.

On the other hand, it is known from various ar-
guments that, in a non-Abelian theory, it is the ratio
4�m
g2

which has a physical meaning and, therefore, must
be gauge independent. In fact, a one loop calculation
veri�es that in all infrared safe gauges the one loop cor-
rection to this ratio is given by

4�m

g2
!

4�m

g2
+N (52)

It is, therefore, meaningful to generalize the Coleman-
Hill result for this ratio. (Recall that it is also this ratio

that needs to be quantized for large gauge invariance
to hold.)

This can indeed be done as follows [17]. First, let us
note that, although the CS coeÆcient is gauge depen-
dent in general, it takes on a physical meaning in the
axial gauge. This is because in the axial gauge,

4�m

g2
!

4�m

g2
(1 + �2(0)) (53)

Since this ratio is physical, in this gauge �2(0) does
carry a physical meaning. Using the Ward identities in
the axial gauge, it is straight forward to show that the
CS coeÆcient does not receive any corrections beyond
one loop provided i) small aguge invariance holds and
ii) amplitudes are analytic in the momentum space. A
consequence of this is that the ratio 4�m

g2
does not have

any correction beyond one loop in this gauge. How-
ever, this is a gauge independent quantity and hence
it holds in any gauge that this ratio does not receive
any correction beyond one loop. Thus, we understand
some features of the zero temperature non-Abelian the-
ory which are parallel to the Abelian theory and what
remains is to understand systematically if the issue of
large gauge invariance also gets resolved in a parallel
manner.

VIII Conclusion:

In this talk, we have discussed the question of large
gauge invariance at �nite temperature. We have dis-
cussed the resolution of the problem in a simple 0 + 1
dimensional model. We have derived the Ward identity
for large gauge invariance in this model. We have an-
alyzed the box diagram in 2 + 1 dimensions and have
obtained the form of the e�ective action at zero tem-
perature. We have also obtained the amplitude as well
as the quartic e�ective actions in the long wave as well
as static limits, at �nite temperature. The LW limit
has only extensive terms in the action which goes as 1

T

at high temperature and is invariant under large gauge
transformations. The leading term in the static action,
however, is non-extensive, goes as 1

T 3 at high temper-
ature and coincides with the e�ective action proposed
earlier for a restrictive gauge background. This action is
not invariant under large gauge transformations. How-
ever, using a large gauge Ward identity, we can deter-
mine the full leading order action in the static limit
which coincides with the e�ective action obtained in a
restrictive gauge background. We have shown explic-
itly that higher loop corrections to the CS coeÆcient
do not vanish at �nite temperature. This violation of
the Coleman-Hill result is a consequence of the fact that
one of their assumptions (namely, analyticity of the am-
plitudes) breaks down at �nite temperature. We have
also extended the result of Coleman-Hill to the case of
non-Abelian gauge theories.
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