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After a brief review the theory of cosmological perturbations, I highlight some recent progress in
the area of reheating in inationary cosmology, focusing in particular on parametric ampli�cation of
super-Hubble cosmological uctuations, and on the role of noise in the resonance dynamics (yielding
a new proof of Anderson localization). I then discuss several important conceptual problems for
the current realizations of ination based on fundamental scalar matter �elds, and review some new
approaches at solving these problems.

I Introduction

Inationary cosmology [1] has become one of the cor-
nerstones of modern cosmology. Ination was the �rst
theory within which it was possible to make predictions
about the structure of the Universe on large scales based
on causal physics. The development of the inationary
Universe scenario has opened up a new and extremely
promising avenue for connecting fundamental physics
with experiment.

After a brief introduction to inationary cosmology
(Section II) and an overview of the theory of cosmo-
logical perturbations applied to ination (Section III),
I focus on recent improvements in our understanding
of the theory of inationary reheating (Section IV), fo-
cusing in particular on recent studies of the parametric
ampli�cation of gravitational uctuations and on the ef-
fects of noise on the resonance dynamics (which yields
a new proof of Anderson localization in one spatial di-
mension).

However, in spite of the remarkable success of the
inationary Universe paradigm, there are several se-
rious conceptual problems for current models in which
ination is generated by the potential energy of a scalar
matter �eld. These problems are discussed in Section
V.

Section VI is a summary of some new approaches to
solving the above-mentioned problems. An attempt to
obtain ination from condensates is discussed, a non-
singular Universe construction making use of higher
derivative terms in the gravitational action is explained,
and a framework for calculating the back-reaction of
cosmological perturbations is summarized.

This short review focuses on a selected number of
topics at the forefront of inationary cosmology. For
comprehensive reviews of ination, the reader is re-
ferred to [2, 3, 4, 5]. A recent review focusing on ina-

tionary model building in the context of supersymmet-
ric models can be found in [6]. An extended and more
pedagogical version of these notes is [7]. Note that Sec-
tions II, V and VI of this article are identical to the
corresponding sections in [8].

II Basics of Inationary Cos-

mology

Most current models of ination are based on Einstein's
theory of General Relativity with a matter source given
by a scalar �eld '. Based on the cosmological principle,
the metric of space-time on large distance scales can be
written in Friedmann-Robertson-Walker (FRW) form:

ds2 = dt2 � a(t)2
�

dr2

1� kr2 + r2(d#2 + sin2 #d'2)

�
;

(1)
where the constant k determines the topology of the
spatial sections. In the following, we shall set k = 0,
i.e. consider a spatially at Universe. In this case, we
can without loss of generality take the scale factor a(t)
to be equal to 1 at the present time t0, i.e. a(t0) = 1.
The coordinates r; # and ' are comoving spherical co-
ordinates.

For a homogeneous and isotropic Universe and set-
ting the cosmological constant to zero, the Einstein
equations reduce to the FRW equations

�
_a

a

�2

=
8�G

3
� (2)

�a

a
= �4�G

3
(�+ 3p) ; (3)

where p and � denote the pressure and energy den-
sity, respectively. These equations can be combined
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to yield the continuity equation (with Hubble constant
H = _a=a)

_� = �3H(�+ p) : (4)

The equation of state of matter is described by a num-
ber w de�ned by

p = w� : (5)

The idea of ination [1] is very simple. We assume
there is a time interval beginning at ti and ending at
tR (the \reheating time") during which the Universe is
exponentially expanding, i.e.,

a(t) � eHt; t � [ti; tR] (6)

with constant Hubble expansion parameter H . Such a
period is called \de Sitter" or \inationary." The suc-
cess of Big Bang nucleosynthesis sets an upper limit to
the time tR of reheating, tR � tNS , tNS being the time
of nucleosynthesis.

During the inationary phase, the number density
of any particles initially present at t = ti decays ex-
ponentially. At t = tR, all of the energy which is re-
sponsible for ination is released (see later) as thermal
energy. This is a non-adiabatic process during which
the entropy increases by a large factor.

A period of ination can solve the homogeneity
problem of standard cosmology, the reason being that
during ination the physical size of the forward light
cone exponentially expands and thus can easily become
larger than the physical size of the past light cone at
trec, the time of last scattering, thus explaining the near
isotropy of the cosmic microwave background (CMB).
Ination also solves the atness problem [9, 1].

Most importantly, ination provides a mechanism
which in a causal way generates the primordial pertur-
bations required for galaxies, clusters and even larger
objects. In inationary Universe models, the Hubble
radius (\apparent" horizon) and the (\actual") horizon
(the forward light cone) do not coincide at late times.
Provided that the duration of ination is suÆciently
long, then all scales within our present apparent hori-
zon were inside the horizon since ti. Thus, it is in prin-
ciple possible to have a causal generation mechanism
for perturbations [10, 11, 12, 13].

As will be discussed in Section III, the density per-
turbations produced during ination are due to quan-
tum uctuations in the matter and gravitational �elds
[11, 12]. The amplitude of these inhomogeneities corre-
sponds to a temperature TH � H , the Hawking temper-
ature of the de Sitter phase. This leads one to expect
that at all times t during ination, perturbations with
a �xed physical wavelength � H�1 will be produced.
Subsequently, the length of the waves is stretched with
the expansion of space, and soon becomes much larger
than the Hubble radius `H(t) = H�1(t). The phases
of the inhomogeneities are random. Thus, the ina-
tionary Universe scenario predicts perturbations on all
scales ranging from the comoving Hubble radius at the

beginning of ination to the corresponding quantity at
the time of reheating. In particular, provided that in-
ation lasts suÆciently long, perturbations on scales of
galaxies and beyond will be generated. Note, however,
that it is very dangerous to interpret de Sitter Hawking
radiation as thermal radiation. In fact, the equation of
state of this \radiation" is not thermal [14].

In most current models of ination, the exponen-
tial expansion is driven by the potential energy density
V (') of a fundamental scalar matter �eld ' with stan-
dard action

Sm =

Z
d4x

p�gLm (7)

Lm(') =
1

2
D�'D

�'� V (') ; (8)

where D� denotes the covariant derivative, and g is the
determinant of the metric tensor. The resulting energy-
momentum tensor yields the following expressions for
the energy density � and the pressure p:

�(') =
1

2
_'2 +

1

2
a�2(r')2 + V (') (9)

p(') =
1

2
_'2 � 1

6
a�2(r')2 � V (') : (10)

It thus follows that if the scalar �eld is homogeneous
and static, but the potential energy positive, then the
equation of state p = �� necessary for exponential in-
ation results (see (4)).

Most of the current realizations of potential-driven
ination are based on satisfying the conditions

_'2; a�2(r')2 � V (') ; (11)

via the idea of slow rolling [15, 16]. Consider the equa-
tion of motion of the scalar �eld ':

�'+ 3H _'� a�252 ' = �V 0(') : (12)

If the scalar �eld starts out almost homogeneous and at
rest, if the Hubble damping term (the second term on
the l.h.s. of (12) is large, and if the potential is quite
at (so that the term on the r.h.s. of (12) is small),
then _'2 may remain small compared to V ('), in which
case exponential ination will result. Note that if the
spatial gradient terms are initially negligible, they will
remain negligible since they redshift.

Chaotic ination [17] is a prototypical inationary
scenario. Consider a scalar �eld ' which is very weakly
coupled to itself and other �elds. In this case, ' need
not be in thermal equilibrium at the Planck time, and
most of the phase space for ' will correspond to large
values of j'j (typically j'j � mpl). Consider now a
region in space where at the initial time '(x) is very
large, and approximately homogeneous and static. In
this case, the energy-momentum tensor will be imme-
diately dominated by the large potential energy term
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and induce an equation of state p ' �� which leads to
ination. Due to the large Hubble damping term in the
scalar �eld equation of motion, '(x) will only roll very
slowly towards ' = 0 (we are making the assumption
that V (') has a global minimum at a �nite value of '
which can then be chosen to be ' = 0). The kinetic
energy contribution to � and p will remain small, the
spatial gradient contribution will be exponentially sup-
pressed due to the expansion of the Universe, and thus
ination persists. Note that the precise form of V (')
is irrelevant to the mechanism.

It is diÆcult to realize chaotic ination in conven-
tional supergravity models since gravitational correc-
tions to the potential of scalar �elds typically render
the potential steep for values of j'j of the order of mpl

and larger. This prevents the slow rolling condition
(11) from being realizable. Even if this condition can
be satis�ed, there are constraints from the amplitude of
produced density uctuations which are much harder to
satisfy (see Section V).

Hybrid ination [18] is a solution to the above-
mentioned problem of chaotic ination. Hybrid ina-
tion requires at least two scalar �elds to play an im-
portant role in the dynamics of the Universe. As a
toy model, consider the potential of a theory with two
scalar �elds ' and  :

V (';  ) =
1

4
�(M2� 2)2+

1

2
m2'2+

1

2
�

0

 2'2 : (13)

For values of j'j larger than 'c

'c =
� �
�0
M2

�1=2
(14)

the minimum of  is  = 0, whereas for smaller values
of ' the symmetry  ! � is broken and the ground
state value of j j tends to M . The idea of hybrid in-
ation is that ' is slowly rolling like the inaton �eld
in chaotic ination, but that the energy density of the
Universe is dominated by  . Ination terminates once
j'j drops below the critical value 'c, at which point  
starts to move.

Note that in hybrid ination 'c can be much smaller
than mpl and hence ination without super-Planck
scale values of the �elds is possible. It is possible to
implement hybrid ination in the context of supergrav-
ity (see e.g. [19]).

At the present time there are many realizations of
potential-driven ination, but there is no canonical the-
ory. A lot of attention is being devoted to implementing
ination in the context of uni�ed theories, the prime
candidate being superstring theory or M-theory. String
theory or M-theory live in 10 or 11 space-time dimen-
sions, respectively. When compacti�ed to 4 space-time
dimensions, there exist many moduli �elds, scalar �elds
which describe at directions in the complicated vac-
uum manifold of the theory. A lot of attention is now

devoted to attempts at implementing ination using
moduli �elds (see e.g. [20] and references therein).

Recently, it has been suggested that our space-time
is a brane in a higher-dimensional space-time (see [21]
for the basic construction). Ways of obtaining ination
on the brane are also under active investigation (see e.g.
[22]).

It should also not be forgotten that ination can
arise from the purely gravitational sector of the theory,
as in the original model of Starobinsky [23] (see also
Section VI), or that it may arise from kinetic terms in
an e�ective action as in pre-big-bang cosmology [24] or
in k-ination [25].

Theories with (almost) exponential ination gener-
ically predict an (almost) scale-invariant spectrum of
density uctuations, as was �rst realized in [10, 11, 12,
13] and then studied more quantitatively in [26, 27, 28].
Via the Sachs-Wolfe e�ect [29], these density perturba-
tions induce CMB anisotropies with a spectrum which
is also scale-invariant on large angular scales.

The heuristic picture is as follows. If the inationary
period which lasts from ti to tR is almost exponential,
then the physical e�ects which are independent of the
small deviations from exponential expansion (an exam-
ple of something which does depend on these deviations
is e�ects connected with the remnant radiation density
during ination) are time-translation-invariant. This
implies, for example, that quantum uctuations at all
times have the same strength when measured on the
same physical length scale.

If the inhomogeneities are small, they can described
by linear theory, which implies that all Fourier modes
k evolve independently. The exponential expansion in-
ates the wavelength of any perturbation. Thus, the
wavelength of perturbations generated early in the in-
ationary phase on length scales smaller than the Hub-
ble radius soon becomes equal to the (\exits") Hubble
radius (this happens at the time ti(k)) and continues
to increase exponentially. After ination, the Hubble
radius increases as t while the physical wavelength of
a uctuation increases only as a(t). Thus, eventually
the wavelength will cross the Hubble radius again (it
will \enter" the Hubble radius) at time tf (k). Thus,
it is possible for ination to generate uctuations on
cosmological scales by causal physics.

Any physical process which obeys the symmetry of
the inationary phase and which generates perturba-
tions will generate uctuations of equal strength when
measured when they cross the Hubble radius (see, how-
ever, Section V.2):

ÆM

M
(k; ti(k)) = const (15)

(independent of k). Here, ÆM(k; t) denotes the r.m.s.
mass uctuation on a length scale k�1 at time t.

It is generally assumed that causal physics cannot
a�ect the amplitude of uctuations on super-Hubble
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scales (see, however, the comments at the end of Sec-
tion IV.1). Therefore, the magnitude of ÆM

M can change
only by a factor independent of k, and hence it follows
that

ÆM

M
(k; tf (k)) = const ; (16)

which is the de�nition of a scale-invariant spectrum
[30].

III Theory of Cosmological Per-

turbations

On scales larger than the Hubble radius the Newto-
nian theory of cosmological perturbations is inapplica-
ble, and a general relativistic analysis is needed. On
these scales, matter is essentially frozen in comoving
coordinates. However, space-time uctuations can still
increase in amplitude.

In principle, it is straightforward to work out the
general relativistic theory of linear uctuations [31]. We
linearize the Einstein equations

G�� = 8�GT�� (17)

(where G�� is the Einstein tensor associated with
the space-time metric g�� , and T�� is the energy-
momentum tensor of matter) about an expanding FRW

background (g
(0)
�� ; '(0)):

g��(x; t) = g(0)�� (t) + h��(x; t) (18)

'(x; t) = '(0)(t) + Æ'(x; t) (19)

and pick out the terms linear in h�� and Æ' to obtain

ÆG�� = 8�GÆT�� : (20)

In the above, h�� is the perturbation in the metric and
Æ' is the uctuation of the matter �eld '.

In practice, there are many complications which
make this analysis highly nontrivial. The �rst prob-
lem is \gauge invariance" [32]. Imagine starting with
a homogeneous FRW cosmology and introducing new
coordinates which mix x and t. In terms of the new
coordinates, the metric now looks inhomogeneous. The
inhomogeneous piece of the metric, however, must be a
pure coordinate (or "gauge") artifact. Thus, when ana-
lyzing relativistic perturbations, care must be taken to
factor out e�ects due to coordinate transformations.

There are various methods of dealing with gauge ar-
tifacts. The simplest and most physical approach is to
focus on gauge invariant variables, i.e., combinations of
the metric and matter perturbations which are invari-
ant under linear coordinate transformations.

The gauge invariant theory of cosmological pertur-
bations is in principle straightforward, although techni-
cally rather tedious. In the following I will summarize
the main steps and refer the reader to [33] for the details

and further references (see also [34] for a pedagogical
introduction and [35, 36, 37, 38, 39, 40, 41, 42] for other
approaches).

We consider perturbations about a spatially at
Friedmann-Robertson-Walker metric

ds2 = a2(�)(d�2 � dx2) (21)

where � is conformal time (related to cosmic time t by
a(�)d� = dt). At the linear level, metric perturbations
can be decomposed into scalar modes, vector modes
and tensor modes (gravitational waves). In the follow-
ing, we will focus on the scalar modes since they are the
only ones which couple to energy density and pressure.
A scalar metric perturbation (see [43] for a precise def-
inition) can be written in terms of four free functions
of space and time:

Æg�� = a2(�)

�
2� �B;i

�B;i 2( Æij +E;ij)

�
: (22)

The next step is to consider in�nitesimal coordi-
nate transformations which preserve the scalar nature
of Æg�� , and to calculate the induced transformations
of �;  ;B and E. Then we �nd invariant combinations
to linear order. (Note that there are in general no com-
binations which are invariant to all orders [44].) After
some algebra, it follows that

� = �+ a�1[(B �E0)a]0 (23)

	 =  � a0

a
(B �E0) (24)

are two invariant combinations (a prime denotes di�er-
entiation with respect to �).

Perhaps the simplest way [33] to derive the equa-
tions of motion for gauge invariant variables is to con-
sider the linearized Einstein equations (20) and to
write them out in the longitudinal gauge de�ned by
B = E = 0, in which � = � and 	 =  , to directly
obtain gauge invariant equations.

For several types of matter, in particular for scalar
�eld matter, ÆT i

j � Æij which implies � = 	. Hence, the
scalar-type cosmological perturbations can in this case
be described by a single gauge invariant variable. In
the case of a single scalar matter �eld ', the perturbed
Einstein equations can be combined to yield

�� +
�
H � 2

�'

_'

�
_� +

�k2
a2

+ 2 _H � 2H
�'

_'

�
� = 0 : (25)

For uctuations with scales larger than the Hubble ra-
dius, this equation of motion can be written in the form
of an approximate conservation law [28, 45, 39, 46, 47,
48]

_'2 _� = 0 (26)

where

� =
2

3

H�1 _� + �

1 + w
+� : (27)
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During the period of slow-rolling of the scalar �eld
(and also for single perfect uids), (26) becomes simply
_� = 0.

If the equation of state of matter is constant, i.e.,
w = const, then _� = 0 implies that the relativistic po-
tential is time-independent on scales larger than the
Hubble radius, i.e. �(t) = const. During a transition
from an initial phase with w = wi to a phase with
w = wf , � changes. In many cases, a good approxima-
tion to the dynamics given by (26) is

�

1 + w
(ti) =

�

1 + w
(tf ) ; (28)

To make contact with late time matter perturba-
tions and with the Newtonian intuition, it is useful to
note that, as a consequence of the Einstein constraint
equations, at the time tH(k) when a mode k crosses the
Hubble radius, � is a measure of the fractional density
uctuations:

�(k; tH(k)) � Æ�

�
(k; tH(k)) : (29)

The primordial perturbations in an inationary cos-
mology are generated by quantum uctuations (see also
[49, 50]). Since the scale of the uctuations of inter-
est today was larger than the Hubble radius for a long
time, it is crucial to consider not just matter uctua-
tions, but also the gravitational uctuations described
at a classical level in the previous paragraphs. Thus,
the generation and evolution of cosmological uctua-
tions in inationary cosmology becomes a problem of
quantum gravity. However, due to the fact that gravity
is an attractive force, we know that the amplitude of
the uctuations had to have been extremely small in
the very early Universe. Hence, a perturbative analysis
will be well justi�ed. What follows is a very brief sum-
mary of the uni�ed analysis of the quantum generation
and evolution of perturbations in an inationary Uni-
verse (for a detailed review see [33]). The basic point is
that at the linearized level, the system of gravitational
and matter perturbations can be quantized in a consis-
tent way. The use of gauge invariant variables makes
the analysis both physically clear and computationally
simple. Due to the Einstein constraint equation which
couples metric and matter uctuations, there is only
one scalar �eld degree of freedom to be quantized (see
[51] and [52] for the original analysis).

The �rst step of this analysis is to expand the grav-
itational and matter actions to quadratic order in the
uctuation variables about a classical homogeneous and
isotropic background cosmology. Focusing on the scalar
metric sector, it turns out that one can express the re-
sulting action for the quantum uctuations in terms of
a single gauge invariant variable which is a combina-
tion of metric and matter perturbations, and that the
resulting action reduces to the action of a single gauge
invariant free scalar �eld with a time dependent mass

[52, 51] (the time dependence reects the expansion of
the background space-time) We can thus use standard
methods to quantize this theory. If we employ canon-
ical quantization, then the mode functions of the �eld
operator obey the same equations as we derived in the
gauge-invariant analysis of classical relativistic pertur-
bations.

The time dependence of the mass leads to equations
which have growing modes which correspond to parti-
cle production or equivalently to the generation and
ampli�cation of uctuations. Since ination exponen-
tially dilutes the density of pre-existing matter, it is
reasonable to assume that the perturbations start o�
(e.g. at the beginning of ination) in the vacuum state
(de�ned as a state with no particles with respect to a
local comoving observer). The state de�ned this way
will not be the vacuum state from the point of view
of an observer at a later time. The Bogoliubov mode
mixing technique can be used to calculate the number
density of particles at a later time. In particular, ex-
pectation values of �eld operators such as the power
spectrum can be computed.

If the background scalar �eld is rolling slowly, then
the resulting mass uctuations are given by

ÆM

M
(k; tf (k)) � 3H2j _'0(ti(k))j

_'20(ti(k))
=

3H2

j _'0(ti(k))j (30)

This result can now be evaluated for speci�c models of
ination to �nd the conditions on the particle physics
parameters which give a value

ÆM

M
(k; tf (k)) � 10�5 (31)

which is required if quantum uctuations from ination
are to provide the seeds for galaxy formation and agree
with the CMB anisotropy data.

For chaotic ination with a potential

V (') =
1

2
m2'2 ; (32)

we can solve the slow rolling equations for the ina-
ton and obtain the requirement m � 1013GeV to agree
with (31). Similarly, for a quartic potential with cou-
pling constant �, the condition � � 10�12 is required in
order not to conict with observations. Thus, in both
examples one needs a very small parameter in the par-
ticle physics model. It has been shown quite generally
[53] that small parameters are required if ination is to
solve the uctuation problem.

To summarize, the main results of the analysis of
density uctuations in inationary cosmology are: (1)
Quantum vacuum uctuations in the de Sitter phase of
an inationary Universe are the source of perturbations.
(2) As a consequence of the change in the background
equation of state, the evolution outside the Hubble ra-
dius produces a large ampli�cation of the perturbations.
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In fact, unless the particle physics model contains very
small coupling constants, the predicted uctuations are
in excess of those allowed by the bounds on cosmic
microwave anisotropies. (3) The quantum generation
and classical evolution of uctuations can be treated
in a uni�ed manner. The formalism is no more com-
plicated that the study of a free scalar �eld in a time
dependent background. (4) Inationary Universe mod-
els generically produce an approximately scale invariant
Harrison-Zel'dovich spectrum (16).

IV Parametric Resonance and

Reheating

Reheating is an important stage in inationary cosmol-
ogy. It determines the state of the Universe after in-
ation and has consequences for baryogenesis, defect
formation and other aspects of cosmology.

After slow rolling, the inaton �eld begins to oscil-
late uniformly in space about the true vacuum state.
Quantum mechanically, this corresponds to a coherent
state of k = 0 inaton particles. Due to interactions of
the inaton with itself and with other �elds, the coher-
ent state will decay into quanta of elementary particles.
This corresponds to post-inationary particle produc-
tion.

Reheating is usually studied using simple scalar �eld
toy models. The one we will adopt here consists of two
real scalar �elds, the inaton ' interacting with a mass-
less scalar �eld � representing ordinary matter. The
Lagrangian is

L =
1

2
@�'@

�'� 1

2
m2'2+

1

2
@��@

��� 1

2
g2'2�2 ; (33)

with m � 1013GeV (see Section III for a justi�cation of
this choice), and g2 denoting the interaction coupling
constant. The bare mass and self interactions of � are
neglected.

In the elementary theory of reheating (see e.g. [54]
and [55]), the decay of the inaton was calculated using
�rst order perturbation theory. The decay rate �B of '
typically turns out to be much smaller than the Hub-
ble expansion rate at the end of ination (see [7] for a
worked example). The decay leads to a decrease in the
amplitude of ' which can be approximated by adding
an extra damping term to the equation of motion for
':

�'+ 3H _'+ �B _' = �V 0(') : (34)

From the above equation it follows that as long as
H > �B , particle production is negligible. During the
phase of coherent oscillation of ', the energy density
and hence H are decreasing. Thus, eventually H = �B ,
and at that point reheating occurs (the remaining en-
ergy density in ' is very quickly transferred to � parti-
cles). However, when this occurs, the matter tempera-
ture is much smaller than the energy scale of ination

(reheating is a slow process). This would imply no GUT
baryogenesis and no GUT-scale defect production. As
we shall see, these conclusions change radically if we
adopt an improved analysis of reheating.

As was �rst realized in [56], the above analysis
misses an essential point. To see this, we focus on the
equation of motion for the matter �eld �. The equa-
tions for the Fourier modes �k in the presence of a
coherent inaton �eld oscillating with amplitude A,

'(t) = Acos(mt) ; (35)

is

��k+3H _�k+(k2p+m
2
�+

1

2
g2A2cos(2mt))�k = 0; (36)

where kp = k=a is the time-dependent physical
wavenumber, and m2

� = 1
2A

2 (for other toy models a
similar equation is obtained, but with a di�erent re-
lationship between the mass and the coeÆcient of the
oscillating term).

Let us for the moment neglect the expansion of the
Universe. In this case, the friction term in (36) drops
out, kp is time-independent, and Equation (36) becomes
a harmonic oscillator equation with a periodically vary-
ing mass. In the mathematics literature, this equation
is called the Mathieu equation. It is well known that
there is an instability. In physics, the e�ect is known
as parametric resonance (see e.g. [57]). At frequen-
cies !n corresponding to half integer multiples of the
frequency ! of the variation of the mass, i.e.

!2k = k2p +m2
� = (

n

2
!)2 n = 1; 2; :::; (37)

there are instability bands with widths �!n. For val-
ues of !k within the instability band, the value of �k
increases exponentially:

�k � e�t with � � g2A2

!
: (38)

In models of chaotic ination A � mpl. Hence, unless
g2 is unnaturally small (a typical value is g2 � m=mpl),
it follows that �� H . The constant � is called the Flo-
quet exponent.

Since the widths of the instability bands decrease
as a power of the (small) coupling constant g2 with
increasing n, for practical purposes only the lowest in-
stability band is important. Its width is

�!k � gA : (39)

Note, in particular, that there is no ultraviolet diver-
gence in computing the total energy transfer from the
' to the � �eld due to parametric resonance [56].

It is easy to include the e�ects of the expansion of
the Universe (see e.g. [56, 58, 59]). The main e�ect is
that the value of !k becomes time-dependent. Thus, a
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mode slowly enters and leaves the resonance bands. As
a consequence, any mode lies in the resonance band for
only a �nite time.

The rate of energy transfer is given by the phase
space volume of the lowest instability band multiplied
by the rate of growth of the mode function �k. Using as
an initial condition for �k the value �k � H given by
the magnitude of the expected quantum uctuations,
we obtain

_� � �(
!

2
)2�!kHe

�t : (40)

Hence, the energy transfer will proceed fast on the time
scale of the expansion of the Universe. There will be
explosive particle production, and the energy density
in matter at the end of reheating will be approximately
equal to the energy density at the end of ination.

The above is a summary of the main physics of the
modern theory of reheating. The actual analysis can
be re�ned in many ways (see e.g. [58, 59, 60], and, in
the toy model considered here, [61]). First of all, it is
easy to take the expansion of the Universe into account
explicitly (by means of a transformation of variables),
to employ an exact solution of the background model
and to reduce the mode equation for �k to an equation
which also admits exponential instabilities.

The next improvement consists of treating the �
�eld quantum mechanically (keeping ' as a classical
background �eld). At this point, the techniques of
quantum �eld theory in a curved background can be
applied. There is no need to impose arti�cial classi-
cal initial conditions for �k. Instead, we may assume
that � starts in its initial vacuum state. The Bogoli-
ubov mode mixing technique can be used to compute
the number of particles at late times.

Note that the state of � after parametric resonance
is not a thermal state. The spectrum consists of high
peaks in distinct wave bands. An important question
is how this state thermalizes. For some recent progress
on this issue see [62, 63]. Since the state after explosive
particle production is not a thermal state, it is useful
to follow [58] and call this process \preheating" instead
of reheating.

Note that the details of the analysis of preheating
are quite model-dependent. In fact [58, 60], in most
models one does not get the kind of \narrow-band" res-
onance discussed here, but \broad-band" resonance. In
this case, the energy transfer is even more eÆcient.

Recently [64] it has been argued that parametric
resonance may lead to resonant ampli�cation of super-
Hubble-scale cosmological perturbations. The point is
that in the presence of an oscillating inaton �eld, the
equation of motion (25) for the cosmological pertur-
bations contains a contribution to the mass term (the
coeÆcient of �) which is periodically varying in time.
Hence, the equation takes on a similar form to the
Mathieu equation discussed above (36). In some mod-
els of ination, the �rst resonance band includes modes

with wavelength larger than the Hubble radius, lead-
ing to the apparent ampli�cation of super-Hubble-scale
modes. Such a process does not violate causality [48]
since it is driven by the inaton �eld which is coher-
ent on super-Hubble scales at the end of ination as a
consequence of the causal dynamics of an inationary
Universe.

The analysis of Equation (25) during the period of
reheating is, however, complicated by a singularity in
the coeÆcients of both _� and � at the turning points of
the scalar matter �eld '. This singularity persists when
using the `conservation law' form (26) of the equation:
when _' = 0, one cannot immediately draw the con-
clusion that _� = 0. Note, also, that a large increase
in the value of � during reheating is predicted by the
usual theory of cosmological uctuations which treats
the reheating period as a smooth change in the equa-
tion of state from that of nearly de Sitter to that of a
radiation-dominated Universe (see (28)). Careful anal-
yses for simple single-�eld [48, 65] models demonstrated
that there is indeed no net growth of the physical am-
plitude of gravitational uctuations beyond what the
usual theory of cosmological perturbations predicts (see
also [66, 67] for earlier results supporting this conclu-
sion). There is increasing evidence that this conclusion
holds in general for models with purely adiabatic per-
turbations [68, 69].

In the case of multiple matter �eld models there are
extra terms on the right hand side of the equations of
motion (25) and (26) which are not exponentially sup-
pressed on length scales larger than the Hubble radius.
These terms are related to the existence of isocurvature
uctuations. As �rst demonstrated in [73], in such mod-
els exponential increase in the amplitude of � during
reheating is indeed possible. However, in many models
the perturbation modes which can undergo parametric
ampli�cation during reheating are exponentially sup-
pressed during ination [70, 71, 72], and they thus have
a negligible e�ect on the �nal amplitude of �. The cri-
terion for models (such as the one proposed in [73])
to have exponential growth of the physical amplitude
of cosmological perturbations during ination is that
there is an isocurvature/entropy mode which is not sup-
pressed during ination [74]. The resulting exponential
ampli�cation of uctuations renders these models in-
compatible with the observational constraints, even in-
cluding back-reaction e�ects [75].

Since the exponential particle production rate dur-
ing reheating relies on a parametric resonance instabil-
ity, it is reasonable to be concerned whether the e�ect
will survive in the presence of noise. There are various
sources of noise to be concerned about. Firstly, there
are the quantum or thermal uctuations in the inaton
itself, the uctuations which in inationary cosmology
are the source of the observed structure in the Universe.
There is also noise and associated dissipation due to the
coupling of the � �eld to other �elds. In [76, 77] we have
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considered the e�ects of noise in the inaton �eld on the
dynamics of �.

We assume that the dynamics of the inaton is de-
scribed by periodic motion with superimposed noise
given by a function q(t; x), i.e.

'(t; x) = Acos(!t) + q(t; x) : (41)

For simplicity, we have neglected the expansion of the
Universe. In the case of spatially homogeneous noise
considered in [76], the dynamics of � still decomposes
into independent Fourier modes which obey the equa-
tion

��k + k2�k +
�
m2
� + p(!t) + q(t)

�
�k = 0 ; (42)

where p(y) is a function with period 2�. This equation
can be written in the usual way as a homogeneous �rst
order 2�2 matrix di�erential equation with a coeÆcient
matrix containing noise.

For deriving the results mentioned below, it is suÆ-
cient to make certain statistical assumptions about q(t).
We assume that the noise is drawn from some sample
space 
 (which for homogeneous noise can be taken to
be 
 = C(<)), and that the noise is ergodic, i.e. the
time average of the noise is equal to the expectation
value of the noise over the sample space. In this case,
it can be shown that the generalized Floquet exponent
of the solutions for �k is well de�ned. To obtain more
quantitative information about �(q) it is necessary to
make further assumptions about the noise. We assume
�rstly that the noise q(t) is uncorrelated in time on
scales larger than the time period T of the periodic
motion given by p, and is identically distributed for all
realizations of the noise. Secondly, we assume that re-
stricting the noise q(t;�) to the time interval 0 � t < T ,
the noise samples within the support of the probability
measure �ll a neighborhood, in C(0; T ), of the origin.

The main result which was proved in [76] is that
the Floquet exponent �(q) in the presence of noise is
strictly larger than the exponent �(0) in the absence of
noise

�(q) > �(0) ; (43)

which demonstrates that the presence of noise leads to
a strict increase in the rate of particle production. The
proof was based on an application of Furstenberg's the-
orem, a theorem concerning the Lyapunov exponent of
products of independent identically distributed random
matrices f	j : j = 1; :::; Ng.

For inationary reheating, the above result implies
that noise in the inaton eliminated the stability bands
of the system, and that all modes �k grow exponen-
tially. The result was extended to inhomogeneous noise
in [77]. The analysis is mathematically much more com-
plicated since the Fourier modes no longer decouple and
the problem is a problem in the theory of partial (rather
than ordinary) di�erential equations. Nevertheless, a

similar result to (43) can be derived, with the strict
inequality replaced by �.

If we replace time derivatives by spatial deriva-
tives (denoted by a prime) in (42), we obtain the
time-independent Schr�odinger equation for a one-
dimensional non-relativistic electron gas in a periodic
potential subject to aperiodic noise

� ~E (x) = � 00

+ [Vp(x) + Vq(x)] ; (44)

where Vp is periodic, Vq represents the random noise

contribution to the potential, and ~E is a constant. Our
results imply that in the presence of random noise, the
periodic solutions of the equation with periodic poten-
tial (the Bloch waves) become localized, and that the
localization length decreases as the noise amplitude in-
creases [78]. Thus, we obtain a new proof of Anderson
localization [79].

V Problems of Inationary Cos-

mology

V.A Fluctuation Problem

A generic problem for all realizations of potential-
driven ination studied up to now concerns the am-
plitude of the density perturbations which are induced
by quantum uctuations during the period of exponen-
tial expansion [27, 28]. From the amplitude of CMB
anisotropies measured by COBE, and from the present
amplitude of density inhomogeneities on scales of clus-
ters of galaxies, it follows that the amplitude of the
mass uctuations ÆM=M on a length scale given by the
comoving wavenumber k at the time tf (k) when that
scale crosses the Hubble radius in the FRW period is of
the order 10�5.

However, as was discussed in detail in Section III,
the present realizations of ination based on scalar
quantum �eld matter generically [53] predict a much
larger value of these uctuations, unless a parameter in
the scalar �eld potential takes on a very small value.
For example, as discussed at the end of Section III,
in a single �eld chaotic inationary model with quar-
tic potential the mass uctuations generated are of the
order 102�1=2. Thus, in order not to conict with ob-
servations, a value of � smaller than 10�12 is required.
There have been many attempts to justify such small
parameters based on speci�c particle physics models,
but no single convincing model has emerged.

With the recent discovery [64, 48] that long wave-
length gravitational uctuations may be ampli�ed ex-
ponentially during reheating, a new aspect of the uc-
tuation problem has emerged. All models in which such
ampli�cation occurs (see e.g. [74] for a discussion of the
required criteria) are ruled out because the amplitude
of the uctuations after back-reaction has set in is too
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large, independent of the value of the coupling constant
[75].

V.B Trans-Planckian Problem

In many models of ination, in particular in chaotic
ination, the period of ination is so long that comov-
ing scales of cosmological interest today corresponded
to a physical wavelength much smaller than the Planck
length at the beginning of ination. In extrapolating
the evolution of cosmological perturbations according
to linear theory to these very early times, we are implic-
itly making the assumptions that the theory remains
perturbative to arbitrarily high energies and that it
can be described by classical general relativity. Both of
these assumptions break down on super-Planck scales.
Thus the question arises as to whether the predictions
of the theory are robust against modi�cations of the
model on super-Planck scales.

A similar problem occurs in black hole physics [80].
The mixing between the modes falling towards the
black hole from past in�nity and the Hawking radia-
tion modes emanating to future in�nity takes place in
the extreme ultraviolet region, and could be sensitive
to super-Planck physics. However, in the case of black
holes it has been shown that for sub-Planck wavelengths
at future in�nity, the predictions do not change under a
class of drastic modi�cations of the physics described by
changes in the dispersion relation of a free �eld [81, 82].

As was recently [83, 84] discovered, the result in the
case of inationary cosmology is di�erent: the spectrum
of uctuations may depend quite sensitively on the dis-
persion relation on super-Planck scales. If we take the
initial state of the uctuations at the beginning of in-
ation to be given by the state which minimizes the
energy density, then for certain of the dispersion rela-
tions considered in [82], the spectrum of uctuations
changes quite radically. The index of the spectrum can
change (i.e. the spectrum is no longer scale-invariant)
and oscillations in the spectrum may be induced. Note
that for the class of dispersion relations considered in
[81] the predictions are the standard ones.

The above results may be bad news for people who
would like to consider scalar-�eld driven inationary
models as the ultimate theory. However, the positive
interpretation of the results is that the spectrum of uc-
tuations may provide a window on super-Planck-scale
physics. The present observations can already be in-
terpreted in the sense [85] that the dispersion relation
of the e�ective �eld theory which emerges from string
theory cannot di�er too drastically from the dispersion
relation of a free scalar �eld.

V.C Singularity Problem

Scalar �eld-driven ination does not eliminate sin-
gularities from cosmology. Although the standard
assumptions of the Penrose-Hawking theorems break

down if matter has an equation of state with negative
pressure, as is the case during ination, nevertheless it
can be shown that an initial singularity persists in in-
ationary cosmology [86]. This implies that the theory
is incomplete. In particular, the physical initial value
problem is not de�ned.

V.D Cosmological Constant Problem

Since the cosmological constant acts as an e�ective
energy density, its value is bounded from above by the
present energy density of the Universe. In Planck units,
the constraint on the e�ective cosmological constant
�eff is (see e.g. [87])

�eff
m4
pl

� 10�122 : (45)

This constraint applies both to the bare cosmological
constant and to any matter contribution which acts as
an e�ective cosmological constant.

The true vacuum value (taken on, to be speci�c, at
' = 0) of the potential V (') acts as an e�ective cos-
mological constant. Its value is not constrained by any
particle physics requirements (in the absence of special
symmetries). Thus there must be some as yet unknown
mechanism which cancels (or at least almost completely
cancels) the gravitational e�ects of any vacuum poten-
tial energy of any scalar �eld. However, scalar �eld-
driven ination relies on the almost constant potential
energy V (') during the slow-rolling period acting grav-
itationally. How can one be sure that the unknown
mechanism which cancels the gravitational e�ects of
V (0) does not also cancel the gravitational e�ects of
V (') during the slow-rolling phase? This problem is
the Achilles heel of any scalar �eld-driven inationary
model.

Supersymmetry alone cannot provide a resolution
of this problem. It is true that unbroken supersym-
metry forces V (') = 0 in the supersymmetric vacuum.
However, supersymmetry breaking will induce a non-
vanishing V (') in the true vacuum after supersymme-
try breaking, and a cosmological constant problem of at
least 60 orders of magnitude remains even with the low-
est scale of supersymmetry breaking compatible with
experiments.

VI New Avenues

In the light of the problems of potential-driven ina-
tion discussed in the previous sections, it is of utmost
importance to study realizations of ination which do
not require fundamental scalar �elds, or completely new
avenues towards early Universe cosmology which, while
maintaining (some of) the successes of ination, address
and resolve some of its diÆculties.

Two examples of new avenues to early Universe cos-
mology which do not involve conventional ination are
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the pre-big-bang scenario [24], and the varying speed of
light postulate [88, 89]. The pre-big-bang scenario is a
model in which the Universe starts in an empty and at
dilaton-dominated phase which leads to pole-law ina-
tion. A nice feature of this theory is that the mecha-
nism of super-inationary expansion is completely in-
dependent of a potential and thus independent of the
cosmological constant issue. The scenario, however, is
confronted with a graceful exit problem [90], and the
initial conditions need to be very special [91] (see, how-
ever, the discussion in [92]).

It is also easy to realize that a theory in which the
speed of light is much larger in the early Universe than
at the present time can lead to a solution of the horizon
and atness problems of standard cosmology and thus
can provide an alternative to ination for addressing
them. For realizations of this scenario in the context of
the brane world ideas see e.g. [93, 94, 95].

String theory may lead to a natural resolution of
some of the puzzles of inationary cosmology. This is
an area of active research. The reader is referred to
[20] for a review of recent studies of obtaining ination
with moduli �elds, and to [22] for attempts to obtain
ination with branes. Below, three more conventional
approaches to addressing some of the problems of ina-
tion will be summarized.

VI.A Ination from Condensates

At the present time there is no direct observational
evidence for the existence of fundamental scalar �elds in
nature (in spite of the fact that most attractive uni�ed
theories of nature require the existence of scalar �elds in
the low energy e�ective Lagrangian). Scalar �elds were
initially introduced to particle physics to yield an order
parameter for the symmetry breaking phase transition.
Many phase transitions exist in nature; however, in all
cases, the order parameter is a condensate. Hence, it is
useful to consider the possibility of obtaining ination
using condensates, and in particular to ask if this would
yield a di�erent inationary scenario.

The analysis of a theory with condensates is intrin-
sically non-perturbative. The expectation value of the
Hamiltonian hHi of the theory contains terms with ar-
bitrarily high powers of the expectation value h'i of
the condensate. A recent study of the possibility of
obtaining ination in a theory with condensates was
undertaken in [96] (see also [97] for some earlier work).
Instead of truncating the expansion of hHi at some ar-
bitrary order, the assumption was made that the expan-
sion of hHi in powers of h'i is asymptotic and, speci�-
cally, Borel summable (on general grounds one expects
that the expansion will be asymptotic - see e.g. [98])

hHi =

1X
n=0

n!(�1)nanh'ni (46)

=

Z
1

0

ds
f(s)

s(smpl + h'i)e
�1=s : (47)

The �rst line represents the original series, the second
line the resummed series. The function f(s) is deter-
mined by the coeÆcients an.

The cosmological scenario is as follows: the expec-
tation value h'i vanishes at times before the phase
transition when the condensate forms. Afterwards, h'i
evolves according to the classical equations of motion
with the potential given by (46) (assuming that the ki-
netic term assumes its standard form). It can easily be
checked that the slow rolling conditions are satis�ed.
However, the slow roll conditions remain satis�ed for
all values of h'i, thus leading to a graceful exit prob-
lem - ination will never terminate.

However, correlation functions, in particular h�2i,
are in general infrared divergent in the de Sitter phase
of an expanding Universe. One must therefore intro-
duce a phenomenological cuto� parameter �(t) into the
vacuum expectation value (VEV), and replace h'i by
h'i = �. It is natural to take �(t) � H(t) (see e.g.
[99, 100]). Hence, the dynamical system consists of two
coupled functions of time h'i and �. A careful analysis
shows that a graceful exit from ination occurs precisely
if hHi tends to zero when h'i tends to large values.

As is evident, the scenario for ination in this com-
posite �eld model is very di�erent from the standard
potential-driven inationary scenario. It is particu-
larly interesting that the graceful exit problem from
ination is linked to the cosmological constant prob-
lem. Note that models of ination based on compos-
ites presumably do not su�er from the trans-Planckian
problem, the reason being that the e�ective �eld theory
which describes the strongly interacting system is time-
translation-invariant during the de Sitter phase. The
physical picture is that mode interactions are essential,
and are responsible for generating the uctuations on a
scale k when this scale leaves the Hubble radius at time
ti(k).

VI.B Nonsingular Universe Construction

Another possibility of obtaining ination is by mak-
ing use of a modi�ed gravity sector. More speci�cally,
we can add to the usual gravitational action higher
derivative curvature terms. These terms become im-
portant only at high curvatures. As realized a long
time ago [23], speci�c choices of the higher deriva-
tive terms can lead to ination. It is well motivated
to consider e�ective gravitational actions with higher
derivative terms when studying the properties of space-
time at large curvatures, since any e�ective action for
classical gravity obtained from string theory, quantum
gravity, or by integrating out matter �elds, contains
such terms. In our context, the interesting question is
whether one can obtain a version of ination avoiding
some of the problems discussed in the previous section,
speci�cally whether one can obtain nonsingular cosmo-
logical models.
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Most higher derivative gravity theories have much
worse singularity problems than Einstein's theory.
However, it is not unreasonable to expect that in the
fundamental theory of nature, be it string theory or
some other theory, the curvature of space-time is lim-
ited. In Refs. [101, 102] the hypothesis was made
that when the limiting curvature is reached, the ge-
ometry must approach that of a maximally symmet-
ric space-time, namely de Sitter space. The question
now becomes whether it is possible to �nd a class of
higher derivative e�ective actions for gravity which have
the property that at large curvatures the solutions ap-
proach de Sitter space. A nonsingular Universe con-

struction which achieves this goal was proposed in Refs.
[103, 104]. It is based on adding to the Einstein action
a particular combination of quadratic invariants of the
Riemann tensor chosen such that the invariant vanishes
only in de Sitter space-times. This invariant is coupled
to the Einstein action via a Lagrange multiplier �eld in
a way that the Lagrange multiplier constraint equation
forces the invariant to zero at high curvatures. Thus,
the metric becomes de Sitter and hence geodesically
complete and explicitly nonsingular.

If successful, the above construction will have some
very appealing consequences. Consider, for example, a
collapsing spatially homogeneous Universe. According
to Einstein's theory, this Universe will collapse in a �-
nite proper time to a �nal \big crunch" singularity. In
the new theory, however, the Universe will approach a
de Sitter model as the curvature increases. If the Uni-
verse is closed, there will be a de Sitter bounce followed
by re-expansion. Similarly, spherically symmetric vac-
uum solutions of the new equations of motion will pre-
sumably be nonsingular, i.e., black holes would have no
singularities in their centers. In two dimensions, this
construction has been successfully realized [105].

The nonsingular Universe construction of [103, 104]
and its applications to dilaton cosmology [106, 107] are
reviewed in a recent proceedings article [108]. What fol-
lows is just a very brief summary of the points relevant
to the problems listed in Section V.

The procedure for obtaining a nonsingular Universe
theory [103] is based on a Lagrange multiplier construc-
tion. Starting from the Einstein action, one can intro-
duce Lagrange multipliers �elds 'i coupled to selected
curvature invariants Ii, and with potentials Vi('i) cho-
sen such that at low curvature the theory reduces to
Einstein's theory, whereas at high curvatures the solu-
tions are manifestly nonsingular. The minimal require-
ments for a nonsingular theory are that all curvature
invariants remain bounded and the space-time mani-
fold is geodesically complete.

It is possible to achieve this by a two-step proce-
dure. First, we choose a curvature invariant I1(g��)
(e.g. I1 = R) and demand that it be explicitly bounded
by the '1 constraint equation. In a second step, we
demand that as I1(g��) approaches its limiting value,

the metric g�� approach the de Sitter metric gDS�� , a
de�nite nonsingular metric with maximal symmetry.
In this case, all curvature invariants are automatically
bounded (they approach their de Sitter values), and the
space-time can be extended to be geodesically complete.
The second step can be implemented by [103] choosing
a curvature invariant I2(g��) with the property that

I2(g��) = 0 , g�� = gDS�� ; (48)

introducing a second Lagrange multiplier �eld '2 which
couples to I2, and choosing a potential V2('2) which
forces I2 to zero at large j'2j:

S =

Z
d4x

p�g[R+ '1I1 + V1('1) + '2I2 + V2('2)] ;

(49)
with asymptotic conditions

V1('1) � '1 as j'1j ! 1 (50)

V2('2) � const as j'2j ! 1 (51)

Vi('i) � '2i as j'ij ! 0 i = 1; 2 : (52)

The �rst constraint renders R �nite, the second forces
I2 to zero, and the third is required in order to obtain
the correct low curvature limit.

The invariant

I2 = (4R��R
�� �R2 + C2)1=2 ; (53)

singles out the de Sitter metric among all homoge-
neous and isotropic metrics (in which case adding C2,
the Weyl tensor square, is superuous), all homoge-
neous and anisotropic metrics, and all radially symmet-
ric metrics.

As a speci�c example one can consider the action
[103, 104]

S =

Z
d4x

p�g (54)

�
R+ '1R� ('2 +

3p
2
'1)I

1=2
2 + V1('1) + V2('2)

�

with

V1('1) = 12H2
0

'21
1 + '1

�
1� ln(1 + '1)

1 + '1

�
(55)

V2('2) = �2
p
3H2

0

'22
1 + '22

: (56)

It can be shown that all solutions of the equations of
motion which follow from this action are nonsingular
[103, 104]. They are either periodic about Minkowski
space-time ('1; '2) = (0; 0) or else asymptotically ap-
proach de Sitter space (j'2j ! 1).

One of the most interesting properties of this theory
is asymptotic freedom [104], i.e., the coupling between
matter and gravity goes to zero at high curvatures. It
is easy to add matter (e.g., dust, radiation or a scalar
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�eld) to the gravitational action in the standard way.
One �nds that in the asymptotic de Sitter regions, the
trajectories of the solutions projected onto the ('1; '2)
plane are unchanged by adding matter. This applies,
for example, in a phase of de Sitter contraction when
the matter energy density is increasing exponentially
but does not a�ect the metric. The physical reason
for asymptotic freedom is obvious: in the asymptotic
regions of phase space, the space-time curvature ap-
proaches its maximal value and thus cannot be changed
even by adding an arbitrarily high matter energy den-
sity. Hence, there is the possibility that this theory will
admit a natural suppression mechanism for cosmologi-
cal uctuations. If this were the case, then the solution
of the singularity problem would at the same time help
resolve the uctuation problem of potential-driven in-
ationary cosmology.

VI.C Back-Reaction of Cosmological Perturba-

tions

The linear theory of cosmological perturbations in
inationary cosmology is well studied. However, e�ects
beyond linear order have received very little attention.
Beyond linear order, perturbations can e�ect the back-
ground in which they propagate, an e�ect well known
from early studies [109] of gravitational waves. As will
be summarized below, the back-reaction of cosmological
perturbations in an exponentially expanding Universe
acts like a negative cosmological constant, as �rst real-
ized in the context of studies of gravitational waves in
de Sitter space in [110].

Gravitational back-reaction of cosmological pertur-
bations concerns itself with the evolution of space-times
which consist of small uctuations about a symmet-
ric Friedmann-Robertson-Walker space-time with met-

ric g
(0)
�� . The goal is to study the evolution of spatial

averages of observables in the perturbed space-time. In
linear theory, such averaged quantities evolve like the
corresponding variables in the background space-time.
However, beyond linear theory perturbations have an
e�ect on the averaged quantities. In the case of gravi-
tational waves, this e�ect is well-known [109]: gravita-
tional waves carry energy and momentum which a�ects
the background in which they propagate. Here, we shall
focus on scalar metric perturbations.

The idea behind the analysis of gravitational back-
reaction [111] is to expand the Einstein equations to
second order in the perturbations, to assume that the
�rst order terms satisfy the equations of motion for
linearized cosmological perturbations [33] (hence these
terms cancel), to take the spatial average of the re-
maining terms, and to regard the resulting equations as

equations for a new homogeneous metric g
(0;br)
�� which

includes the e�ect of the perturbations to quadratic or-
der:

G��(g
(0;br)
�� ) = 8�G

h
T (0)
�� + ���

i
(57)

where the e�ective energy-momentum tensor ��� of
gravitational back-reaction contains the terms result-
ing from spatial averaging of the second order metric
and matter perturbations:

��� =< T (2)
�� �

1

8�G
G(2)
�� > ; (58)

where pointed brackets stand for spatial averaging, and
the superscripts indicate the order in perturbations.

As formulated in (57) and (58), the back-reaction
problem is not independent of the coordinatization of
space-time and hence is not well de�ned. It is possible
to take a homogeneous and isotropic space-time, choose
di�erent coordinates, and obtain a non-vanishing ��� .
This \gauge" problem is related to the fact that in the
above prescription, the hypersurface over which the av-
erage is taken depends on the choice of coordinates.

The key to resolving the gauge problem is to re-
alize that to second order in perturbations, the back-
ground variables change. A gauge independent form
of the back-reaction equation (57) can hence be de-
rived [111] by de�ning background and perturbation
variables Q = Q(0) + ÆQ which do not change un-
der linear coordinate transformations. Here, Q repre-
sents collectively both metric and matter variables. The
gauge-invariant form of the back-reaction equation then
looks formally identical to (57), except that all vari-
ables are replaced by the corresponding gauge-invariant
ones. We will follow the notation of [33], and use as
gauge-invariant perturbation variables the Bardeen po-
tentials [35] � and 	 which in longitudinal gauge co-
incide with the actual metric perturbations Æg�� . Cal-
culations hence simplify greatly if we work directly in
longitudinal gauge. These calculations have been con-
�rmed [112] by working in a completely di�erent gauge,
making use of the covariant approach.

In [113], the e�ective energy-momentum tensor ���
of gravitational back-reaction was evaluated for long
wavelength uctuations in an inationary Universe in
which the matter responsible for ination is a scalar
�eld ' with the potential

V (') =
1

2
m2'2 : (59)

Since in this model there is no anisotropic stress, the
perturbed metric in longitudinal gauge can be written
[33] in terms of a single gravitational potential �

ds2 = (1 + 2�)dt2 � a(t)2(1� 2�)Æijdx
idxj ; (60)

where a(t) is the cosmological scale factor.

It is now straightforward to compute G
(2)
�� and T

(2)
��

in terms of the background �elds and the metric and
matter uctuations � and Æ', By taking averages and
making use of (58), the e�ective energy-momentum ten-
sor ��� can be computed [113].
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The general expressions for the e�ective energy den-
sity �(2) = �00 and e�ective pressure p(2) = � 1

3�
i
i involve

many terms. However, they greatly simplify if we con-
sider perturbations with wavelength greater than the
Hubble radius. In this case, all terms involving spatial
gradients are negligible. From the theory of linear cos-
mological perturbations (see e.g. [33]) it follows that on
scales larger than the Hubble radius the time derivative
of � is also negligible as long as the equation of state
of the background does not change. The Einstein con-
straint equations relate the two perturbation variables
� and Æ', enabling scalar metric and matter uctua-
tions to be described in terms of a single gauge-invariant
potential �. During the slow-rolling period of the in-
ationary Universe, the constraint equation takes on a
very simple form and implies that � and Æ' are propor-
tional. The upshot of these considerations is that ���
is proportional to the two point function < �2 >, with
a coeÆcient tensor which depends on the background
dynamics. In the slow-rolling approximation we obtain
[113]

�(2) ' �4V < �2 > (61)

and
p(2) = ��(2) : (62)

This demonstrates that the e�ective energy-momentum
tensor of long-wavelength cosmological perturbations
has the same form as a negative cosmological constant.

Note that during ination, the phase space of in-
frared modes is growing. Hence, the magnitude of j�(2)j
is also increasing. Hence, the back-reaction mechanism
may lead to a dynamical relaxation mechanism for a
bare cosmological constant driving ination [114]. A
similar e�ect holds for pure gravity at two loop order
in the presence of a bare cosmological constant [110].

The interpretation of �(2) as a local density has been
criticized, e.g. in [115]. Instead of computing physi-
cal observables from a spatially averaged metric, one
should compute the spatial average of physical invari-
ants corrected to quadratic order in perturbation the-
ory. Work on this issue is in progress [116] (see also
[68]).

VII Conclusions

Inationary cosmology is an attractive scenario. It
solves some problems of standard cosmology and leads
to the possibility of a causal theory of structure forma-
tion. The speci�c predictions of an inationary model
of structure formation, however, depend on the speci�c
realization of ination, which makes the idea of ination
hard to verify or falsify. Many models of ination have
been suggested, but at the present time none are suÆ-
ciently distinguished to form a \standard" inationary
theory.

There is now a consistent quantum theory of the
generation and evolution of linear cosmological pertur-

bations which describes the origin of uctuations from
an initial vacuum state of the uctuation modes at the
beginning of ination, and which forms the basis for the
precision calculations of the power spectrum of density
uctuations and of CMB anisotropies which allow de-
tailed comparisons with current and upcoming obser-
vations.

As explained in Section IV, a new theory of in-
ationary reheating (preheating) has been developed
based on parametric resonance. Preheating leads to
a rapid energy transfer between the inaton �eld and
matter at the end of ination, with important cosmo-
logical consequences. Recent developments in this area
are the realization that long wavelength gravitational
uctuations may be ampli�ed exponentially in models
with an entropy perturbation mode which is not sup-
pressed during ination, and the study of the e�ects
of noise in the inaton �eld on the resonance process,
leading to the result that such noise actually enhances
the resonance (this result also leads to a new proof of
Anderson localization).

Note, however, that there are important concep-
tual problems for scalar �eld-driven inationary mod-
els. Four such problems discussed in Section V are the
uctuation problem, the trans-Planckian problem, the
singularity problem and the cosmological constant prob-

lem, the last of which is the Achilles heel of these ina-
tionary models.

It may be that a convincing realization of ination
will have to wait for an improvement in our understand-
ing of fundamental physics. Some promising but incom-
plete avenues which address some of the problems men-
tioned above and which yield ination are discussed in
Section VI.
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